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ABSTRACT

Autonomous agents operating in the real world often need to inter-
act with other agents to accomplish their tasks. For such agents, the
ability tomodel behavior of other agents – both human and artificial
– without complete knowledge of their decision factors is essential.
Towards realizing this ability, we present Factorial Agent Markov
Model (FAMM), a model to represent behavior of other agents per-
forming sequential tasks. In contrast with most existing models,
FAMM allows for behavior of other agents to depend on multiple,
time-varying latent decision factors and does not assume rationality.
To enable learning of FAMM parameters by observing behavior of
other agents, we provide a set of variational inference algorithms
for the unsupervised, semi-supervised, and supervised settings.
These Bayesian learning algorithms for the FAMM enable agents
to model other agents using execution traces and domain-specific
priors. We demonstrate the utility of FAMM and corresponding
learning algorithms using three synthetic domains and benchmark
them against existing algorithms for modeling agent behavior. Our
numerical experiments demonstrate that, despite the presence of
multiple and time-varying latent states, our approach is capable of
learning predictive models of other agents with semi-supervision.
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1 INTRODUCTION

With increasing adoption of artificially intelligent agents, their abil-
ity to work with humans and other agents is becoming increasingly
critical. Reliance on these agents by humans is also increasing, as
the agents shift from the role of tool to teammate and humans be-
come peers. To accomplish their tasks effectively, these and similar
agents need the ability to accurately model behavior of other agents
in their environment. For instance, for safe and efficient navigation,
autonomous cars require predictive models of other cars [16, 23].
Similarly, robots exhibit poor human-robot teamwork in absence
of faithful models of their human collaborators [8, 15, 26], which
typically need to be learned from small data sets [27].

Recognizing the need of artificial agents to model humans and
other agents, multiple models and learning algorithms have been
developed in the last two decades. For ease of exposition, henceforth,
we refer to the ego-agent who is interested in modeling another
agent as the Observer, and to the other-agent simply as the Agent.
Existing techniques for the Observer to model an Agent include
methods based on imitation learning [16, 20], type-based reasoning
[1], and graphical models [13, 28], among others. Albrecht and
Stone [2] provide a comprehensive survey of techniques to arrive
at predictive models of other agents. As identified in the survey,
most existing methods assume complete knowledge of factors that
influence the otherAgent’s decisions. Indeed, there has been limited
emphasis on modeling other agents in presence of latent, time-
varying decision factors (i.e., partially observable states).

In practice, however, an Observer seldom has complete observ-
ability (or even knowledge) of all the factors that influence the
decisions of the Agent. This challenge is obvious in adversarial set-
tings, where the other Agent has an incentive to hide or obfuscate
its decision factors from the Observer. Interestingly, even during
cooperative tasks within fully observable environments, it can be
challenging for the Observer to observe the Agent’s decision factors.
In cases where the Agent is a human, her decision may depend on
cognitive variables such as workload, belief, and preferences; these
cognitive decision factors are critical for modeling human behavior,
but are difficult to sense [19]. Moreover, due to a variety of cognitive
variables influencing behavior, often more than one latent factors
are in play when humans and artificial agents interact in the real
world. To add to the challenge, in domains where critical events
are observed rarely or collecting observational data is intrusive, the
Observer has to learn from small data sets of Agent behavior.
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To address these challenges, in this work, we introduce the Fac-
torial Agent Markov Model (FAMM). FAMM builds upon two gen-
erative Bayesian time series models – namely, the Agent Markov
Model (AMM) and the Factorial Hidden Markov Model (FHMM) –
to provide a unified framework for representing behavior of agents
performing sequential tasks in Markovian domains. In contrast to
its parent models [7, 28], FAMM explicitly models multiple, time-
varying, latent decision factors as well as actions of the Agent. The
term factorial in FAMM refers to the factored latent states in our
model, i.e., states that are composed of a set of variables, and hence
represented as vectors instead of scalars (cf. FHMM [7]). We detail
the FAMM in Sec. 4, which provides a unified framework to mathe-
matically formalize the problem of modeling Agent behavior (Sec. 5)
and existing solutions (Sec. 7.2). Next, in Sec. 6, we derive Bayesian
learning algorithms for the FAMM that enable modeling of agent
behavior using data of its observed decision factors, actions, and
(optionally) labels of the latent decision factors.

We evaluate our modeling contribution in three sequential tasks
of varying complexity (Sec. 7). In each task, the Agent’s behav-
ior depends on multiple time-varying decision factors, a subset of
which is latent with respect to the Observer. We benchmark our
approach against three techniques for modeling agent behavior:
AMM, BehavioralCloning and InfoGAIL. Our experiments con-
firm the ability of FAMM to faithfully model the behavior of other
agents despite presence of multiple, time-varying, latent decision
factors. Further, we observe that the semi-supervised variant of our
approach can perform comparably to supervised learning despite
significantly fewer annotations. We also observe that FAMM either
performs comparably to or outperforms the baselines in these ex-
periments, thereby highlighting the advantage of our contribution.
Encouraged by these results, we believe that FAMM can serve as a
unified representation for agent behavior and can help inform the
development of approaches to model humans and agents alike.

2 MOTIVATIONAL SCENARIO

To understand the associated computational challenges, let us con-
sider a pedestrian navigating the RoadWorld shown in Fig. 1. The
pedestrian wants to catch a bus, which stops at either end of the
RoadWorld. An autonomous vehicle (not shown in the figure) is
interested in modeling the navigation behavior of the pedestrian to
compute a safe and efficient trajectory. In this motivating scenario,
thus, the pedestrian serves the role of the Agent, while the au-
tonomous vehicle corresponds to the Observer. Mathematically, the
model of pedestrian behavior corresponds to her policy 𝜋 , which
denotes the probability distribution over her actions (i.e., whether
to move up, down, left, right) conditioned on her decision factors
(or, equivalently, states).

