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ABSTRACT
Recent research in Nash equilibrium (NE) computation in exten-

sive forms games (EFGs), such as poker, show that it is possible

to compute strong solutions for two-player zero-sum games via

regret minimization in theory and practice. Regret minimization

is less well-understood in other classes of EFGs, even with perfect

information. We introduce an approach based on converting the

EFG into its corresponding normal form game (NFG). This faces

two challenges. First, the exponential increase in the size of the

NFG representation makes the straightforward use of regret min-

imization algorithms, like Multiplicative weights update (MWU)

variants, on the resulting game impractical. Second, it is not clear

how the updates in the normal form version of the game translate

to the update in the behavioral strategies of the extensive form. We

address these two challenges by introducing Extensive-form Imple-

mentation of Normal-form Regret minimization (EINR). Like CFR,

it can be applied locally and recursively to the decision nodes in

extensive form version. Further, we show a way to extend the EINR

implementation to simultaneous move games where each agent

knows the state of the game only when all the other players have

acted in the game. Experiments on a zero-sum extensive form game

and a cooperative simultaneous move game provide a comparison

to CFR.
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1 INTRODUCTION
Extensive-form games (EFGs) are a framework to model sequential

decision-making among multiple agents. Counterfactual Regret

Minimization (CFR) algorithm and its variants [3, 8, 39], have been

developed to compute Nash Equilibrium in zero-sum EFGs. This

has led to outperforming top human level poker professionals in

No-Limit Texas Hold ’Em via agents such as DeepStack [29] and

Libratus [5]. CFRminimizes regret locally in each state (information

set) of the game tree using counterfactual values, which, in turn, are

used to compute counterfactual regret for each action. This iterative

process minimizes total regret due to the main CFR theorem [39],

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

thus giving a local regret minimizing algorithm to minimize total

regret.

For non-zero-sum EFGs, CFR has much weaker convergence

guarantees and we have relatively few positive results even turning

to other classes of games like cooperative games. On the other hand,

there has been extensive exploration of convergence behavior of

a variety of regret minimization algorithms such as Multiplicative

Weights Update (MWU) and its variants in Normal Form Games

(NFGs). For example, variants of MWU have last-iterate conver-

gence and polylogarithmic regret bounds in general sum games

and last iterate convergence in zero-sum games which is stronger

than CFR (see Table 1 from Farina et al. [13]’s work for detailed

comparison)

A desirable approach would be use the well-known conversion

of EFGs to NFGs and then enjoy the benefits of the positive results

for regret minimization in NFGs. However, since the number of

deterministic strategies in an EFG is exponential in the size of the

game, this conversion is intractable in general. We address this by

developing EINR, an algorithm for EFGs with perfect information

which produces the same updates as this conversion yet can be

directly applied to the nodes of the EFG representation of game tree

and hence doesn’t suffer from the exponential blow-up of strate-

gies. Thus EINR simultaneously enjoys the convergence properties of
NFG regret minimization and the computational efficiency of EFG
algorithms like CFR (though restricted to perfect information).

The key to EINR is the observation that tracking a certain version

of cumulative utility at the leaves of the game provides a sufficient

statistic to reconstruct the current probability of each strategy in

the NFG according to MWU. At each iteration these statistics can

be updated in a single top-down pass over the tree. They can then

be used to calculate the extensive-form version of the current be-

havioral strategy. This approach mirrors the simple and efficient

structure of CFR and uses many of the same concepts such as reach

probabilities and counterfactual utilities. However, it differs in the

details of the recursive calculation which we show eliminates the

need to “unlearn” that an action early in the tree is bad when this

is due to a poor initial strategy in the subtree following that action.

Further, while EFGs usually assume one player acts at a time, we

show that EINR naturally extends to settings with simultaneous

moves. As simultaneous moves are typically modeled using im-

perfect information, this shows that EINR can be extended to at

least some imperfect information EFGs. We leave the extension of

EINR-like update to general imperfect information games as an

interesting future direction.

Apart from zero-sum settings, an interesting domain on which to

test EINR is simultaenous move-identical interest games (SM-IIGs),

cooperative settings where all the agents act simultaneous and ob-

serve the state and reward of the game only after playing the action.

In this setting, the players don’t have any information about the
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actions of the other players. This setting can be commonly observed

in many real-world scenarios such as genetics [28], cooperation

among a team of agents [27], and coordination amongst different

functions in robotic control [31]. Our experiments on variants of

an N-step SM-IIG introduced by Yang et al. [38] show that EINR

achieves such last iterate convergence to a single leaf node and

perhaps more surprisingly CFR does as well, albeit in some cases

suboptimally.

