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ABSTRACT
We initiate the study of how to perturb the reward in a zero-sum
Markov game with two players to induce a desirable Nash equi-
librium, namely arbitrating. Such a problem admits a bi-level op-
timization formulation. The lower level requires solving the Nash
equilibrium under a given reward function, which makes the overall
problem challenging to optimize in an end-to-end way. We pro-
pose a backpropagation scheme that differentiates through the
Nash equilibrium, which provides the gradient feedback for the
upper level. In particular, our method only requires a black-box
solver for the (regularized) Nash equilibrium (NE). We develop
the convergence analysis for the proposed framework with proper
black-box NE solvers and demonstrate the empirical successes in
two multi-agent reinforcement learning (MARL) environments.
Supplementary for all the proofs in this paper could be found in:
https://arxiv.org/abs/2302.10058.
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1 INTRODUCTION
Arbitrating the conflict between self-interest and collective inter-
ests permeates the development of human societies [32]. We study
Markov games [53] as abstractions of human societies. Nash equi-
librium (NE) [8], where none of the players could benefit from
unilaterally deviating its strategy, is an essential concept in Markov
games. While players modeled by Markov games act rationally
to maximize their own rewards, the lack of collective considera-
tion may lead to an undesirable NE, which undermines the overall
welfare from a system perspective [23].
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Incentive design [73], which was originally developed for bandit
settings, aims to arbitrate such a conflict by perturbing the rewards
to refine NE so that the self-interested players reach a desirable one,
e.g., the higher social welfare or the lager exploration rate. More
specifically, the incentive design problem is naturally formulated
as a bi-level structure [19, 58]. The upper-level designer aims to
determine the optimal incentives and the lower-level players per-
form under incentive-perturbed rewards. To this end, it needs to
anticipate how the lower-level players react to the prescribed incen-
tives when they play a Markov game. However, taking a derivative
through the bi-level structure is difficult [27], especially when the
lower level has multiple agents. In particular, the lower-level equi-
librium appears to be a black box for the upper-level designer, which
makes it challenging for the upper-level designer to assess how the
prescribed incentives will influence the lower-level equilibrium. As
a result, the upper-level designer lacks the gradient feedback for
effectively updating its policy for prescribing the incentives [51].

Some attempts have been proposed to work around the difficulty
of derivatives in solving bi-level optimization. One direction is to get
rid of the bi-level problem structure by converting the problem into
a multi-objective problem: i.e., the low-level players simultaneously
optimize the game reward and the designer’s objective by exploring
multiple NEs [15, 22, 38, 49, 71, 81]. The simplified problem can be
directly solved by an NE solver. However, there is no theoretical
guarantee for finding the optimal NE subject to the designer’s
objective [21]. The other direction is to keep the bi-level problem
structure and avoid the derivative issue by applying a gradient-free
optimizer to the upper level [64]. However, this suffers from a high
computation cost since a zeroth-order method typically requires
a large number of queries to the lower-level solver to derive the
desired NE. Therefore, a first-order method that can be applied
to complicated environments under the bi-level structure with a
convergence guarantee is urgently needed to overcome the sample
efficiency issue.

We extend the incentive design problem to the MARL settings
and construct a provably differentiable arbitrating (DA) framework.
We derive the derivatives through the NE for the DA framework,
which enables the upper level to utilize the policy gradient feed-
back from the lower level to obtain the gradient of the designer’s
objective. Theoretical convergence proof for DA is presented in
the setting of the two-player zero-sum game by choosing proper
NE solvers which have convergence guarantee, e.g. Policy Extra-
gradient Method (PEM) [14] and Entropy-regularized OMWU [13].
In practice, we implement the DA framework using a multi-agent
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variant of the soft actor-critic algorithm (MASAC) [30], leading to
a practical algorithm, DASAC. We evaluate our algorithm in two
two-player zero-sum MARL environments. Empirical results show
that the incentive proposed by the designer arbitrates the conflict
well: i.e., the upper-level designer’s loss function reduces while
lower-level self-interested players still attain an NE. The emergent
arbitrated behaviors are consistent with human intuitions in each
setting. Besides, the sample efficiency for the upper level is signifi-
cantly improved compared with a zeroth-order method.

Contributions. i) We consider the problem of incentive design
in MARL settings and tackle the challenge of deriving the gradi-
ent of the upper-level objective through the bi-level structure. ii)
We develop the first differentiable first-order framework, Differen-
tiable Arbitrating (DA), which can arbitrate the conflict to obtain
a desirable NE in Markov games. iii) We theoretically prove the
convergence of DA with proper NE solvers for two-player zero-sum
Markov games. iv)We empirically show that a desirable NE with
interpretable behaviors can be found by DA more efficiently than
zeroth-order methods in two MARL environments.

2 RELATEDWORKS
Nash equilibrium for Markov Games. There is a large amount
of work on finding the Nash equilibrium in multi-agent Markov
games. Claus and Boutilier propose fictitious play [18] (FS), i.e., all
players presuming that the opponents are stationary, for equilib-
rium selection with guaranteed convergence to a Nash equilibrium.
FS was originally developed for normal form games and therefore
was not widely applied to complex applications [34, 45, 61] until
the fictitious self-play (FSP) [33] was proposed. [35] extends SP
from extensive-form games to imperfect-information games. [55]
proposes the smooth FSP algorithm, which expands the PPO al-
gorithm [74] from the single-agent to the multi-agent zero-sum
Markov game and provides with convergence guarantee. In the
multi-agent reinforcement learning setting, MADDPG in [57] and
MAAC in [39] adapt the actor-critic [43] and soft-actor-critic [30]
algorithms from the single-agent to complex multi-agent setting
and empirically show better performances fully than decentral-
ized multi-agent RL on finding NEs. MADDPG and MAAC do not
have theoretical convergence guarantee even though they achieve
empirical successes. On the other hand, many works have devel-
oped convergence guarantee for value-based methods [13, 14, 16]
and policy-based methods [3, 94] for two-player zero-sum Markov
games. Cen [13, 14] introduce the entropy regularization term into
the two-player zero-sum Markov game and propose the Policy Ex-
tragradient Methods and Entropy-regularized OMWU Methods,
which have convergence guarantee without the NE uniqueness
assumption on the two-player zero-sum Markov game.
Equilibrium Selection/Refinement. Since even team Markov
Games (where the players have common interests) could have mul-
tiple NEs, there exists a large volume of work in game theory on NE
selection [66, 75], e.g. admissibility [7], subgame perfection [75],
Pareto efficiency [10] or stability against opponent’s deviation from
best response [24]. [73] raises emphasis on adaptive incentive design,
which modifies intrinsic rewards via additional incentive to balance
the individuals’ self-interests and system’s social welfare for desir-
able NE selection. The incentive design was first proposed in eco-
nomics [70] and attracts substantial attentions with many follow-up