Even in this simplified setting, the pedestrian behavior can de-
pend on a variety of decision factors, including her location, pre-
ferred bus stop, and the rules of the road (i.e., walk along the right
or left side of the road). To the Observer, only a subset of these
decision factors are observable. For instance, using its sensors the
autonomous vehicle may be able to detect the pedestrian location
but not her preferred bus stop. Moreover, the latent decision factors
(such as the preferred bus stop) may change over time. In this work,
we are interested in developing computational techniques to model

Figure 1: RoadWorld and the latent preferences affecting

the pedestrians’ policy. The pedestrian’s goal is to reach ei-

ther of the buses. However, the observed behavior depends

not only the task goal but also on pedestrian’s preferences.

Agent behavior in this and similar settings from their observable
execution traces and human supervision. Due to the cost of col-
lecting execution traces and human supervision, solutions that are
both sample- and label-efficient are desirable.

3 RELATEDWORK

Before describing our solution, we begin with a concise review of
related work on modeling other agents and Bayesian models.

3.1 Latent Decision Factors

Design of future human-autonomy systems presents unique chal-
lenges, as human behavior is driven by mental states and models,
and they cannot be assumed to act as rational agents [19, 25]. This
motivates a need to understand and predict human decisions that
govern interactions and behaviors in these systems, particularly as
the nature of those interactions evolves to be sensitive to changes
in context, time constraints, data confidence, and problem com-
plexity. Towards this need, prior work has explored dependence of
human behavior on a variety of mental states, including trust in
automation, fatigue, workload, preferences, belief, and prior exper-
tise [5, 14, 21, 24]. During a task, these mental states are difficult
to observe and may even change over time. To arrive at predictive
models of behavior that depend on these latent states, multi-modal
measures of human physiological response from wearable sensor
technologies offer one avenue to infer these partially observable
states [19, 30]. For example, based on research in psychophysiology,
arousal and fatigue states can be detected via electroencephalogram,
electrocardiogram [4], pupil diameter [17], and eyelid closure [29].

However, a gap exists for effectively utilizing this available do-
main expertise for learning predictive models of behavior, especially
in the presence of multiple latent decision factors. This gap is es-
pecially critical in settings where data collection is challenging
and utilizing the domain expertise is essential to learning accurate
predictive models. Towards addressing this gap, our work provides
a novel representation that explicitly models multiple latent states
and a semi-supervised approach to learning behavioral models.
While we have emphasized latent decision factors in human behav-
ior thus far, similar challenges exist for modeling artificial agents
whose behavior often depends on parameters latent to an Observer
(such as reward functions, discount factor and learning rates).

3.2 Observational Learning of Agent Behavior

The aforementioned complex relationship between environment,
task context, latent decision factors, and behavior motivates the
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use of data-driven modeling approaches to predict actions of the
Agent. Several methods to model and imitate other agents by ob-
serving their behavior have been developed in the last two decades
[2, 3, 20]. Popular paradigms for observational learning of Agent’s
sequential decision-making behavior include policy learning, in-
verse reinforcement learning, plan recognition, among others [2].
The approach presented here is closest to the paradigm of direct pol-
icy learning, wherein the agent’s objective (reward) is not explicitly
modeled and, thus, assumptions of rationality are unnecessary.

Although several method exist for policy learning from demon-
strations, most do not model latent decision factors [2, 20]. The
solutions presented in this work build upon one recent framework,
the Agent Markov Model (AMM), which addresses this limitation
and enables policy learning in presence of latent states [28]. In
AMM, the Agent’s decision-making depends on both task context
and a scalar mental state. In practice, however, Agent behavior may
depend on more than one latent feature, e.g., both workload and
preference. Thus, we explore an extension of AMM, wherein agent
policies can depend on multiple latent states. Both this work and
the AMM utilize Bayesian inference for policy learning.

Recently, guided by advances in deep learning and generative
modeling, deep approaches to agent modeling have also received
increasing interest [9, 11, 12, 16]. For instance, Ho and Ermon [9]
provide GAIL, which utilizes generative adversarial training. Info-
GAIL extends this approach to account for latent decision factors
(or modes) in agent behavior [16]. These methods are powerful
tools for learning high-dimensional nonlinear policies and allow
for data-driven discovery of latent decision factors, especially when
sufficient data is available. However, the latent modes considered
in these methods can lack interpretability and are assumed to be
time-invariant. This lack of interpretability can limit the use of do-
main knowledge (e.g., specification of latent decision factors based
on physiology) during policy learning. In circumstances where data
collection is challenging, such as human-autonomy teaming, the
use of domain knowledge to partially constrain the model is an
attractive alternative to these purely data-driven methods.

4 FACTORIAL AGENT MARKOV MODEL

To enable modeling of multiple interpretable latent decision factors
and learning from small data sets by utilizing domain expertise,
we adopt a Bayesian perspective and provide the Factorial Agent
Markov Model (FAMM). FAMM is an Observer-centric generative
model of Agent behavior, which extends the AMM to encode more
general Agent behaviors. The design of FAMM is also informed
by long-standing Bayesian time series models, namely, the Hidden
Markov Model (HMM) and its extension, the Factorial HMM [7]. In
addition to the latent state and observations inHMM, our model ad-
ditionally includes actions for modeling decision-making. Similar to
AMM, FAMMmodels Agent behavior to depend on decision factors
(𝑥) that are time-varying and latent to theObserver. However, while
AMM assumes only one latent decision factor (𝑥), FAMM allows
for presence of multiple latent states, 𝒙 = (𝑥𝑎, 𝑥𝑏 , ..., 𝑥𝑚). Thus,
analogous to FHMM, which extends HMM to consider multiple
latent states and provides both computational and modeling ben-
efits, FAMM provides a factorial extension of AMM for modeling
behavior of other agents.