In summary, our main contributions are:

(1) We establish that the counterfactual utility at terminal nodes

in the EFG is a sufficient statistic for the mixed strategy of

an agent following MWU in the NFG (Lemma 2).

(2) We introduce EINR, a simple, linear time, CFR-style algo-

rithm for updating these statistics and reconstructing the

current strategy in the EFG representation from them. We

also show the implementation of EINR in simultaneous move

gameswhere at every step agents take actionswithout knowl-

edge of the actions of the other agents. (Theorem 1 and

Corollary 1).

(3) We provide comparison of the update rule for EINR and CFR

and illustrate through a simple example that EINR avoids

the need for “unlearning” that CFR faces (Section 4).

(4) While our primary contribution is theoretical, a small set of

experiments demonstrates last iterate convergence of EINR

in EFGs with perfect information and also simultaneous

move games. In harder versions of the latter, EINR finds the

optimal solution while CFR finds a suboptimal equilibrium

(Section 5).

1.1 Related Work
Two recent works have independently developed algorithms to

achieve the goal of extensive form implementations of normal form

regret minimization. Farina et al. [13] develop a kernel-based ap-

proach for MWU which works in any polyhedral convex game

(which includes EFGs). In general their algorithm tracks one number

for each history of the game and they provide a generic algorithm

which is quadratic this size and an optimized implementation for

EFGs which is linear. Bai et al. [2] provide an approach for a gener-

alization of MWU called Φ-Hedge in EFGs and show that the Farina

et al. [13] results for EFGs are a special case of their framework

and the linear time implementation is equivalent to the standard

Online Mirror Descent algorithm. In contrast, EINR achieves the

same linear time performance in EFGs with perfect information

while tracking counterfactual utilities only at the leaves of the tree.
This results in a simpler algorithms which keeps the CFR-like struc-

ture of a single pass down and then up the tree. In this sense our

work is complementary because both rely on identifying structures

where relevant computations can be performed efficiently and we

identify a new version of this structure. Additionally our version is

naturally phrased in terms of familiar concepts from CFR such as

reach probabilities.

There are several works that study online no-regret learning al-

gorithms for NFGs and achieve good convergence for many classes

of games. In general in a NFG, it is known that any no-regret

learning algorithm can achieve convergence to coarse correlated

equilibrium. Further, no-regret algorithms like MWU can achieve

Nash Equilibrium convergence for zero-sum games [14], congestion

games [20, 23, 37], and cooperative games [28]. Optimistic variants

of MWU [32, 35] also enables faster NE and last iterate conver-

gence for zero-sum games and polylogarithmic regret bounds for

general-sum NFGs [12, 25]. This work is complementary to ours

because by effectively converting EFGs to NFGs we can leverage

these convergence results as long as the induced NFG satisfies the

assumptions under which the corresponding guarantees hold (see

discussion by Farina et al. [13] in their Appendix A.1 and Section

5.3).

Recent work on team games [7] has show that the joint normal

form strategies of team players against an adversary can be used to

solve for an Team Maxmin equilibrium. However such an approach

is not scalable as the number of players and decision points increase

[6]. Due to the lack of scalability of the induced NFG, most of EFG

solutions have been limited to finding algorithms directly for the

EFGs. For example, for zero-sum EFG Nash equilibrium can be

computed based on linear programs [33], double oracle methods

[22] and most popularly by CFR [39] and its variants. However,

as pointed out by [13], many of the normal form guarantees like

last-iterate convergence, tight regret convergence, etc. from NFGs

are still not easily extendable by algorithms designed mainly for

EFG. Moreover, CFR-based learning algorithms lack theoretical

guarantees for some settings like cooperative games [27].

More recently Markov potential games (MPGs) [16, 26], which

like EFG add a stateful structure, have been studied as they can

provide amore general framework formulti-step cooperative games.

A Markov game is an MPG if there exists a potential function such

that if one agent changes their policy, the difference in their value

function is the same as the difference in the potential function in

all states. It was recently shown that Independent policy gradient

[26] and Independent Natural Policy gradient [16] have updates

identical to applying MWU in each state and that they converge to

Nash equilibrium in MPGs. Relative to these our work represents

an alternative approach to extending MWU to stateful settings.

Apart from game-theoretic approaches, decentralized multiagent

reinforcement learning (MARL) techniques have also achieved suc-

cess in the multi-agent cooperative[9, 18] and competitive settings

[1, 11, 34]. Some of these MARL that use centralized training and de-

centralized execution techniques [15, 27] use Regret or Regret-like

functions to update the policy of all the agents. However, almost all

of these MARL techniques lack the generic theoretical guarantees

MWU and its variants have in NFG. Moreover, MWU has been

shown to be essentially equivalent to the tabular version of many

Deep-RL algorithms [16, 21, 26] which shows the promise of MWU

in stateful RL settings.