works [11, 44, 88]. During the past decades, people explored the
economic incentive to various domains, including energy [12, 65],
transportation [42, 62], healthcare [5, 59], and education [60]. More
recently, incentive design has also been extended to the area of game
theory and reinforcement learning. [54] utilize the incentive design
in the multi-bandit problem and prove that the proposed algorithm
converges to the global optimum at a sub-linear rate for a broad
class of games. [64] provide an incentive-design mechanism for
an uncooperative multi-agent system and optimize the upper-level
incentive objective with Bayesian optimization, a sample-efficient
optimization algorithm, instead of the gradient-based methods be-
cause the lower-level MARL problem is a black box. [90] propose a
decentralized incentive mechanism that allows each individual to
directly give rewards to others and learn its own incentive function,
respectively. Also, [78] proposes a bi-level incentive mechanism
for a single lower-level player, which can be viewed as a special
case of our setting. Stackelberg game [48, 52] is a strategic game
in economics in which the leader moves first and the followers
behave sequentially. The incentive design could be reformulated
as the Stackelberg game by treating the incentive design objective
as the leading player. [86] proposed a gradient-decent algorithm to
find NE for the Stackelberg bandit problem. [95] propose a value
iteration method for solving the Stackelberg Markov game with
convergence guarantee. [85] features differentiation through policy
gradient on Sequential Decision Problems without global conver-
gence guarantee.
Bi-level optimization. In machine learning, a large amount of
tasks can be formulated as bi-level optimization problems, e.g. ad-
versarial learning [40], meta-learning [26], hyperparameter opti-
mization [9], and end-to-end learning [4]. Many gradient-based
algorithms are used for solving these problems. Most of them are
first-order gradient-based methods [9, 26, 28, 67] thanks to both
computational efficiency of first-order gradients and fast empirical
convergence. By contrast, zeroth-order methods [79, 87] suffer from
a heavy workload of data sampling, which requires tremendous
computing resources. [69] develop a second-order method. How-
ever, the proposed algorithm requires computation of the inverse
of Hessian, which restricts the algorithm to simple tabular settings.
The most challenging part for gradient-based methods to solve the
bi-level optimization problem is to derive the derivative of lower-
level solution with respect to the incentive variables in the higher
level. Feng [25] and Yang [91] expand the lower-level optimization
process as a sequence of gradient updates and directly compute
gradients throughout the entire optimization process. Despite of
the simplicity, such a method suffers from tremendous computation
troubles due to memory explosion and numerical issues. Therefore,
approximation techniques such as truncated gradient with a sliding
window would be necessary. By contrast, our DA framework gives
an accurate first-order formula for exact gradient computation for
the lower-level optima. Wang [85] constructed a bi-level problem to
infer the missing parameters in MDP by learning a predictive model.
This paper is under the single-agent setting where the objective in
the lower-level is to minimize a clear performance measure while
our setting is more complex by requiring the computation of NE.
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3 PROBLEM FORMULATION
This section organizes as follows. Section 3.1 begins with a typical
definition for two-player zero-sum Markov games G. To illustrate
how the designer induces the behaviors of players, Section 3.2 intro-
duces the incentive parameter 𝜃 into the reward of the two-player
zero-sum Markov game and formulate the incentivized Markov
game G𝜃 . Section 3.3 designs an entropy-regularized Markov game
G′
𝜃
by adding entropy regularization terms into the reward of G𝜃

and demonstrates G′
𝜃
owns the unique NE. Section 3.4 formulates

the arbitrating system as a bi-level optimization scheme based on
the regularized Markov game with the incentive-perturbed reward.
3.1 Two-player Zero-sum Markov Game
Consider a two-player zero-sumMarkov game G= (S, {A𝑖 }𝑖∈{1,2} ,
P, {𝑟 𝑖 }𝑖∈{1,2} , 𝛾), where S is the state space observed by all players,
A𝑖 is the action space of player 𝑖 and A := A1 × A2 is the joint
action space of two players, then P : S × A × S → [0, 1] denotes
the transition probability from state 𝑠 ∈ S to state 𝑠′ ∈ S for taking
joint action 𝑎 ∈ A. 𝑟 𝑖 : S × A → [−1, 1] is the immediate reward
function of player 𝑖 , which implies 𝑟1 = −𝑟2 in zero-sum game.
𝛾 ∈ [0, 1) is the discounted factor. ]We remark that we consider the
two-player zero-sum setting for notation simplicity. Extensions to
more general settings will be discussed in Appendix C.

3.2 Markov Game with the Incentive-perturbed
Reward

Let G𝜃 = (S, {A𝑖 }𝑖∈{1,2} ,P, {𝑟 𝑖 (·;𝜃 )}𝑖∈{1,2} , 𝛾) be a two-player
zero-sum Markov game with an incentive-perturbed reward func-
tion 𝑟 𝑖 (·;𝜃 ) explicitly parameterized by 𝜃 , where 𝜃 ∈ R𝑚 repre-
sents the incentives added by the designer. We assume that 𝑟 𝑖 (·;𝜃 ) :
S × A → [−1, 1] is uniformly bound in 𝜃 and remains zero-sum.
For a given trajectory 𝜏 = (𝑠0, {𝑎𝑖0}𝑖∈{1,2} , 𝑠1, ..., {𝑎

𝑖
𝑇−1}𝑖∈{1,2} , 𝑠𝑇 ),

we denote the total discounted reward for player 𝑖 ∈ {1, 2} as

𝑅𝑖 (𝜏 ;𝜃 ) =
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟 𝑖 (𝑠𝑡 , 𝑎𝑡 ;𝜃 ) .

Define 𝜋𝑖:S×A𝑖→[0, 1] as the probability distribution of policy of
player 𝑖 and 𝜋=(𝜋1, 𝜋2) as that of the joint policy.

Let 𝐷𝜋 (𝜏) denote the probability distribution of the trajectory 𝜏
based on the policy pair 𝜋 . That is,

𝐷𝜋 (𝜏) := 𝜌0 (𝑠0)
𝑇−1∏
𝑡=0

𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )
( 2∏
𝑖=1

𝜋𝑖 (𝑎𝑖𝑡 |𝑠𝑡 )
)
,

where 𝜌0 (𝑠0) is the distribution for the initial state. We denote
E𝜋 [ · ] as the expectation over the trajectory 𝜏 ∼ 𝐷𝜋 (𝜏). Then the
performance of the policy pair 𝜋 for the game G𝜃 is evaluated by
the state-value function 𝑉 𝑖

𝜋 : S → R, which is defined as

𝑉 𝑖
𝜋 (𝑠;𝜃 ) = E𝜋

[
𝑇−1∑︁
𝑡=0

𝛾𝑡 ·𝑟 𝑖 (𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 ;𝜃 ) |𝑠0 = 𝑠

]
= E𝜏∼𝐷𝜋

[
𝑅𝑖 (𝜏 ;𝜃 )

��𝑠0 = 𝑠
]
. (3.1)

The Nash equilibrium (NE) is an essential concept where no
agent could benefit by individually changing its policy. The NE
for the incentivized two-player zero-sum Markov game G𝜃 is the
solution for the following min-max game:

min
𝜋2

max
𝜋1

𝑉 1
𝜋 (𝑠;𝜃 ), 𝑠 ∈ S. (3.2)

Shapley [76] proves that there exists a NE pair for the min-max
game 3.2 for all state 𝑠 ∈ S and the min-max value is unique [84].