Figure 2: The Factorial Agent Markov Model (FAMM) rep-

resented using a two-timeslice Dynamic Bayesian Network.

Each node represents a (multi-dimensional) random vari-

able, with observable variables shown in grey. At each time

step, the agent selects its action 𝑎𝑡 based on its decision fac-

tors (𝒙𝑡 , 𝒔𝑡 ) and policy 𝜋 . The transition of decision factors

in turn depends on the previously selected action.

This extension is motivated by both modeling and computational
reasons. In practice, behavior of humans and other agents often
depends on multiple cognitive states, such as goals, beliefs, trust,
and workload. Allowing the generative model to encode multiple
𝑥 , enables straightforward modeling of these multiple cognitive
states. On the computational front, guided by factorial extension
of HMM [7], we posit that FAMM will enable more efficient and
interpretable model learning. A dynamic Bayesian representation
of the FAMM is provided in Fig. 2. Mathematically, the FAMM is
specified as the tuple (𝑆, 𝑋,𝐴, 𝑇𝑠 ,𝑇𝑥 , 𝑏𝑠 , 𝑏𝑥 , 𝜋), where1

• 𝒔 ∈ 𝑆 , are the set of decision factors observable to both the
Agent and Observer ;
• 𝒙 ∈ 𝑋 , are the set of decisions factors that are latent to
the Observer. 𝒙 is factored and includes multiple features
𝒙 = (𝑥𝑎, 𝑥𝑏 , · · · , 𝑥𝑚). The set of 𝑖-th feature is given as 𝑋𝑖 ;
• 𝑎 ∈ 𝐴, are the set of decisions2 available to the Agent;
• 𝑏𝑠 (𝒔0) and 𝑏𝑥 (𝒙0) are the probability models for the initial
values of the observable and latent decision factors;
• 𝑇𝑠 (𝒔𝑡+1 |𝒔𝑡 , 𝑎𝑡 ) and𝑇𝑥 (𝒙𝑡+1 |𝒙𝑡 , 𝒔𝑡 , 𝑎𝑡 ), are the transition mod-
els of the observable and latent decision factors;3 and
• 𝜋 (𝑎𝑡 |𝒔𝑡 , 𝒙𝑡 ) denotes the Agent policy, which models the
agent’s probability of selecting action 𝑎𝑡 in state (𝒔𝑡 , 𝒙𝑡 ).

For the RoadWorld, 𝒔 corresponds to the agent position, 𝑥𝑎 to
agent’s preference on its goal (left or right), and 𝑥𝑏 on the sidewalk
preference (top or bottom). 𝑇𝑠 models the physics of the environ-
ment, while𝑇𝑥 is simply identity (i.e., in this case, the latent decision
factors are modeled as time-invariant). In more general settings,
𝑇𝑥 models the evolution of latent states. We denote an execution
sequence of agent’s behavior as 𝜏 � {𝒔0:𝐾 , 𝒙0:𝐾 , 𝑎0:𝐾 }, where 𝐾
denotes the length of the sequence. Given the FAMM describing an
agent’s behavior, the probability of its execution sequence is

𝑝 (𝜏) = 𝑏𝑥 (𝒙0)
𝐾∏
𝑡=0

𝜋 (𝑎𝑡 |𝒔𝑡 , 𝒙𝑡 )𝑇𝑠 (𝒔𝑡+1 |𝒔𝑡 , 𝑎𝑡 )𝑇𝑥 (𝒙𝑡+1 |𝒔𝑡 , 𝒙𝑡 , 𝑎𝑡 )

1We use subscripts to denote both time and feature indices based on the context.
2We use the terms of action and decisions to describe 𝑎 interchangeably.
3We assume that the latent decision factors represent cognitive states of the Agent,
which influence transition of state 𝒔 indirectly via actions.
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In practice, due to the presence of latent states 𝒙 , only a subset of
these sequence is observable. We denote this observable sequence
as 𝜁 � {𝒔0:𝐾 , 𝑎0:𝐾 }.

5 PROBLEM STATEMENT

Motivated by the need to model other agents from small sets of data
and by utilizing domain expertise, we formulate the problem of
learning an FAMM. We consider the setting where a human expert
had identified the key features relevant formodelingAgent behavior
(𝑆, 𝑋 ), a subset of which may be unobservable. Further, we assume
that the relevant parameters of the domain, namely (𝐴,𝑇𝑠 , 𝑏𝑠 ), and
latent states (𝑏𝑥 ,𝑇𝑥 ) are also available based on domain expertise.
We highlight that computationally learning each of these problem
inputs are complementary problems, with a few existing solutions
[6, 18]. These solutions can be potentially used as a preprocessing
step to the problem of agent modeling, if a particular problem input
is unavailable.

Given these specifications, we seek to learn the Agent policy
from observable execution sequences 𝜁 and semi-supervision of
latent states. Mathematically, we consider the problem of learning
the behavioral policy 𝜋 of an Agent, whose true behavior is given
by the FAMM using the following inputs

• partial FAMM tuple, (𝑆, 𝑋,𝐴,𝑇𝑠 ,𝑇𝑥 , 𝑏𝑠 , 𝑏𝑥 )
• 𝑁 observable execution sequences of agent’s behavior, 𝜁 1:𝑁
• partial supervision of latent factors 𝒙0:𝑀 , with𝑀 < 𝑁 .

As discussed in Sec. 3, the partial supervision of 𝒙can be derived
using psychophysiology and, in certain domains, through human
annotation. We believe that utilization of this domain expertise is
both beneficial and important to the problem of Agent modeling,
as it has the potential for model learning from smaller data sets
(relative to unconstrained approaches) and results in interpretable
latent decision factors.

6 FAMM POLICY LEARNING

As discussed in Sec. 3, multiple paradigms exist to learn Agent
policies from observational data. Due to our focus on learning from
small datasets, we explore a Bayesian approach. Bayesian methods
by encoding structure in the problem and through probabilistic
priors have the potential to learn from small datasets [27].