2 BACKGROUND
2.1 Normal Form Games
Definition 1. A normal form game (NFG) is a single step game de-
fined by tuple (𝑁, (S𝑖 )𝑖∈𝑁 , (𝑢𝑖 )𝑖∈𝑁 ) where 𝑁 is the number of play-
ers and each player has a set of pure strategies S𝑖 = {𝑠𝑖1, 𝑠𝑖2, .., 𝑠𝑖𝑛𝑖 }.
For a strategy profile denoted by s = (𝑠1, 𝑠2, .., 𝑠𝑁 ) the utility of
player 𝑖 is given by 𝑢𝑖 (s) where 𝑢𝑖 is payoff function defined over
S1 × S2 × .. × S𝑁 → R.
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We use 𝑃𝑖 = Δ(S𝑖 ) to denote the set of player 𝑖’s mixed (random-

ized) strategies and 𝑃 = (𝑃1, 𝑃2 ..., 𝑃𝑁 ) the set of mixed strategies

of all players.

Definition 2. An identical interest game (NFG-IIG) is a 𝑁 -player
game defined by tuple 𝐺 = (𝑁, (S𝑖 )𝑖∈𝑁 , 𝑢)). In an IIG, all the agents
receive the same shared reward 𝑢 for a particular joint action s =

(𝑠1, 𝑠2 ...𝑠𝑁 ) ∈ S, 𝑖, 𝑗 ∈ 𝑁 i.e

𝑢𝑖 (s) = 𝑢 𝑗 (s) = 𝑢 (s) (1)

All NFG-IIGs have at least one joint action s∗ which is a maxi-

mizer of the shared reward 𝑢 (s∗). With such a joint action, indeed

for any local optimum of 𝑢, for a player 𝑖 playing strategy 𝑠𝑖 and

rest of the players playing strategy s−𝑖 , where −𝑖 subscript is used
to indicate the strategy of all the players except 𝑖 ,

𝑢𝑖 (s∗) ≥ 𝑢𝑖 (𝑠𝑖 , s∗−𝑖 )∀𝑠𝑖 ∈ S𝑖 (2)

Such a point is known as a pure Nash equilibrium.

Finally,the expected utility for strategy 𝑠𝑖 denoted by 𝑙𝑖 (𝑠𝑖 ) for
the player 𝑖 in an NFG where the over players follow a mixed

strategy 𝑝−𝑖 is given by -

𝑙𝑖 (𝑠𝑖 ) =
∑︁

s−𝑖 ∈S−𝑖
𝑝s−𝑖 ∗ 𝑢𝑖 (𝑠𝑖 , s−𝑖 ) (3)

2.2 Extensive form game
An extensive form game (EFG), unlike a NFG, is a game with se-

quential interaction and is generally represented by a game tree.

The non-terminal nodes of the tree represent a single player taking

action at that decision node and a terminal node represent the end

of the game and the utilities received by each player after the ter-

minal node is reached. The edges of the tree represent the player’s

strategies for the node. An example of such a game is shown in

figure 1.

A perfection information
1
EFG is formulated as a tuple (𝑁,𝐻,𝐴, 𝜌,𝑈 ).

𝑁 = {1, ..., 𝑛} is a set of players. 𝐻 is a set of histories (i.e., the

possible action sequences) where each history ℎ ∈ 𝐻 is the se-

quence of actions taken by all the players according to history

ℎ = (𝑎0, 𝑎1, ...𝑎𝑡 ). The empty sequence 𝜙 which is the root node of

the game tree is in 𝐻 , and for every prefix ℎ′ of a sequence ℎ ∈ 𝐻 ,

ℎ′ ∈ 𝐻 . The prefix relationship between the history ℎ′ and ℎ is

denoted by ℎ′ ⊑ ℎ. 𝑍 ⊂ 𝐻 is the set of the terminal histories. 𝜌 is

the player function. 𝜌 (ℎ) is the player who takes an action at the

history ℎ, i.e. For a non-terminal history ℎ ∈ 𝐻 , 𝜌 (ℎ) → 𝑁 . For the

player 𝜌 (ℎ) = 𝑖 , let 𝐴(ℎ) be the set of available actions at history ℎ.
For all players 𝑖 ∈ 𝑁 , the utility function is a mapping 𝑢𝑖 : 𝑍 → 𝑅.