3.3 Entropy-regularized Markov Game
To ensure the NE to be unique, we follow [14, 20, 93] and introduce
the entropy-regularized counterpart G′

𝜃
= (S, {A𝑖 }𝑖∈{1,2} ,P, {𝑟 (𝑖 )

(·;𝜃 )}𝑖∈{1,2} , 𝛾, 𝜆), where 𝜆 ≥ 0 is the regularization parameter.
The entropy regularization technique is commonly utilized in rein-
forcement learning to encourage exploration to avoid being trapped
at sub-optimal solutions [2, 29, 46] and keep the policies of differ-
ent agents away from being heavily affected by the opponents’
strategy [56, 89].

Specifically, the reward function for player 𝑖 is replaced by its
entropy-regularized reward function 𝑟

(𝑖 )
𝜋 (·;𝜃 ) : S×A𝑖×A−𝑖→R,

which is defined as,
𝑟
(𝑖 )
𝜋 (𝑠, 𝑎𝑖 , 𝑎−𝑖 ;𝜃 ) =𝑟 𝑖 (𝑠, 𝑎𝑖 , 𝑎−𝑖 ;𝜃 ) − 𝜆 log(𝜋𝑖 (𝑎𝑖 |𝑠))

+ 𝜆 log(𝜋−𝑖 (𝑎−𝑖 |𝑠)). (3.3)
Here we clarify what the entropy we use with a light abuse of
notation. The state-reward function and the entropy-regularized
state-reward function associated with policy pair 𝜋 are defined as

𝑟 𝑖𝜋 (𝑠;𝜃 )=E(𝑎𝑖,𝑎−𝑖 )∼𝜋
[
𝑟 𝑖 (𝑠, 𝑎𝑖, 𝑎−𝑖 ;𝜃 )

]
,

𝑟
(𝑖 )
𝜋 (𝑠;𝜃 )=E(𝑎𝑖,𝑎−𝑖 )∼𝜋

[
𝑟
(𝑖 )
𝜋 (𝑠, 𝑎𝑖, 𝑎−𝑖 ;𝜃 )

]
=𝑟 𝑖𝜋 (𝑠;𝜃 )+𝜆𝐻 (𝜋𝑖 (·|𝑠)) − 𝜆𝐻 (𝜋−𝑖 (·|𝑠)), (3.4)

where 𝐻 (𝜋𝑖 (·|𝑠))=−∑𝑎𝑖 ∈A𝑖𝜋𝑖 (𝑎𝑖 |𝑠) log(𝜋𝑖 (𝑎𝑖 |𝑠)) is the Shannon
entropy. Correspondingly, the total discounted reward 𝑅

(𝑖 )
𝜋 for a

given trajectory 𝜏 of the player 𝑖 in game G′
𝜃
and the entropy-

regularized state-value function with incentive parameter 𝑉 (𝑖 )𝜋 :
S → R are defined as

𝑅
(𝑖 )
𝜋 (𝜏 ;𝜃 ) =

𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟
(𝑖 )
𝜋 (𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 ;𝜃 ),

𝑉
(𝑖 )
𝜋 (𝑠;𝜃 ) = E𝜋

[
𝑇−1∑︁
𝑡=0

𝛾𝑡 ·𝑟 (𝑖 )𝜋 (𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 ;𝜃 ) |𝑠0 = 𝑠

]
= E𝜏∼𝐷𝜋

[
𝑅
(𝑖 )
𝜋 (𝜏 ;𝜃 )

��𝑠0 = 𝑠

]
. (3.5)

Suppose the NE of the regularized Markov game with incentive-
perturbed reward G′

𝜃
is 𝜋∗ (𝜃 ) = (𝜋1∗ (𝜃 ), 𝜋2∗ (𝜃 )). We write Player -𝑖

as Player 𝑖’s opponent then the joint policy could also be rewritten
as the policy pair 𝜋 = (𝜋𝑖 , 𝜋−𝑖 ), where 𝑖 ∈ {1, 2}. Then the NE can
be defined as follows, for ∀𝑖 ∈ {1, 2}, the NE 𝜋∗ satisfies

𝑉
(𝑖 )
𝜋∗ (𝜃 ) (𝑠;𝜃 ) = max

𝜋𝑖
𝑉
(𝑖 )
(𝜋𝑖 ,𝜋 -𝑖

∗ (𝜃 ) )
(𝑠;𝜃 ), ∀𝑠 ∈ S. (3.6)

The NE for the regularized Markov game G′
𝜃
is equivalent to the

solution of the following min-max optimization problem
min
𝜋2

max
𝜋1

𝑉
(1)
𝜋 (𝑠;𝜃 ), ∀𝑠 ∈ S. (3.7)

As is known from [13, 14, 63], there exists a unique policy pair 𝜋
for the min-max optimization problem (3.7). Therefore the entropy-
regularized Markov game has a unique NE. Moreover, [14] proves
that an 𝜖/2-optimal NE for the regularizedMarkov game G′

𝜃
is an

𝜖-optimal NE for the original when the regularization parameter
𝜆 ≤ (1−𝛾 )𝜖

2(log( |A1 | )+log( |A2 | ) ) , which indicates the difference between
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NE for the regularized Markov game and NE for the original can
be controlled by the regularization parameter. The definition for
𝜖-optimal NE is clearly defined in [14], which means the optimal
gap of the policy is smaller than 𝜖 .

3.4 Bi-level Optimization Scheme
Our final goal is to arbitrate conflicts between self-interested players
and the collective-interested designer by navigating all individuals
to the desirable refined NE with higher system welfare. Section 3.2
introduces the incentive parameter 𝜃 to modify the intrinsic reward
𝑟 𝑖 (·;𝜃 ) of Markov games, which is utilized as a tool to design the
system objective and refine NE for arbitration. In this section, we
formulate a bi-level optimization scheme with equilibrium con-
straints induced by such an arbitrating system. Among the bi-level
optimization scheme, for the lower-level players, we aim at finding
the NE for the given incentivized Markov game G′

𝜃
. Regarding the

upper-level designer, we define a system arbitrating objective tar-
geting the optimal 𝜃 that could channel all individuals towards a
desirable NE.