6.1 Algorithm Overview

In the general case, calculating the exact posterior of the policy
is computationally expensive, and hence intractable to obtain. We
use mean-field variational inference (MFVI) [10] to overcome this
problem, which allows us to approximate the posterior 𝑝 (𝜋, 𝒙 |𝜁 )
by a parametric probability distribution 𝑞(𝜋, 𝒙; 𝜆). We highlight
that to learn the policy, we also need to infer the latent decision
factors corresponding to the unsupervised execution sequences of
agent’s behavior. To compute the joint posterior distribution, MFVI
assumes the posterior distribution of each unknown quantity to
be independent, 𝑞(𝜋, 𝒙) = 𝑞(𝜋)𝑞(𝒙), and seeks to maximize the
evidence lower bound:

argmax
𝑞

𝔼𝑞

[
log

𝑝 (𝒙, 𝜋)
𝑞(𝒙)𝑞(𝜋)

]
(1)

Algorithm 1: Semi-Supervised FAMM Policy Learning

Data: Unlabeled execution sequences 𝜁 1:𝑁 ,
Semi-supervision for latent decision factors 𝒙0:𝑀 ,
Known FAMM parameters (𝑇𝑠 ,𝑇𝑥 , 𝑏𝑥 ), and
hyper-parameters (𝜌, 𝐾)

Result: Learned policy 𝜋 and latent decision factors �̂�0:𝑁
1 Initialize 𝜆 ← 𝜌 ; and 𝜋 (·|𝑠, 𝒙) ∼ Dirichlet(𝜆);
2 for 𝐾 epochs do
3 Local Update

𝑃 (𝒙𝑡 = 𝒋𝒙 ) ∝ 𝐹 (𝑡, 𝒋𝒙 )𝐵(𝑡, 𝒋𝒙 )
4 Global Update

𝛽
𝒔,𝒙
𝑎 ← 𝔼𝑞 (𝒙)

∑
𝑡

𝕀(𝑎𝑡 = 𝑎, 𝒙𝑡 = 𝒙, 𝒔𝑡 = 𝒔)

𝜆
𝒔,𝒙
𝑎 ← 𝜌

𝒔,𝒙
𝑎 + 𝛽𝒔,𝒙𝑎 ∀𝑎 ∈ 𝐴, 𝒔 ∈ 𝑆, 𝒙 ∈ 𝑋

5 Return 𝜋 (·|𝑠, 𝒙) ∼ Dirichlet(𝜆), �̂�0:𝑁 ;

To solve this optimization problem for the FAMM, we develop Al-
gorithm 1. Algorithm 1 computes the (local) optimum by iteratively
updating the parameters of the local 𝑞(𝒙) and global 𝑞(𝜋) varia-
tional factors. We provide MFVI-based policy learning algorithms
for three problem settings: unsupervised, where only observable
expert trajectories 𝜁 1:𝑁 are provided; supervised, where the latent
states are also made available during training; and semi-supersvised,
as described in Sec. 5. Often labeled data is difficult to collect, es-
pecially of latent features corresponding to an Agent’s cognitive
states. This requirement motivates the development of algorithms
that can take advantage of both labeled and unlabeled data. Thus,
we focus on semi-supervised setting, where only partial access to
the latent states is possible. We first describe the semi-supervised
setting in detail, and then arrive at algorithms for the other two
cases as its special case. As we will see next, the choice of problem
setting only affects the computation of local updates.

6.2 Local Updates

The local variational updates correspond to estimating the posterior
of the latent decision factors, 𝒙 . This posterior can be efficiently
calculated using forward-backward message passing. We define the
forward and backward messages for the FAMM as follows

𝐹 (𝑡, 𝒋𝒙 ) ≡ 𝑃 (𝒙𝑡 = 𝒋𝒙 , 𝒔0:𝑡 , 𝑎0:𝑡 ) (2a)
𝐵(𝑡, 𝒋𝒙 ) ≡ 𝑃 (𝒔𝑡+1:𝑁 , 𝑎𝑡+1:𝑁 |𝒔0:𝑡 , 𝒙𝑡 = 𝒋𝒙 ) (2b)

where, 𝒋𝒙 = ( 𝑗𝑎, . . . , 𝑗𝑚) is a specific value of the multi-dimensional
latent state 𝒙 . To compute these messages efficiently, we employ
iterative forward-backward message passing by utilizing the fol-
lowing derived formulae,

𝐹 (𝑡, 𝒋𝒙 ) =
∑

𝒌𝒙 ∈𝑋

(
𝐹 (𝑡 − 1, 𝒌𝒙 )𝑇𝑠 (𝒔𝑡 |𝑎𝑡−1, 𝒔𝑡−1)

𝑇𝑥 (𝒋𝒙 |𝒌𝒙 , 𝒔𝑡−1, 𝑎𝑡−1)𝜋 (𝑎𝑡 |𝒔𝑡 , 𝒙𝑡 = 𝒋𝒙 )
)

𝐵(𝑡, 𝒋𝒙 ) =
∑

𝒌𝒙 ∈𝑋

(
𝐵(𝑡 + 1, 𝒌𝒙 )𝑇𝑠 (𝒔𝑡+1 |𝒔𝑡 , 𝑎𝑡 )

𝑇𝑥 (𝒌𝒙 |𝒋𝒙 , 𝒔𝑡 , 𝑎𝑡 )𝜋 (𝑎𝑡+1 |𝒔𝑡+1, 𝒙𝑡+1 = 𝒌𝒙 )
)

(3)
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where, similar to 𝒋𝒙 , 𝒌𝒙 = (𝑘𝑎, . . . , 𝑘𝑚) is a specific value of the
multi-dimensional latent state 𝒙 . To iteratively compute the forward
and backward messages, their initial values are needed. These are
given as follows,