A player’s behavior strategy 𝜎𝑖 is a function mapping every

history ℎ where 𝜌 (ℎ) = 𝑖 to a probability distribution over 𝐴(ℎ). A
strategy profile 𝜎 consists of a strategy for each player 𝜎1, 𝜎2, ...,

𝜎𝑛 with 𝜎−𝑖 referring to all the strategies in 𝜎 except 𝜎𝑖 . Let 𝜋
𝜎 (ℎ)

be the probability of reaching history ℎ if players choose actions

according to 𝜎 . The reach probability 𝜋𝜎𝑖 (ℎ) of player 𝑖 denotes
the probability with which player 𝑖 will play the actions required

to trace the history ℎ and is given by 𝜋𝜎𝑖 (ℎ) = Π (ℎ′,𝑎) ⊑ℎ
𝜌 (ℎ)=𝑖

𝜎𝑖 (𝑎 |ℎ′).

For any player 𝑖 , the counterfactual utility is 𝜆𝑖 : 𝑍 → 𝑅 and for

1
Perfect information means that all players can observe the full history of play. In

imperfect information games players may have uncertainty about the past which is

captured via information sets.

𝑧 ∈ 𝑍 , 𝜆𝑖 (𝑧) = 𝜋𝜎−𝑖 (𝑧)𝑢𝑖 (𝑧). We also make use of the cumulative

counterfactual utility Λ𝜏
𝑖
(𝑧) = ∑𝜏

𝑡=0 𝜆
𝑡
𝑖
(𝑧)

To leverage the equilibrium guarantees from NFG in EFG, we

use the standard fact that all EFG games can be transformed into

equivalent NFGs (see Figure 1 for a simple example with an IIG)

by converting the pure behavioral strategies of the EFG to pure

strategies in the NFG. We call the resulting induced NFG the INFG

for general case or IIIG for identical interest games.

(a) Extensive form shared re-
ward game

(b) Normal form transforma-
tion of EFG

Figure 1: Normal and Extensive form version of an IIG

To make our analysis of the connection between extensive form

and normal form strategies easier, we define a few custom notations

in addition to the standard notations for our perfect information

EFG. Let 𝑟ℎ be the action chosen by player 𝑖 according to the normal

form strategy 𝑟 ∈ S𝑖 of the INFG after history ℎ such that 𝜌 (ℎ) = 𝑖 .

Sℎ
𝑖
denotes the set of normal form strategies for player 𝑖 that can lead

to history ℎ. That is, Sℎ
𝑖
= {𝑟 ∈ S𝑖 | ∃(ℎ′, 𝑎) ⊑ ℎ, 𝑟ℎ

′
𝑖

= 𝑎, 𝜌 (ℎ′) = 𝑖}.
When ℎ is a terminal history such that ℎ ∈ 𝑍 , we use the 𝑧 for

the superscript as S𝑧
𝑖
. Further, let Z𝑟 denote the set of terminal

histories reachable through the normal form strategy 𝑟 . That is,

Z𝑟 = {𝑧 ∈ 𝑍 | 𝑟 ∈ S𝑧
𝑖
}. Similarly, let Zℎ denote the set of terminal

histories reachable from history ℎ. That is, Zℎ = {𝑧 ∈ 𝑍 | ℎ ⊑ 𝑧}.

2.3 Multiplicative Weights Update (MWU)
In this paper we study the class of MWU algorithms termed aggre-

gate monotonic selection (AMS) which was studied by Kleinberg

et al. [23]. This class notably includes the Hedge algorithm of Fre-

und and Schapire [17]. These algorithms maintain a vector 𝑝𝑖 of

probabilities for the available actions, so that 𝑝𝑖𝑟 is the probability

of player 𝑖 choosing action 𝑟 . In each round each player samples an

action according to this distribution. Afterwards, the weights are

updated multiplicatively, based on the realized cost.

𝑝𝑖𝑟 =
𝑝𝑖𝑟 (1 − 𝜖𝛽)𝑢𝑖 (𝑝)∑

𝑟 ′∈𝑠𝑖 𝑝𝑖𝑟 ′ (1 − 𝜖𝛽)𝑢𝑖 (𝑝)
(4)

In the update, 𝜖 is a base learning rate and 𝛽 (𝑖, 𝑝) is a parameter

allowing it to be state-dependent. Following Kleinberg et al. [23],

we assume that ∀𝑖 , 𝑝 , 0 < 𝛽 (𝑖, 𝑝) ≤ 1. Hedge, which we will use

later, results from taking 𝛽 = 1.