For the purpose of gradient computation in Section 4 and exper-
iments in Section 7, we parameterize policy 𝜋𝑖

𝜙𝑖 with 𝜙𝑖 ∈R𝑑𝑖 for
the player 𝑖 (𝑖 ∈ {1, 2}) and denote the policy pair as 𝜋𝜙 = (𝜋1𝜙1, 𝜋

2
𝜙2 ),

where 𝜙 = (𝜙1, 𝜙2) ∈R𝑑 , 𝑑 = 𝑑1 + 𝑑2. To avoid the abuse of subscrip-
tion, we omit 𝑖 of 𝜙𝑖 in 𝜋𝑖

𝜙𝑖 (w.r.t 𝜋𝑖𝜙 ). The simplification will not

cause confusion because the policy 𝜋𝑖 of a single player 𝑖 is only
determined by 𝜙𝑖 . Then the joint policy could also be rewritten
as the policy pair 𝜋𝜙 = (𝜋𝑖

𝜙
, 𝜋−𝑖

𝜙
), where 𝑖 ∈ {1, 2}. The NE of the

regularizedMarkov gamewith incentive-perturbed rewardG′
𝜃
is de-

noted as 𝜋𝜙∗ (𝜃 ) = (𝜋1𝜙∗ (𝜃 ) , 𝜋
2
𝜙∗ (𝜃 ) ), where 𝜙∗ (𝜃 ) = (𝜙

1
∗ (𝜃 ), 𝜙2∗ (𝜃 ))

is the parameter of NE under incentive 𝜃 . The definition of NE for
regularized Markov game in (3.6) can be rewritten as,

𝑉
(𝑖 )
𝜋𝜙∗ (𝜃 )

(𝑠;𝜃 ) = max
𝜙𝑖 ∈R𝑑𝑖

𝑉
(𝑖 )
(𝜋𝑖

𝜙
,𝜋 -𝑖

𝜙∗ (𝜃 ) )
(𝑠;𝜃 ), ∀𝑠 ∈ S.

Arbitrating system. Suppose the arbitrating objective for game
system G′

𝜃
is only determined by the incentive parameter 𝜃 and

the joint policy 𝜋𝜙 , written as mapping 𝑓 (𝜃, 𝜙) : Θ × R𝑑 → R.
The system aims to minimize the arbitrating objective loss at the
NE of G𝜃 , 𝑓 (𝜃, 𝜙∗ (𝜃 )) . Therefore, the arbitrating system could be
formulated as a bi-level optimization problem:

min
𝜃 ∈Θ

𝑓∗ (𝜃 ) = 𝑓 (𝜃, 𝜙∗ (𝜃 ))

𝑠 .𝑡 . E𝜈∗
[
𝑉
(𝑖 )
𝜋𝜙∗ (𝜃 )

(𝑠;𝜃 )
]

= max
𝜙𝑖 ∈R𝑑𝑖

E𝜈∗

[
𝑉
(𝑖 )
(𝜋𝑖

𝜙
,𝜋 -𝑖

𝜙∗ (𝜃 ) )
(𝑠;𝜃 )

]
, ∀𝑖 ∈ {1, 2} (3.8)

Remark: Eq. 3.8 is our major objective. We primarily focus
on efficiently learning the upper-level incentive parameter while
treating the lower level as a black-box NE solver. In the following
sections, we focus on deriving the first-order gradient of the upper-
level loss function 𝑓∗ (𝜃 ), then establish ourDifferentiable Arbitrating
(DA) framework based on it.

4 METHOD
The bi-level arbitrating system (Eq. 3.8) with NE constraints guides
players indirectly via the incentive parameter 𝜃 to safeguard the
arbitrating objective 𝑓 . For the lower level, we attempt to determine
the policy parameter of NE under a certain incentivized environ-
ment G′

𝜃
, remarked as 𝜙∗ (𝜃 ). For the upper-level designer, we aim

to derive the first-order algorithm to find the optimal incentive
parameter 𝜃 such that the objective 𝑓∗ (𝜃 ) = 𝑓 (𝜃, 𝜙∗ (𝜃 )) can be
optimized while players attain their NE. In such a bi-level problem,
it is challenging to obtain the gradient of 𝑓∗, especially when the
solver for regularized NE in the lower level is a black box, since
the incentive parameter 𝜃 affects objective 𝑓∗ implicitly via refining
the regularized NE for players. Our goal is to derive the gradient of
𝑓∗ w.r.t 𝜃 with NE constrains and then develop a backpropagation
scheme that utilize the feedback of policy gradients from the lower
level to establish the gradient of the incentive objective function at
a regularized NE, ∇𝜃 𝑓 (𝜃, 𝜙∗ (𝜃 )). To be more specific, the gradient
∇𝜃 𝑓 (𝜃, 𝜙∗ (𝜃 )) can be derived as,

∇𝜃 𝑓∗ =
[
∇𝜃 𝑓 (𝜃,𝜙)+∇𝜃𝜙∗ (𝜃 )⊺∇𝜙 𝑓 (𝜃, 𝜙)

] ��
𝜙=𝜙∗ (𝜃 ) . (4.1)

where ∇𝜃 𝑓 (𝜃,𝜙) and ∇𝜙 𝑓 (𝜃, 𝜙) are known while the NE gradient
∇𝜃𝜙∗ (𝜃 ) need to be derived based on the policy gradient feedback
from the lower level. The computing of the NE gradient ∇𝜃𝜙∗ (𝜃 ) is
in detail discussed in Section 4.1 and then a general backpropagation
framework that for the regularized NE is proposed in Section 4.2.

4.1 Gradient for the Incentive
In this section, we will derive the gradient at NE ∇𝜃 𝑓 (𝜃, 𝜙∗ (𝜃 )), in
which the key point is to derive NE gradient ∇𝜃𝜙∗ (𝜃 ). For notation
simplification, we denote 𝑢 (𝑖 )

𝜃
(𝜙 ; 𝑠) as the gradient of 𝑉 (𝑖 )

𝜙
(𝑠;𝜃 )

w.r.t 𝜙𝑖 then we define

𝑢𝜃 (𝜙) := E𝜈 (∗) [𝑢𝜃 (𝜙 ; 𝑠)], (4.2)

𝑢𝜃 (𝜙 ; 𝑠) := (𝑢
(1)
𝜃
(𝜙 ; 𝑠), 𝑢 (2)

𝜃
(𝜙 ; 𝑠)) = (∇𝜙1𝑉

(1)
𝜋𝜙
(𝑠;𝜃 ),∇𝜙2𝑉

(2)
𝜋𝜙
(𝑠;𝜃 )).