𝐵(𝑁, 𝒋𝒙 ) = 1
𝐹 (0, 𝒋𝒙 ) = 𝑏𝑥 (𝑥0 = 𝒋𝒙 )𝜋 (𝑎0 |𝑠0, 𝑥0 = 𝒋𝒙 )

(4)

Given the forward and backward messages, the posterior of the
latent state is given as

𝑃 (𝒙𝑡 = 𝒋𝒙 |𝒔0:𝑁 , 𝑎0:𝑁 ) ∝ 𝐹 (𝑡, 𝒋𝒙 )𝐵(𝑡, 𝒋𝒙 ) . (5)

In the semi-supervised setting, a subset of the executions are la-
beled, i.e., for these instances, the true value of 𝒙is known. We treat
these labeled instances separately. In this case, the latent states are
converted to probability vectors correspond to their (known) poste-
rior, where the entry corresponding to the value of the given latent
state equals to one. After the change of representation from latent
state to probability vector, the probability vectors for both given
and estimated latent states are combined to form the posterior 𝑞(𝒙)
and used indifferently in the global update.

6.3 Global updates

Due to our focus on discrete action spaces, in absence of any addi-
tional domain knowledge, we assume the policy to be a Categorical
distribution. For a computationally efficient global update rule, it
is prudent to select a conjugate prior for the global variational fac-
tors. Hence, we use the Dirichlet distribution as the prior for policy
learning

𝜋 (·|𝒔, 𝒙) ∼ Dirichlet(𝜌𝒔,𝒙1: |𝐴 |) (6)

where, 𝜌𝒔,𝒙1: |𝐴 | are hyper-parameters. In absence of any prior knowl-
edge, the hyperparameters can be simply selected as 1/|𝐴|, or tuned
using a subset of the training dataset. On the other hand, if domain
knowledge is available, the prior and its hyperparameter can be
modified to incorporate the same. Due to our choice of a conjugate
prior, the variational factor for computing the policy posterior is
also a Dirichlet distribution,

𝑞∗ (𝜋𝒔,𝒙=𝒋𝒙 ) = Dirichlet(𝜆𝒔,𝒙=𝒋𝒙 ))

where, 𝜆𝒔,𝒙 = (𝜆0, . . . , 𝜆 |𝐴 |)∀(𝒔, 𝒙) ∈ (𝑆 ×𝑋 ) are variational param-
eters that need to be learned to arrive at an estimate of the policy.
The update rule for policy parameters 𝜆 is given as

𝛽
𝒔,𝒙
𝑎 ← 𝔼𝑞 (𝒙)

∑
𝑡

𝕀(𝑎𝑡 = 𝑎, 𝒙𝑡 = 𝒙, 𝒔𝑡 = 𝒔) (7)

𝜆
𝒔,𝒙
𝑎 ← 𝜌

𝒔,𝒙
𝑎 + 𝛽𝒔,𝒙𝑎 ∀𝑎 ∈ 𝐴, 𝒔 ∈ 𝑆, 𝒙 ∈ 𝑋 (8)

where, 𝛽𝑘 are computed efficiently using the previously computed
forward and backward messages. The algorithm terminates after
a prespecified number of epochs. We highlight that our overall
approach is one of generative modeling and, hence, can be used
to generate a variety of estimates of the learned policy from its
posterior. In our experiments, we sample a policy using the learned
posterior distribution from the final epoch, i.e., 𝜋 ∼ Dirichlet(𝜆),
to arrive at this estimate. A few alternate approaches are to use the
mean or mode of the posterior distribution to arrive at the policy
estimate; however, we leave exploration of the relative performance
each alternative to future work.

6.4 Supervised and Unsupervised Learning

The supervised and unsupervised settings are special cases of the
semi-supervised setting. In the case of complete supervision, we
convert all latent sequences to probability vector sequences, as
described in 6.2, and use those during the global update. Thus, in
this setting, the learning algorithm converges after one iteration,
since the local updates remain constant across each iteration. On
the other hand, when no information about latent states is available,
the local updates are computed solely through the observable expert
demonstrations 𝜁 using the forward-backward message passing
algorithm, described also in 6.2.

7 EXPERIMENTS

We evaluate our approach through a suite of experiments in syn-
thetic domains. For each domain, we handcraft ground truth mod-
els for the task and agent, which are used to generate data for
experiments. We first benchmark Bayesian FAMM learning against
existing techniques and, through ablation studies, characterize the
sample- and label-efficiency on our approach.

7.1 Domains

We create and utilize three domains of varying complexity, where
the Agent behavior depends on multiple latent decision factors. We
note that existing data sets of human or agent behavior used in
related works typically do not include ground truth labels of latent
states states and agent policy, most likely due to the difficulty of
annotating cognitive states and estimating the latent policy (the
problem that our work seeks to address). By utilizing synthetic
domains, we can create these ground truth values and evaluate our
algorithm. Collection and annotation of novel datasets of human
and agent behavior to evaluate and apply our approach is of high
interest and an immediate avenue for future work.

Each domain, introduced next, corresponds to a pair of task and
agent models. The task model, defined as an MDP/R, provides a
specification of the agent’s environment. In all experiments, both
the Agent and Observer have full observability of the task state. The
Agent behavior, however, depends not only on the task state but also
additional decision factors (such as fatigue, trust, and preferences).
These additional decision factors are observable to the Agent but
not to the Observer. We define the ground truth model of agent
behavior as an FAMM, which explicitly models both the observable
and latent decision factors of the Agent.