3 EXTENSIVE FORM IMPLEMENTATION OF
NORMAL FORM REGRET MINIMIZATION

In this section we show how address the exponential number of

normal-form strategies. We do so by developing an algorithm we
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call EINR, for Extensive-form Implementation of Normal-form Re-

gret Minimization. As the name suggests, it allows us to compute

the same behavior strategies which result from MWU dynamics on

the NFG via computations performed efficiently on the EFG. For no-

tational simplicity we present our results for one particular MWU

dynamic (Hedge, with 𝜖 chosen to make the base of the exponent 𝑒),

but as this only affects the weighting of terms in the exponent our

results apply to arbitrary MWU dynamics. Similarly, we assume

there are only two players, 𝑖 and −𝑖 , as when performing updates

for 𝑖 the other players can be treated as a unit. We begin by stating

the Hedge update rule in a convenient form.

Definition 3. Let 𝑝𝑡
𝑖
be the normal form mixed strategy of player 𝑖

at time step 𝑡 . The Hedge update is

𝑝𝑡+1𝑖 (𝑟 ) =
𝑝𝑡
𝑖
(𝑟 )𝑒𝑥𝑝 (𝑙𝑡

𝑖
(𝑟 ))∑

𝑟 ′∈S𝑖 𝑝
𝑡
𝑖
(𝑟 )𝑒𝑥𝑝 (𝑙𝑡 (𝑟 ′))

(5)

where 𝑟 ∈ S𝑖 is a normal form pure strategy and 𝑙𝑡
𝑖
(𝑟 ) is the expected

utility of 𝑟 at time 𝑡 per Equation (3).

Assuming all players start with uniform initial probabilities,

applying Equation (5) recursively yields

𝑝𝑡+1𝑖 (𝑟 ) =
𝑒𝑥𝑝 (𝐿𝑡

𝑖
(𝑟 ))∑

𝑟𝑖 ∈S𝑖 𝑒𝑥𝑝 (𝐿𝑡𝑖 (𝑟𝑖 ))
(6)

where 𝐿𝜏
𝑖
(𝑟 ) = ∑𝜏

𝑡=0 𝑙
𝑡
𝑖
(𝑟 ) denotes the accumulated expected utili-

ties for player 𝑖 using pure strategy 𝑟 through time 𝜏 .

This update rule for INFG strategies induces an update rule for

extensive form behavior strategies through the standard transfor-

mation.

Definition 4. Let 𝑝𝑖 , a mixed strategy for player 𝑖 , be given. The
behavior strategy induced by 𝑝𝑖 is defined as follows. Letℎ be a history
such that 𝜌 (ℎ) = 𝑖 and let 𝑎 ∈ 𝐴(ℎ). Then

𝜎𝑖 (𝑎 |ℎ) =

∑︁
𝑟 ∈Sℎ

𝑖
,𝑟ℎ
𝑖
=𝑎

𝑝𝑖 (𝑟 )∑︁
𝑏∈𝐴(ℎ)

∑︁
𝑟 ∈Sℎ

𝑖
,𝑟ℎ
𝑖
=𝑏

𝑝𝑖 (𝑟 )
(7)

In other words, the behavior strategy can be given as the sum-

mation of normal form probabilities of strategies of player 𝑖 that

can reach ℎ and play 𝑎 at history ℎ, normalized by the probability of

all the strategies that can reach ℎ. Given this connection, the reach

probabilities satisfy the obvious property that they can be com-

puted as the summation of normal form probabilities of strategies

of player 𝑖 that can reach ℎ

Lemma 1. Let 𝑝𝑖 be a mixed strategy and 𝜎𝑖 be the induced behavior
strategy. Then the reach probabilities satisfy

𝜋𝜎𝑖 (ℎ) =
∑︁
𝑟 ∈Sℎ

𝑖

𝑝𝑖 (𝑟 ) (8)

The proof is deferred to the appendix. Since counterfactual utili-

ties are defined in terms of reach probabilities, this allows us to give

a concise characterization of the expected utility of a normal-form

pure strategy.

Lemma 2. Let 𝑟 ∈ S𝑖 be a normal form strategy for the player 𝑖 and
recall that Z𝑟 = {𝑧 ∈ 𝑍 | 𝑟 ∈ S𝑧

𝑖
} is the set of terminals reachable

when playing 𝑟 . Then

𝑙𝑡𝑖 (𝑟 ) =
∑︁
𝑧∈Z𝑟

𝜆𝑡𝑖 (𝑧) (9)

Proof. By definition

𝑙𝑡𝑖 (𝑟 ) =
∑︁

𝑟 ′∈S−𝑖
𝑝𝑡−𝑖 (𝑟

′)𝑢𝑖 (𝑟, 𝑟 ′)

Let S𝑧−𝑖 denote the subset of normal form strategies of player −𝑖
leading to terminal history 𝑧 given player 𝑖 is playing 𝑟 .