Then, the gradient of 𝑢𝜃 (𝜙) w.r.t. to 𝜃 and 𝜙 are straightforward as
follows,

∇𝜃𝑢𝜃 (𝜙)=

E𝜈 (∗)∇2𝜃𝜙1𝑉

(1)
𝜋𝜙
(𝑠;𝜃 )

E𝜈 (∗)∇2𝜃𝜙2𝑉
(2)
𝜋𝜙
(𝑠;𝜃 )

 ∈ R𝑑×𝑚, (4.3)

∇𝜙𝑢𝜃 (𝜙) =

E𝜈 (∗)∇2𝜙𝜙1𝑉

(1)
𝜋𝜙
(𝑠;𝜃 )

E𝜈 (∗)∇2𝜙𝜙2𝑉
(2)
𝜋𝜙
(𝑠;𝜃 )

 ∈ R𝑑×𝑑 . (4.4)

The following Lemma 4.1 implies the computation of∇2
𝜃𝜙𝑖𝑉

(𝑖 )
𝜋𝜙
(𝑠 ;𝜃 )

and ∇2
𝜙𝜙𝑖𝑉

(𝑖 )
𝜋𝜙
(𝑠 ;𝜃 ) can be explicitly derived based on the policy gra-

dient, which are backpropagated from NE solver in the lower level.
The computation details for the gradients and Hessians in Lemma
4.1 are presented throughout Lemma A.1. in appendix due to limi-
tation of space. Then in light of (4.3-4.4) and Lemma 4.1, ∇𝜃𝜙∗ (𝜃 )
can be expressed in policy gradient as derived in the following
Lemma 4.2, inducing the final expression of objective gradient at
NE ∇𝜃 𝑓∗ (𝜃 ).

Lemma 4.1. In an incentive regularized Markov game G′
𝜃
, we denote

𝜋𝑖
𝜙𝑖 := 𝜋𝑖

𝜙𝑖 (𝑎𝑖𝑡 |𝑠𝑡 ), 𝜋−𝑖𝜙−𝑖
:= 𝜋−𝑖

𝜙−𝑖
(𝑎−𝑖𝑡 |𝑠𝑡 ) and 𝜋𝜙 := 𝜋𝜙 (𝑎𝑡 |𝑠𝑡 ) for
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notation simplicity, then we have

∇𝜃𝑉
(𝑖 )
𝜋𝜙
(𝑠;𝜃 ) = ∇𝜃𝑉 𝑖

𝜋𝜙
(𝑠;𝜃 ); ∇2

𝜃𝜙𝑖𝑉
(𝑖 )
𝜋𝜙
(𝑠;𝜃 ) = ∇2

𝜃𝜙𝑖𝑉
𝑖
𝜋𝜙
(𝑠;𝜃 );

∇𝜙𝑖𝑉
(𝑖 )
𝜋𝜙
(𝑠;𝜃 ) = ∇𝜙𝑖𝑉 𝑖

𝜋𝜙
(𝑠;𝜃 ) −𝜆E𝐷𝜋𝜙

[
𝑇−1∑︁
𝑡=0

𝛾𝑡∇𝜙𝑖 log𝜋𝑖
𝜙𝑖

+
(
𝑇−1∑︁
𝑡=0

𝛾𝑡
(
log𝜋𝑖

𝜙𝑖 − log𝜋−𝑖𝜙−𝑖

)) (𝑇−1∑︁
𝑡=0
∇𝜙𝑖 log𝜋𝑖

𝜙𝑖

)]
;

∇2
𝜙𝜙𝑖𝑉

(𝑖 )
𝜋𝜙
(𝑠;𝜃 ) = ∇2

𝜙𝜙𝑖𝑉
𝑖
𝜋𝜙
(𝑠;𝜃 )

− 𝜆E𝐷𝜋𝜙

[(
𝑇−1∑︁
𝑡=0
∇𝜙𝑖 log𝜋𝑖

𝜙𝑖

) (
𝑇−1∑︁
𝑡=0

𝛾𝑡
(
∇𝜙 log𝜋𝑖𝜙𝑖 − ∇𝜙 log𝜋−𝑖𝜙−𝑖

))⊺
+

(
𝑇−1∑︁
𝑡=0

𝛾𝑡
(
log𝜋𝑖

𝜙𝑖 − log𝜋−𝑖𝜙−𝑖

)) (𝑇−1∑︁
𝑡=0
∇𝜙𝑖 log𝜋𝑖

𝜙𝑖

) (
𝑇−1∑︁
𝑡=0
∇𝜙 log𝜋𝜙

)⊺
+

(
𝑇−1∑︁
𝑡=0

𝛾𝑡
(
log𝜋𝑖

𝜙𝑖 − log𝜋−𝑖𝜙−𝑖

)) (𝑇−1∑︁
𝑡=0
∇2
𝜙𝜙𝑖 log𝜋𝜙

)⊺
+

(
𝑇−1∑︁
𝑡=0

𝛾𝑡∇𝜙𝑖 log𝜋𝑖
𝜙𝑖

) (
𝑇−1∑︁
𝑡=0
∇𝜙 log𝜋𝜙

)⊺
+
(
𝑇−1∑︁
𝑡=0

𝛾𝑡∇2
𝜙𝜙𝑖 log𝜋𝜙

)]
,

where E𝐷𝜋𝜙 [ · ] denotes the expectation over the trajectory 𝜏 ∼
𝐷𝜋𝜙 (𝜏) and∇𝜃𝑉 𝑖

𝜋𝜙
(𝑠 ;𝜃 ),∇𝜙𝑖𝑉 𝑖

𝜋𝜙
(𝑠 ;𝜃 ),∇2

𝜃𝜙𝑖𝑉
𝑖
𝜙
(𝑠 ;𝜃 ) and∇2

𝜙𝜙𝑖𝑉
𝑖
𝜙
(𝑠 ;𝜃 )

are computed from Lemma A.1. in appendix.

Lemma 4.1 utilizes the policy gradient information, which is
easily accessible in a NE solver, to describe how self-interested
players react to the adjustment in the incentive parameter. It is
straightforward to prove but is essential to provide the lower-level
information embedded in the policy gradient to guide the direction
of updates for the incentive parameter against a high collective loss.

In light of Lemma 4.1, Lemma 4.2 presents the gradient of NE
w.r.t. the incentive parameter, which is crucial to leverage the back-
propagated information from the lower level to update the incentive
parameter. It describes how the equilibrium among players is af-
fected by the incentive from the designer and shows that such
information is related to the Hessian of 𝑉 (𝑖 )𝜋𝜙

(𝑠;𝜃 ) at NE.