7.1.1 RoadWorld. As our first domain, we utilize a discretized
verison of RoadWorld described in Sec. 2. Here, the observable
state 𝒔 corresponds to the agent location and the action 𝑎 models
navigation (move: left, right, up, down, stay). The transition of the
observable state 𝒔 is modeled as deterministic. Agent behavior in
RoadWorld additionally depends on two latent decision factors
𝒙 = (𝑥1, 𝑥2): 𝑥1 denotes the agent’s preferred bus stop and 𝑥2
denotes the preference to walk on left or right side of the road (i.e.,
top or bottom sidewalk). The size of agent’s state space 𝑆 × 𝑋 and
action space 𝐴 is 120 and 5, respectively. The agent policy models
goal-oriented behavior and depends on both 𝒔 and 𝒙 .

7.1.2 BoxWorld. Our second domain is inspired by applications
from disaster response, where the Agent models a first responder
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Figure 3: TeamBoxWorld.

(Fig. 3). The Agent (depicted as human) is responsible for rescuing
items of interest (such as, first-aid kits, depicted as blue circles with
cross), which it does by visiting said objects. Due to the disaster,
some areas are radioactive and adversely affect the Agent. We as-
sume that the Agent has complete observability of the environment,
i.e., the location of itself, objects, and threats. The actions available
to the Agent are identical to the RoadWorld. Its decisions depend
on both observable and latent states. The observable state 𝒔 includes
the following features: agent location and a binary feature for each
object (indicating whether the object has been retrieved or not).

The latent state 𝒙 consists of two decision factors: 𝑥1 models ur-
gency (a Boolean variable) and 𝑥2 models fatigue (a ternary variable,
with values low, medium and high). Mathematically, we arrive at the
ground truth agent policy 𝜋 (𝑎 |𝒔, 𝒙) by first defining a reward func-
tion𝑅(𝑠, 𝑥1) that depends on urgency; computing the corresponding
𝑄 (𝑠, 𝑥1) value using MDP solvers; and then selecting actions based
on fatigue-dependent soft-maximum: 𝜋 ∝ exp[𝑄 (𝑠, 𝑥1)/𝑥2]. Intu-
itively, if the agent considers task to be urgent, then it disregards
the threats; otherwise it seeks to retrieve the objects while avoiding
the threats by assigning threats a high negative reward 𝑅(𝑠, 𝑥1).
Fatigue influences the agent’s ability to take rational decisions via
the softmax function. The size of agent’s state and action space is
504 and 4, respectively.

7.1.3 TeamBoxWorld. Our third domain is a variant of BoxWorld,
where the first responder (Agent) has access to an aerial drone. As
the drone is not affected by the radioactivity, the Agent can team up
with it to complete the task both safely and efficiently. This domain
focuses on human’s use of autonomy, which has been shown to
depend on her trust in autonomy [22]. In this domain, the Agent
in addition to its navigation actions can deploy the drone to re-
trieve an object (send robot to: object 1, object 2, ..., stop robot).
Given an object specified by the Agent, the drone moves to the
object autonomously and then retrieves it with a success rate of
80%. Thus, in addition to the states of BoxWorld, the observable
decision factors of the Agent also include the drone state. For this
domain, we assume that the Agent always seeks to avoid the threats
(i.e., 𝑥1 =low). However, along with fatigue 𝑥2, the Agent behavior
now depends on another latent quantity: trust in autonomy (𝑥3).

We model 𝑥3 as a binary variable (with values low and high). The
Agent chooses not to use the drone if 𝑥3 is low; otherwise it deploys
the drone to complete the task efficiently. The size of agent’s state
space is 1512 and action space is 6 (4 navigational actions and 2
instructional actions for robot to retrieve 2 objects).

7.1.4 Generating training and testing datasets. Thus far, we have
described the states (𝒔, 𝒙), actions 𝑎, transition model𝑇𝑠 , and policy
𝜋 for each domain. The transition model of latent states 𝑇𝑥 differ
across experiment settings, wherein we explore both the static
and time-varying settings. Given these specifications, we generate
data of agent’s behavior by first specifying the initial value of the
decision factors (𝒔, 𝒙) and then iteratively sampling the agent’s
next action 𝑎 ∼ 𝜋 (·|𝒔, 𝒙), observable state 𝒔 ′ ∼ 𝑇𝑠 (·|𝒔, 𝑎), and latent
state 𝒙 ′ ∼ 𝑇𝑥 (·|𝒔, 𝑎, 𝒙) until the task terminates. The resulting data
corresponds to a set of agent’s execution traces, where each trace
is a sequence of (𝒔, 𝒙, 𝑎)-tuples.

7.2 Baselines

We benchmark our approach using three approaches: Behavioral-
Cloning, InfoGAIL, and Bayesian AMM learning. All algorithms,
including FAMM learning, are implemented using Python. Our im-
plementation of BehavioralCloning (BC) and InfoGAIL employs
network architecture similar to that used in [16] for modeling 2D
synthetic environments. In the unsupervised setting, BC does not
model latent decision factors; while in the supervised setting, a
Densely connected layer is used to encode the provided labels of
latent modes. Additional implementation details of the algorithms
are provided in the supplementary material.

InfoGAIL and AMM are recent techniques that both consider la-
tent states to model Agent behavior. However, in contrast to FAMM,
they both assume the latent state to be one-dimensional and, in
case of InfoGAIL, model it as time-invariant. Thus, the baselines
allow us to evaluate the effect of modeling latent states (cf. Behav-
ioralCloning), their dynamics (cf. InfoGAIL), and their factored
nature (cf. InfoGAIL and AMM). We enable InfoGAIL and AMM
to learn in presence of multiple latent decision factors by flattening
the multi-dimensional latent state. For instance, in RoadWorld,
two latent features with two values each are represented as one
latent feature with four values during the learning process.