Then

𝑙𝑡𝑖 (𝑟 ) =
∑︁
𝑧∈𝑍𝑟

( ∑︁
𝑟 ′∈S𝑧−𝑖

𝑝𝑡−𝑖 (𝑟
′)
)
𝑢𝑖 (𝑧)

By Lemma 1 and the definition of counterfactual utilities,

𝑙𝑡𝑖 (𝑟 ) =
∑︁
𝑧∈𝑍𝑟

𝜋𝜎
𝑡
−𝑖 (𝑧)𝑢𝑖 (𝑧) =

∑︁
𝑧∈Z𝑟

𝜆𝑡𝑖 (𝑧) (10)

□

Lemma 2 is key to the design of EINR. It shows that the cumu-

lative counterfactual utilities of terminal histories are a sufficient

statistic for the probabilities of the normal form strategies, and thus

via Equation (7) the behavior strategy. All that remains is to show

that we can efficiently compute it from the sufficient statistic. The

following theorem does so.

Theorem 1. Let player 𝑖 be using the Hedge update. Then

𝜎𝜏𝑖 (𝑎 |ℎ) =
𝑉 𝜏
𝑖
(ℎ.𝑎)∑

𝑏∈𝐴(ℎ) 𝑉
𝜏
𝑖
(ℎ.𝑏) (11)

where 𝑉 𝜏
𝑖
(ℎ) is defined recursively as

𝑉 𝜏
𝑖 (ℎ) =


𝑒𝑥𝑝 (Λ𝑡

𝑖
(ℎ)), if ℎ ∈ 𝑍∏

𝑎′∈𝐴(ℎ) 𝑉 𝜏
𝑖
(ℎ.𝑎′), if 𝜌 (ℎ) = −𝑖

1/|𝐴(ℎ) |∑𝑎′∈𝐴(ℎ) 𝑉 𝜏
𝑖
(ℎ.𝑎′), if 𝜌 (ℎ) = 𝑖

(12)

The full proof is deferred to the appendix, but we provide a brief

sketch here. First, we show that the probability of an action at a

given history can be factored into two parts: one which depends

only on the subtree rooted at that history and one which depends

on the parts of the tree that do not pass through that history. We

provide a recursive characterization of the first part while showing

that the second is the same for all actions at a history and therefore

cancels out. This recursive characterization yields the given form

for 𝑉 .

Thus, like CFR, each iteration of EINR consists of two passes

over the extensive form game tree. First, a top-down pass calculates

the reach probability of each terminal history according to the

current behavior strategy and uses them to update the cumulative

counterfactual utilities Λ𝜏
𝑖
(𝑧). Then a bottom-up pass computes

𝑉 according to Equation (12) and uses it to update the behavior

strategy according to Equation (11). Thus each iteration of EINR is

linear in the size of the extensive form game.

As a final remark, we note that it is straightforward to extend

EINR to allow simultaneous moves. This allows us to capture, for ex-

ample, NFGs and (finitely) repeated games. It also demonstrates that
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Figure 2: Conversion of 2-Simultaneous Move Game to Ex-
tensive form games from player 1’s perspective

EINR can handle at least some games with imperfect information

(which is one may to model simultaneous moves).

Corollary 1. EINR extends to EFGs with simultaneous moves by
defining 𝑉 at nodes where both 𝑖 and another player move as

𝑉 𝜏
𝑖 (ℎ) = 1/|𝐴𝑖 (ℎ) |

∑︁
𝑎′∈𝐴𝑖 (ℎ)

∏
𝑎′′∈𝐴−𝑖 (ℎ)

𝑉 𝜏
𝑖 (ℎ.(𝑎

′, 𝑎′′)) (13)

Proof. Nodes with simultaneous moves can be replaced by a

tree where each player acts in turn in an arbitrary order as shown

in Figure 2. Putting 𝑖 at the root yields the given form by combining

the resulting 2 cases of (12). While under this transformation we

should restrict the actions of the agent(s) −𝑖 (in the language of

imperfect information the nodes are in the same information set),

from the perspective of player 𝑖 the actions of other agents are

arbitrary and used only to calculate the reach probabilities at the

terminals. □

4 COMPARISON TO CFR
The analysis in Section 3 highlighed the similarity in the structure

of CFR and EINR. We now examine their differences more carefully.