Lemma 4.2. The following formula holds for the policy parameter
𝜙 (∗) (𝜃 ) of NE 𝜋𝜙∗ (𝜃 ) for incentive regularized Markov game G′

𝜃
:

∇𝜃𝜙 (∗) (𝜃 ) = −
[
∇𝜙𝑢𝜃 (𝜙)

]−1 ∇𝜃𝑢𝜃 (𝜙)��𝜙=𝜙∗ (𝜃 ) . (4.5)

Then substituting Eq. (4.5) into Eq. (4.1) leads to the final explicit
expression of ∇𝜃 𝑓∗ (𝜃 ):

∇𝜃 𝑓∗ (𝜃, 𝜙∗ (𝜃 ))

=

[
∇𝜃 𝑓 (𝜃,𝜙)−∇𝜃𝑢𝜃 (𝜙)⊺

[
∇𝜙𝑢𝜃 (𝜙)

]−1 ∇𝜙 𝑓 (𝜃, 𝜙)] ��
𝜙=𝜙∗ (𝜃 ) . (4.6)

4.2 Differentiable Arbitrating
Based on the gradient computation in Section 4.1, we propose the
Differentiable Arbitrating (DA) framework to solve the arbitrat-
ing system (Eq. 3.8). DA differentiates the upper-level designer’s
objective function through NE and backpropagates the gradient in-
formation of policies from the lower level to derive the upper-level

Framework 1 DA: Differentiable Arbitrating in MARL.
Input: 𝛽𝑘 : learning rate for upper-level iteration
Output: 𝜃 : incent. param.; 𝜙 : param. of policy 𝜋𝜙
Initialize the incentive parameter 𝜃 = 𝜃0.
for k=0,1,... do

Initialize param. 𝜙 = 𝜙0 of policy 𝜋𝜙0 for game G′
𝜃𝑘
.

for t=0,1... do
Update 𝜙 = 𝜙𝑡 with NE solver until corresponding policy
𝜋𝜙𝑡

converge to the Nash equilibrium of game G′
𝜃𝑘
, w.r.t

𝜙∗ (𝜃𝑘 ).
end for
Update incentive parameter

𝜃 = 𝜃𝑘+1 ← 𝜃𝑘 − 𝛽𝑘∇𝑓∗ (𝜃𝑘 ),
where ∇𝑓∗ (𝜃𝑘 ) is defined in (4.6).

end for

gradient. In this scheme, the black-box solver for the regularized
NE in the lower level could be any methods containing gradient
information of the policies, for instance, SAC [30], MADDPG [57],
MAAC [39], Policy Extragradient Method (PEM) [14] and Entropy-
regularized OMWU [13].

The workflow of DA is shown in Framework 1. In this work, we
specifically develop the convergence guarantee for the DA frame-
work with lower-level NE solvers which have convergence guaran-
tee and implement our DA framework using a multi-agent variant
of SAC, which will be described in detail later in Section 6.

DA framework is a first-order method. This is because the
update of upper-level incentive 𝜃 only relies on the first-order
gradient ∇𝑓∗ (𝜃 ) without any hessian information of 𝜃 . The second-
order gradients defined in Lemma 4.1 are hessian matrices of lower-
level value function 𝑉 and are used for the computation of first-
order gradient ∇𝑓∗ (𝜃 ).

Extension to general settings. Although DA framework is de-
scribed under two-player zero-sum fully observable Markov games,
it could be extended to more general settings: N-players, general-
sum and partially observable Markov decision process (POMDP). For
N-player general-sum Markov games, the game G𝜃 is required to
be monotone to ensure the entropy-regularized game G′

𝜃
to be

strongly-monotone and therefore has unique NE. Then the DA
framework could leverage a proper lower-level black-box NE solver
for the (regularized) NE. For POMDPs, some minor adjustments
are required, replacing the state-based policy 𝜋𝑖 (𝑎𝑖 |𝑠) with the
observation-based policy 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ), where 𝑜𝑖 =𝑂𝑖 (𝑠) is the obser-
vation of the player 𝑖 in state 𝑠 . Such adjustments will not change
the gradient computation, which is essential for the DA framework.
The detailed discussions of problem formulation and the gradient
derivation for the general settings are deferred to Appendix C.

5 CONVERGENCE ANALYSIS
In this section, we develop the convergence analysis for the DA
framework with proper lower-level NE solvers in the two-player
zero-sum setting. Section 5.1 discuss lower-level NE solvers with
convergence guarantee in literature that could be applied to our DA
framework. Section 5.2 guarantees the convergence of incentive
parameter 𝜃 in the upper level for the bi-level DA framework under
convergent lower-level NE solvers.
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5.1 Convergence of the Lower Level
The convergence of the bi-level DA framework requires the lower-
level NE solver for having the convergence guarantee to the NE 𝜋∗
of the entropy-regularized Markov game G′

𝜃
. There are diverse NE

solvers that have good empirical performance in practical games [30,
39, 57]. Some proposed NE solvers have the theoretical conver-
gence proofs [37, 77, 80]. For the illustration of the DA framework
convergence, we take two NE solvers proposed under entropy-
regularization that are directly related with our setting. It is known
that the Policy Extragradient Method (PEM) [14] and Entropy-
regularized OMWU [13] all have the convergence guarantee under
our setting. This section restates the main convergence results for
PEM and Entropy-regularized OMWU for the purpose of complete-
ness of convergence guarantee for DA framework.

Proposition 5.1 (Theorem 3 in [14]). Assume |S1 | ≥ |S2 | and
𝜆 ≤ 1. Setting learning rate 𝜂𝑡 =𝜂 =

1−𝛾
2(1+𝜆 (log |S1 |+1−𝛾 ) ) , the Policy

Extragradint Method (Algorithm 4 in supplementary) takes no more

than Õ
(

1
𝜆 (1−𝛾 )2 log

2
(
1
𝜖

))
iterations to achieve the policy pair 𝜋 =

(𝜋1, 𝜋2) that satisfies:
max
𝜋 ′1,𝜋

′
2

E𝑠∼𝜌
[(
𝑉
(1)
𝜋 ′1,𝜋2
(𝑠;𝜃 ) −𝑉 (1)

𝜋1,𝜋
′
2
(𝑠;𝜃 )

)]
≤ 𝜖,

where 𝜌 is an arbitrary distribution over the state space S.

Proposition 5.2 (Theorem 1 in [13]). Setting 0 < 𝜂 ≤ (1−𝛾 )3
32000 |S |

and 𝛼𝑡 = 𝜂𝜆, the Entropy-regularized OMWU (Algorithm 5 in supple-

mentary) takes no more than Õ
(

1
(1−𝛾 )𝜂𝜆 log 1

𝜖

)
iterations to achieve

achieve the policy pair 𝜋 = (𝜋1, 𝜋2) that satisfies:

max
𝑠∈S,𝜋 ′1,𝜋 ′2

(
𝑉
(1)
𝜋 ′1,𝜋2
(𝑠;𝜃 ) −𝑉 (1)

𝜋1,𝜋
′
2
(𝑠;𝜃 )

)
≤ 𝜖.

Proposition 5.1 and Proposition 5.2 demonstrate that the PEM
and Entropy-regularized OMWU algorithms converges to the NE
for the lower-level incentivized entropy-regularized Markov games
G′
𝜃
in linear rate.

5.2 Convergence of the Upper Level
Assume that 𝜃∗ = argmin𝜃 𝑓∗ (𝜃 ) represents the optimal point of
incentive parameter 𝜃 in the arbitrating system (3.8). In this section,
we are going to show that the framework 1 guarantees that the
incentive parameter 𝜃 converges to 𝜃∗ under certain assumptions.