7.3 Metrics

We evaluate the learning performance using metrics for model
learning as well as the ability of the learned model to decode latent
decision factors on test datasets. We report the error between the
learnt and ground truth policies using two metrics: KL divergence
and 0-1 action prediction loss. Note that the policy corresponds to
|𝑆 | |𝑋 | number of probability distributions, one corresponding to
each agent state, i.e., (𝒔, 𝒙)-tuple. Hence, the composite KL diver-
gence is obtained by first computing the KL divergence between
each corresponding pair of learnt and ground truth distributions
and then taking an (unweighted) average. To compute 0-1 loss, we
compare the modes of corresponding probability distribution from
the learnt and ground truth policies.

For the unsupervised algorithms, the identity of learned 𝒙 may
not correspond to the true 𝒙; hence, we first compute the best
correspondence between true and learned latent state labels to
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Table 1: Policy Error: KL-Divergence and 0-1 Action Prediction Loss.

RoadWorld BoxWorld: static BoxWorld: dynamic TeamBoxWorld: dynamic

KL div. 0 − 1 loss KL div. 0 − 1 loss KL div. 0 − 1 loss KL div. 0 − 1 loss
BC (U) 1.73 ± 0.35 0.60 ± 0.00 2.21 ± 0.17 0.18 ± 0.01 2.11 ± 0.09 0.18 ± 0.01 1.39 ± 0.20 0.25 ± 0.02
InfoGAIL 8.56 ± 2.26 0.62 ± 0.14 6.77 ± 0.55 0.17 ± 0.01 7.04 ± 0.94 0.21 ± 0.07 9.70 ± 0.37 0.38 ± 0.05
AMM (U) 1.37 ± 0.12 0.50 ± 0.05 0.77 ± 0.01 0.01 ± 0.00 0.84 ± 0.03 0.01 ± 0.00 1.18 ± 0.02 0.11 ± 0.01

FAMM (U) 1.39 ± 0.24 0.48 ± 0.08 0.65 ± 0.01 0.01 ± 0.00 0.65 ± 0.01 0.01 ± 0.00 0.66 ± 0.03 0.13 ± 0.01
p-value < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

AMM (Semi.) 0.85 ± 0.00 0.28 ± 0.00 0.69 ± 0.01 0.01 ± 0.00 0.71 ± 0.00 0.00 ± 0.00 1.03 ± 0.01 0.09 ± 0.01

FAMM (Semi.) 0.81 ± 0.11 0.19 ± 0.04 0.60 ± 0.00 0.00 ± 0.00 0.60 ± 0.00 0.00 ± 0.00 0.62 ± 0.00 0.11 ± 0.01
p-value 0.11 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05

BC (S) 0.31 ± 0.60 0.14 ± 0.27 2.66 ± 0.53 0.16 ± 0.01 2.28 ± 0.25 0.15 ± 0.02 1.16 ± 0.13 0.28 ± 0.01
AMM (S) 0.75 ± 0.00 0.00 ± 0.00 0.59 ± 0.00 0.00 ± 0.00 0.66 ± 0.00 0.01 ± 0.00 0.81 ± 0.00 0.04 ± 0.00

FAMM (S) 0.75 ± 0.00 0.00 ± 0.00 0.59 ± 0.00 0.00 ± 0.00 0.59 ± 0.00 0.00 ± 0.00 0.59 ± 0.00 0.04 ± 0.00

p-value 0.09 0.77 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Table 2: Latent Factor Decoding Error on test data comprising of 100 expert demonstrations.

RoadWorld BoxWorld: static BoxWorld: dynamic TeamBoxWorld: dynamic

InfoGAIL 0.41 ± 0.13 0.48 ± 0.01 0.53 ± 0.03 0.57 ± 0.05
AMM (U) 0.41 ± 0.08 0.70 ± 0.03 0.76 ± 0.02 0.79 ± 0.02
FAMM (U) 0.31 ± 0.05 0.31 ± 0.04 0.32 ± 0.08 0.46 ± 0.03

p-value 0.25 < 0.01 < 0.01 < 0.01

AMM (Semi.) 0.07 ± 0.00 0.73 ± 0.02 0.75 ± 0.01 0.69 ± 0.02
FAMM (Semi.) 0.05 ± 0.09 0.24 ± 0.00 0.23 ± 0.01 0.34 ± 0.01

p-value 0.08 < 0.01 < 0.01 < 0.01

AMM (S) 0.07 ± 0.00 0.55 ± 0.00 0.74 ± 0.00 0.61 ± 0.00
FAMM (S) 0.01 ± 0.00 0.22 ± 0.02 0.24 ± 0.00 0.30 ± 0.00

p-value < 0.01 < 0.01 < 0.01 < 0.01

compute the policy learning metrics for the unsupervised setting.
For InfoGAIL, the correspondence is computed by reporting the
lowest policy error across all possible correspondences. For AMM
and FAMM, we use the correspondence that minimizes the decoding
error on the test set. The ability to accurately decode the latent state
is essential for using the learned model for prediction of Agent’s
behavior. Hence, for algorithms that model latent decision factors
(InfoGAIL, AMM, and FAMM), we also report on their ability to
decode latent decision factors on an unsupervised test set of 100
execution sequences. The decoding performance is quantified using
normalized Hamming distance between the true and decoded latent
state sequences.

7.4 Results

We evaluate performance of each learning algorithm across three
problem settings: unsupervised (U), semi-supervised (Semi.), and
supervised (S). For each domain, we provide an identical training set
of 100 unlabeled sequences of agent’s task execution. Additionally,
for the semi-supervised and supervised settings, we provide labels
of latent decision factors for 25% and 100% of the training data.
Results for this experimental condition, averaged across 5 trials,

are summarized across Tables 1–2. In the supplementary material,
we provide additional results for a weighted version of the policy
learning metrics. To assess whether the effect of learning algorithm
is statistically significant, we also report p-values computed using
the non-parametric Kruskal-Wallis test for each of the three problem
settings. As reported in Tables 1–2, the effect of learning algorithm
is statistically significant across all domains except RoadWorld.