As a starting point, it is instructive to compare the 𝑉 defined in

Equation (12) with the counterfactual value used by CFR

𝑣𝑖 (𝜎,ℎ) =
∑︁
𝑧∈Zℎ

𝜋𝜎−𝑖 (ℎ)𝜋𝜎 (ℎ, 𝑧)𝑢𝑖 (𝑧) (14)

Both ultimately reduce to the counterfactual values at terminals

reachable from ℎ, but there are two key differences. First, CFR

accumulates the counterfactual values themselves in an expected-

value-like calculation. In contrast, EINR accumulates, them in the

exponent. While this ends up being equivalent at histories where

𝜌 (ℎ) ≠ 𝑖 (because multiplying exponential sums their exponents),

when 𝜌 (ℎ) = 𝑖 the behavior is quite different and EINR essentially

computes the average of the weights associated with the children

rather than the values themselves. This enables the second differ-

ence:𝑉𝑖 (ℎ) has no dependence on 𝑖’s current strategy. CFR needs to

know the strategy to know how to weight different options. Since

EINR directly tracks weights, it simply does an equally weighted av-

erage, which in some sense can be thought of as picking a uniform

random policy starting from ℎ.

4.1 A single player example
To illustrate the resulting difference in behavior, consider the fol-

lowing simple example with one player shown in Figure 3. The

player first chooses left or right. Left results in a terminal. Right re-

sults in a further choice between left and right, with both resulting

in terminals.

Figure 3: Single player game.

Figure 4 compares the behavior of EINR with CFR with Hedge

as its regret minimizer. While in the literature, and in practice,

CFR nearly exclusively uses regret matching [19] as its local regret

minimization algorithm (due to lack of exponentiation, parameter-

freeness, and ease of implementation), we instantiate CFR here

with Hedge for as close a comparison as possible. The three subfig-

ures show three different choices for the values of the terminals,

differing only in the result of right followed by left. In this game

right followed by right is the unique optimal strategy and the y-axis

indicates the probability with which this is played.

When going right first is clearly better in Figure 8a (because

both 2 and 3 are larger than 1), the two algorithms behave (nearly)

identically. However, when going right includes a “bad” option,

EINR converges substantially faster. With the uniform random

starting strategy, playing right at the root is quite bad (particularly

in Figure 8c). This means that CFR needs to unlearn its aversion

to playing right, and this aversion grows with the strength of the

initial negative experience. In contrast, EINR is implicitly tracking

every pure strategy, so this negative experience only affects the

strategy of right then left leaving nothing to unlearn. Of course,

there are optimizations to CFR designed to speed this unlearning,

such as CFR+ [36], but the inherent lack of need for such heuristics

highlights an inherent advantage of our approach.

5 EXPERIMENTS
We test our implementation of EINR on Tic-Tac-Toe game and a

N-step simultaneous move game (both using Openspiel [24]) . Our

implementation can be found on the github repository
2
While Tic-

Tac-Toe is regarded as a simple game by humans, it has a high

branching factor at early histories. In particular, it is substantially

larger than common benchmarks such as Kuhn and Leduc poker.

Further, the Nash equilibrium of the game is to settle in a tie where

both players will receive 0 payoff. To exactly play such a best re-

sponse is challenging as the breadth and depth of game tree is

large. For the SMG, we choose the standard N-step identical inter-

est (SMG-IIG) from the cooperative multi-agent learning literature.

The main reason for which we choose SMG-IIG is because, un-

like zero-sum games, the results of MWU in EFG-IIG or SMG-IIG

2
https://github.com/chiggy2402/EINR.git
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(a) 1,2,3 (b) 1,-2,2 (c) 1,-40,2

Figure 4: Convergence of CFR depends on the extent to which avoiding right initially needs to be unlearned unlike EINR.
Captions of subfigures reflect the terminal utilities in Figure 3

are relatively less well-known although both zero-sum and IIG en-

joy good convergence for NFG. For example, Kleinberg et al. [23]

show that in potential games (a generalization of NFG-IIGs also

known as congestion games) continuous time and noisy versions of

Hedge achieve last iterate convergence to Nash equilibrium, Mehta

et al. [28] show convergence of a “linear” variant of Hedge con-

verges generically to pure Nash equilibrium in 2 agent NFG-IIGs,

Palaiopanos et al. [30] showed a version of Hedge with suitably

decreasing learning rates converges in potential games, and Couch-

eney et al. [10] and Heliou et al. [20] showed similar results with

bandit feedback. While none of these result exactly match EINR,

they give us a strong reason to expect last iterate convergence

to Nash equilibrium in an N-step SM-IIG. Finally, N-step SM-IIG

games are specifically used in the MARL literature to test if the

algorithm can choose long term high gain instead of a short term

small gain.