Assumption 5.3. We assume that ∇𝜃 𝑓∗ (𝜃 ) is L-Lipschitz continu-
ous (L-smooth) w.r.t 𝜃 ∈ Θ, which means∇𝜃 𝑓∗ (𝜃 ) − ∇𝜃 𝑓∗ (𝜃 ′) ≤ 𝐿

𝜃 − 𝜃 ′ , ∀𝜃, 𝜃 ′ ∈ Θ
We also assume that 𝑓∗ (𝜃 ) is bounded w.r.t 𝜃 ∈ Θ, which means
there exists𝑀 > 0 such that

|𝑓∗ (𝜃 ) | ≤ 𝑀, ∀𝜃 ∈ Θ

L-smooth assumption is a common assumption in convergence
proofs for different algorithms [1, 41, 50, 72, 92]. We also illustrate
a concrete example to justify Assumption 5.3 is rational in practical
setting in Appendix E. Assumption 5.3 does not require the compos-
ite function 𝑓∗ (𝜃 ) = 𝑓 (𝜃, 𝜙∗ (𝜃 )) to be convex and the convergence
guarantee for the upper level even suitable for non-convex cases.

Theorem 5.4. Suppose that Assumption 5.3 holds and the lower-level
NE solver has convergence guarantee. In Framework 1, let the update
rule 𝜃𝑘+1 = 𝜃𝑘 − 𝛽𝑘∇𝜃 𝑓∗ (𝜃𝑘 ) for incentive parameter 𝜃𝑘 run for 𝑇
iterations with learning rates 𝛽𝑘 = 1

𝐿
, then we have

min
𝑘=0,...,𝑇

∥∇𝜃 𝑓∗ (𝜃𝑘 )∥2 ≤
2𝐿(𝑓∗ (𝜃0) − 𝑓∗ (𝜃∗))

𝑇 + 1 ≤ 4𝐿𝑀
𝑇 + 1 .

Theorem 5.4 implies that there exist a subsequence in the se-
quence of gradient norms {∥∇𝜃 𝑓∗ (𝜃𝑘 )∥}∞𝑘=0 which converges to
zero. Therefore, Theorem 5.4 guarantees that the incentive parame-
ter 𝜃 could always converge to a sub-optimal point with sublinear
convergence rate in the upper level. It is easy to know if the com-
posite function 𝑓 ∗ (𝜃 ) is convex, it converges to the global optimal
point. The detailed proof is shown in Appendix F.

6 IMPLEMENTATIONS
The direct implementation of PEM and Entropy-regularized OMWU
are not practical/efficient although they have the theoretical con-
vergence guarantee. PEM is a double-loop algorithm that invokes
solving the NE of an entropy-regularized Matrix game for each
inner-loop. Although Entropy-regularized OMWU is a single-loop
algorithm that adapts a two-timescale iteration, its update rules are
for the tabular setting, in which the policy are per state updated.
Therefore, we modify the vanilla algorithm of Entropy-regularized
OMWU with some techniques inspired by the multi-agent soft-
actor-critic (MASAC) and propose the DA-SAC algorithm (Algo. 6
in appendix). We organize the modifications as the following:

i) In stead of the per-state policy update in Entropy-regularized
OMWU, we optimize a separate policy model via minimizing
its KL divergence from the exponential energy function, i.e.,
we establish an actor-critic structure as widely accepted in
SAC.

ii) We use one-step gradient update with great practical suc-
cess accepted by most of MARL practical algorithms, e.g.
SAC [30], MADDPG [57] and MAAC [39], instead of the
extragradient technique introduced in Entropy-regularized
OMWU.

iii) We follow SAC to set the energy function as a multiple of
the Q function, where the scale factor is the reciprocal of the
auto-tuned temperature coefficient [31].

Updated pseudo-code and all remaining details are included in
Appendix G.

7 EXPERIMENTS
We evaluate the performance of the DA framework in sense of sam-
ple efficiency for the upper level in two zero-sum Markov games
with two players and their incentivized variant, running with scis-
sors (RWS) [83] which contains cyclic reinforcement learning chal-
lenges [6, 47, 68] and a standard predator-prey, both of which are
implemented on a grid-world environment [17].

7.1 Evaluation Environments
Running with scissors (RWS). In 5×5 grid-world RWS, resources
(rock, scissors, or paper) are tailed in resources pools (Figure 2).
Three of them are deterministic pools spaced with fixed resources
and six others are nondeterministic filled with random resources.
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(a) RWS (𝜃0) (b) RWS (𝜃 ∗) (c) PP (𝜃0) (d) PP (𝜃 ∗)

Figure 1: Trace for incentivized RWS and incentivized PP with different incentive parameters 𝜃0 and 𝜃∗ (left to right). 𝜃0 is the
initial incentive parameter and 𝜃∗ is the optimized parameter with DA framework. The NEs after arbitration (Figure (b) & (d))
ensure higher exploration rate in the grid-world games compared with the initial NEs (Figure (a) & (c)) without arbitration.

player 0 player 1

bonus coin

rock paper

scissors

deterministic

Figure 2: Configuration of the Rock-with-Scissors (RWS).
Two players are randomly spawned among the free grids and
collect resources for confrontation. The bonus coins are the
incentive added by the designer to encourage exploration.

Two players randomly spawn among the free grids and fully observe
the environment and resources owned by their opponent. Each
chooses to move one grid in four directions at one step. When the
player 𝑖 steps on the grid with the resource, it collects the resource
to its inventory 𝑣𝑖 , and the resource is removed from the grid. Four
rocks, papers and scissors are randomly distributed to two players
at the initial state and each player is assigned at least one for each
resource. After 25 steps, the confrontation occurs and the payoffs
for each player, 𝑟0 and 𝑟1, are calculated on the basis of the standard
antisymmetric matrix𝑀 [36] as

𝑟0 =
𝑣0

∥𝑣0∥
𝑀

(
𝑣1

∥𝑣1∥

)⊺
= −𝑟1, where𝑀 =


0 −1 1
1 0 −1
−1 1 0

 .
Besides, the rules of the game are assumed to be a blank to the
players and they must explore to discover them.

RWS is an extension of the classic matrix game rock-paper-
scissors (RPS) with increasing complexity, and the game-theoretic
structures of the RPS are satisfied in RWS. Since NE is to keep the
same number of each resource in their inventory [82], players tend
to stay around a grid after they achieve NE instead of continuing
to explore, while the upper-level designer hopes more grids can
be explored. Given such a conflict, the designer intervenes in the
rewards by scattering gold coins as an incentive to channel players
exploring more grids.