7.4.1 Results: Static Latent Decision Factors. Our first set of experi-
ments consider the simpler setting of time-invariant latent decision
factors, a strong modeling assumption made by the baseline algo-
rithm InfoGAIL. For these experiments, we utilize the RoadWorld
and BoxWorld domains. In this setting, the learning algorithms
still need to learn in presence of (multiple) latent decision factors;
however, within each trajectory, the latent values are constant.
The training data is generated by the following specification of
the ground truth transition function, 𝑇𝑥 = 𝟙(𝒙 = 𝒙 ′); rest of the
ground truth parameters are described in Sec. 7.1.

Effect of modeling latent states. We first discuss the results for
the unsupervised setting. Among our baselines, the unsupervised
variant of BC does not model latent decision factors and hence
cannot capture dependence of agent behavior based on 𝒙 . Due to
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this limitation, we observe that BC(U) does not perform as well as
the unsupervised learning approaches based on AMM and FAMM,
thereby highlighting the importance of explicitly modeling latent
states. Somewhat surprisingly, BC(U) either performs comparably
to or outperforms InfoGAIL.

Effect of modeling multiple latent states. Next, we discuss the com-
parison of AMM and FAMM across different level of supervision.
Note that AMM models latent decision factors using a scalar state,
while FAMM represents them as a factored state (vector). In the
fully supervised case, AMM and FAMM policy learning techniques
perform comparably on both policy learning and latent state de-
coding metrics. However, in the unsupervised and semi-supervised
problem settings, FAMM policy learning either performs compara-
bly to or outperforms AMM policy learning. These trends suggest
that the factored representation is beneficial while computing the
local updates of the MFVI-based policy learning algorithm.

Ability to learn from semi-supervision. For the semi-supervised
setting, we only compare against Bayesian approaches; to our
knowledge, existing deep imitation learning techniques do not
consider the setting of semi-supervised policy learning. We ob-
serve that despite requiring only a quarter amount of annotation
effort, semi-supervised Bayesian learning performs comparably
to supervised learning for both AMM and FAMM across metrics
and domains. This is especially encouraging, as the setting of semi-
supervised learning is of high interest in practical applications. The
annotation of cognitive states are challenging to obtain; hence, ap-
proaches that can learn from little supervision are desirable. At the
same time, semi-supervision allows a human expert to guide the
learning and improve performance by judicious of any available
human resources.

7.4.2 Results: Dynamic Latent Decision Factors. Next, we evaluate
the learning algorithms for the more general setting of time-varying
latent decision factors in BoxWorld and TeamBoxWorld. In this
challenging setting, the learning algorithms additionally need to
segment each trajectory based on the latent decision factors. To
generate data for these experiments, we design a ground truth 𝑇𝑥
that models time-varying latent decision factors. Similar to the
static case, we utilize 100 execution sequences for training, out of
which 25% are annotated for the semi-supervised case.

Ability to learn from semi-supervision. The trends observed for
the case of static latent states are also reflected in the case of dy-
namic latent states. In particular, explicit modeling of factored
latent states remains useful. Further, the proposed semi-supervised
learning techniques perform comparably to their fully supervised
counterparts. As evidenced by performance of BC (supervised) rel-
ative to FAMM (semi-supervised), however, supervision alone is
insufficient to improve learning performance. To effectively utilize
available semi-supervision, joint inference of the latent policy and
the time-varying factored latent states is necessary.

Effect of modeling latent state dynamics.While training InfoGAIL,
we observe that the roll out trajectories obtained using learned
policy showed erratic behaviours of redundantly re-visiting some
states. This is reflected in its high policy error (KL-divergence
from the expert policy) relative to that of approaches based on
AMM and FAMM. We posit that this occurs because of interplay of
three reasons: first and most importantly, InfoGAIL is designed for

considering only one time-invariant latent decision factor; second,
learning for any algorithm including InfoGAIL is not augmented
using reward augmentation as reward is unavailable; third, due
to the difficulty in hyper-parameter tuning which can affect the
convergence of Generator-Discriminator pair to a great extent. We
reiterate that while there are hyper-parameters in FAMM, they do
not require extensive tuning.

8 CONCLUDING REMARKS

This work presents FAMM, a generative model to represent the
behavior of other agents in presence of multiple, dynamic, latent
decision factors. For FAMM, we provide Bayesian policy learning
algorithms from partially observable demonstrations of agent be-
havior. To evaluate this challenging setting of model learning, we
contribute three synthetic domains and conduct a suite of numeri-
cal experiments. While performance of the unsupervised approach
is poor, we observe that our semi-supervised approach performs as
well as the fully supervised approach with only a quarter of annota-
tions. This result is especially encouraging for learning generative
models of humans and other agents in practice, where learning
typically needs to be done with limited annotation effort. We also
note that relative to deep imitation learning methods (such as BC
and InfoGAIL), our framework can learn without significant hyper-
parameter tuning. Our experiments also highlight the need for
several directions for further investigation, ranging from analyzing
the benefits and limitations of themetrics used to assess the problem
of modeling other agents to novel extensions of our approach.

Limitations and Future Directions. The key limitation of our work
is the lack of evaluation with behavioral data derived from human
users. While using synthetic data is useful for validating the pro-
posed algorithm (as the ground truth models and latent states are
synthetically generated and, hence, can be used for benchmark-
ing), we acknowledge that the behavioral data derived from hu-
man users remains the gold standard for evaluating the proposed
techniques. Encouraged by the obtained results of this paper and
to confirm the performance of our approach in real world tasks,
we are developing a human subject experiment to collect a novel
dataset of task-oriented human behavior along with annotations
of multiple latent states. Another avenue of immediate interest
is to develop a framework that integrates the desirable features
of our Bayesian approach with that of deep generative modeling,
thereby enabling label-efficient policy learning in domains with
both high-dimensional and latent states.
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