In general we cannot expect to learn a pure Nash equilibrium

because in an SMG-IIG, there is room for arbitrary random behavior

at histories which will not be reached. However, we find that in

SM-IIG, both EINR and CFR, the joint behavioral strategy converges

to a single leaf node. This means that 𝜋𝜎 (𝑧) = 1 for some 𝑧 ∈ 𝑍

The following results use a game specific learning rate for Hedge

that was found experimentally. Tic-tac-toe has rewards of +1/-1

so a learning rate effectively scales the rewards up or down. As

tic-tac-toe is a large game tree, larger learning rates were found

to dramatically speed up convergence. Regret matching, used in

CFR, tracks only positive regret sums which has a similar effect to

a large learning rate in this context.

5.1 Tic-tac-toe
Tic-tac-toe is a simple two player game with perfect information.

On a 3x3 grid, players alternate placing ’X’ and ’O’ in a cell until

one player makes three in a row, column, or diagonal, or the game

results in a tie. Tic-tac-toe has 255168 unique states. Optimal play

results in a draw regardless of the initial player’s move. We run

EINR and CFR (with the standard choice of regret matching and the

regret minimizer) on tic-tac-toe and measure the optimality of the

learned policy. This is done by computing the game value, which

uses a copy of the policy for each player in self-play. A game value

of 0 indicates a tie. EINR learns rapidly and effectively with a large

learning rate of 10
5
. Intuitively, this large learning rate allows it

to effectively mirror the standard minimax / backward induction

approach to solving tic-tac-toe.

Figure 5: Tic-tac-toe.

5.2 Simultaneous move games

Figure 6: Simultaneous move game.

Here we study the simultaneous move game from Yang et al. [38]

shown in Figure 6. Two players play a matrix game at each stage of

the full game. By cooperating, the game can continue. The players

are presented with an increasingly higher payoff the further into

the game they get. If cooperation is maintained, at the terminals

each player will receive the highest payoff available. Payoffs are
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(a) Learning rate of 10. (b) Learning rate of 100. (c) Learning rate of 1000.

Figure 7: Learning curves for EINR/CFR in the standard SMG. Increasing the learning rate shows EINR approaching the number
of iterations as CFR.

(a) Modified payoffs (a=4, c=4) (b) Medium difficulty. (a=-4, c=-4) (c) Hard Difficulty. (a=-40, c=-40)

Figure 8: Modified game

only received at the terminals. In Figure 7, a = 9, b = 9, c = 9, d = 12

and e = 9, f = 9, g = 9, h = 9. In this scenario, cooperation results in a

higher payoff of 12. Our results show that EINR performs similarly

to CFR. By increasing the learning rate, EINR approaches the same

number of iterations for convergence that CFR achieves.

In order to compare to CFR in a more challenging setting, the

next example modifies the payoffs. In Figure 8a, a = 4, b = 12, c = 4,

d = 12 and e = -40, f = -40, g = 11, h = 11. The payoff for cooperation

remains 12. In Figure 8b, a slight change in the rewards is nowmade

where a and c are negated (a = -4, c = -4). As a result, EINR continues

to converge to the highest game value. CFR, however, converges

suboptimally to 8, corresponding to the players coordinating on

terminating before reaching the final step. Finally, in Figure 8c the

values for a and c are decreased one order of magnitude (a=-40, c=-

40). EINR still converges to the highest game value. CFR performs

even worse and converges to a game value of 6 by terminating

even earlier. Intuitively, in these harder examples CFR learns to

coordinate on the suboptimal equilibrium before it unlearns its

initial discovery that the last stage is dangerous under random play.

6 CONCLUSION
We have developed EINR, a way of implementing regret minimiza-

tion on the normal form representation of an extensive form game

with perfect information while efficiently performing computations

on the extensive form representation. There are a number of nat-

ural directions for future work to extend this. As discussed, our

approach to doing these computations differs from those developed

by Farina et al. [13] and Bai et al. [2]. Does our approach extend

to some of the richer settings they explore? Another direction is

whether we can create extensions of EINR by taking inspirations

from similar CFR variants like Deep-CFR [4] or [5]. This would

allow a richer comparison to CFR and develop faster variants of

EINR. In our experiments, We chose an IIG due to their known

strong convergence properties, but to our knowledge no prior re-

sult exactly covers the exact setting used by EINR, much less our

empirical results for CFR. In addition to filling in this gap, many

prior results extend to potential games. Do similar properties hold

for extensive-form versions of potential games? Recent work has

shows that defining potential games in more general settings can

be subtle [26]. Finally, while we have described EINR in terms of

the traditional Hedge algorithm, it can also be used with the opti-

mistic variant [32, 35] by adjusting the utilities used in the updates

appropriately. The benefits of doing so remain to be explored.
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