There are four grids that generate coins. Two of them are filled
with fixed bonuses 0.5, and others are filled with adjustable bonuses
marked as the incentive parameter 𝜃 = (𝜃1, 𝜃2) ∈ R2. Once the

preypredator

shelter nest

deterministic bonus

born region

bonus water

Figure 3: Configuration of the Predator-Prey (PP). The preda-
tor aims to catch the prey and the prey aims to return to the
nest. Both of them are randomly spawned in born region.
The water pools are set as the incentive by the designer.

player 𝑖 collects coins, the corresponding bonuses are added to
its total reward. Conversely, the bonuses collected by player 𝑖 are
deducted from its opponent −𝑖 . The total reward for the player 𝑖 is

𝑟 𝑖
𝑡𝑜𝑡𝑎𝑙

=𝑟 𝑖 +
∑︁

𝑗=1,2
𝜃 𝑗 (𝐼 𝑖𝑗 − 𝐼

−𝑖
𝑗 ) + 0.5(𝑁

𝑖
fixed − 𝑁

−𝑖
fixed),

where 𝐼 𝑖
𝑗
=1 if the coin with incentive bonus 𝜃 𝑗 is collected by the

player 𝑖 , otherwise 𝐼 𝑖
𝑗
= 0 and 𝑁 𝑖

fixed is the number of fixed coins
collected by the player 𝑖 . Then the exploration rate (𝐸𝑅) can be
defined as

𝐸𝑅(𝜃 ) =
∑
𝑖 𝐺

𝑖
𝑒 (𝜃 )

𝐺total
, (7.1)

where the 𝐺𝑖
𝑒 (𝜃 ) denotes the number of grids explored by player

𝑖 and 𝐺total denotes the total number of grids. Therefore, the de-
signer’s loss is defined as 𝑓∗ (𝜃 ) = 1 − 𝐸𝑅(𝜃 ).

Predator-prey (PP). The environment for the predator-prey
is set in a 7 × 7 grid-world as Figure 3, containing the prey’s nest,
two shelters, and water pools. Both the predator and prey cannot
stop at the shelter. At each step, the prey can move one grid and
the predator can move one or two grids in four directions. The
game is terminated under three conditions: i) the episode achieves
maximum length 25; ii) the prey returns the nest, then the reward
for the prey, 𝑟prey, is +1 and the reward for the predator, 𝑟pred, is
−1; iii) the predator catches the prey (they arrive on the same grid
at the same time), then the reward for prey, 𝑟prey, is −1 and the
reward for predator, 𝑟pred, is +1. From a whole-ecosystem perspec-
tive, like the dissemination of plant seeds, the designer stimulates
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them to explore more places by setting four pools with different
volumes of water in the four fixed grids. Two of them are filled with
fixed water volume with an additional 0.1 bonuses and others are
filled with adjustable water volume, whose bonuses are denoted
as the incentive parameter 𝜃 = (𝜃1, 𝜃2) ∈ R2. The player gets the
corresponding bonus if it finds and drinks up a pool of water while
its opponent gets the corresponding penalty. Then the total pay-off
for the predator is

𝑟pred=𝐼catch−𝐼nest+
∑︁

𝑗=1,2
𝜃 𝑗 (𝐼pred𝑗

− 𝐼prey
𝑗
)+0.5(𝑁 pred

fixed − 𝑁
prey
fixed),

where 𝐼catch and 𝐼nest are two indicators for that the predator catch
the prey or the prey back to the nest, 𝐼pred

𝑗
(or 𝐼prey

𝑗
) is the indication

functions of whether the pool with 𝜃 𝑗 amount of water is found by
the predator (or prey) and 𝑁

pred
fixed (or 𝑁

prey
fixed) represents the number

of fixed pools discovered by the predator (or prey). In addition,
we define the reward for prey as 𝑟prey = −𝑟pred. The arbitrating
objective for PP is the same as what is defined for RWS.

7.2 Results and Analysis
We use GridSearch(M) to denote the zeroth-order method, which
spreads 𝑀 number of points into the feasible region for incentive
parameter 𝜃 , as a competitor to DASAC. Additionally, we adopt
Bayesian optimization to improve the efficiency of the zeroth-order
method, denoted as BayesOpt, which is also used in [64]. The ex-
perimental details of GridSearch(M) and BayesOpt are included in
Appendix G.2. Figure 4 shows the trend of the arbitrating objective
𝑓∗ after applying DASAC onto the environments. The green dotted
line in Figure 4 is the best objective score of GridSearch(100). On
the one hand, Figure 4 shows the differentiable first-order frame-
work we propose is capable to admit a better incentive parameter
𝜃 with a lower objective loss. On the other hand, Figure 4 indicates
that GridSearch(M) requires 100 samples, in another word, solving
the lower-level Markov game 100 times, to achieve an equivalent
performance of DASAC. DASAC can achieve better efficiency ( 5
outer-loop iterations) than these zeroth-order methods even though
BayesOpt ( 12 outer-loop iterations, >2 times slower than ours) has
improved the efficiency of GridSearch (100 outer-loop iterations).
After considering the gradient computation, DASAC requires 3.5h
for one iteration and the zeroth-order methods (Gridsearch and
BayesOpt) requires 3h for one iteration under the same GPU set-
ting. Our method is 2x faster than BayesOpt and 17x faster than
Gridsearch(100). It means our first-order framework requires fewer
evaluations for the upper level to obtain a desirable NE policy,
leading to a higher sample efficiency.

Furthermore, we will present our DASAC tends to reach a desir-
able NE via analyzing the NE behavior at the initial incentive 𝜃0 and
the optimal incentive 𝜃∗ (marked in Figure 4). Figure 1 illustrates
the trace of players when taking the NE policies in RWS and PP
environments with initial incentive 𝜃0 and the optimal incentive
𝜃∗ respectively. It demonstrates that the optimal 𝜃∗ navigates the
system to a better NE that players are more exploration-minded.
To be more specific, with the initial incentive parameter 𝜃0, al-
though players start to take account of the exploration rate and
think outside the habitual behaviors in an unincentivized system,
e.g., standstill but not collecting resources after a few steps in RWS
or stalemate in a relative diagonal position in PP, they still tend
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Figure 4: Arbitrating objective loss 𝑓∗ for DASAC, BayesOpt,
and GridSearch(100) in RWS (top) and PP (bottom). The
green dotted line indicates the best objective score of Grid-
Search(100). Our DASAC can outperform two zeroth-order
baselines, GridSearch(100) and BayesOpt, by a large margin,
which shows that our first-order framework requires fewer
evaluations for the upper level to obtain a desirable NE pol-
icy, leading to a higher sample efficiency.
to maintain the habitual behavior after a few explorations. As the
training for the incentive parameter goes on, the habitual behav-
iors in an unincentivized system are gradually abandoned and they
develop new patterns of behavior that lead to a higher exploration
rate and ensure their own goals at the same time. For example, in
PP, the predator still tries their best to catch the prey, and the prey
tries to escape as soon as possible. The difference is that the prey
tends to circle around, exploring the water source to replenish its
energy instead of staying in one place and avoiding risky moves.

8 CONCLUSION
Our work initiates a provably differentiable framework in context
with MARL to solve a bi-level arbitrating problem. We provide the
convergence proof and empirically validate the effectiveness of the
DASAC on arbitrating in two Markov games. Our work can be
extended to multiple-player and general-sum settings with proper
NE solvers whose convergence properties have been empirically
shown. Therefore, we will empirically test the performance of the
performance of the DA framework on more general cases in our
future work.
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