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ABSTRACT
Autonomously learning diverse behaviors without an extrinsic
reward signal has been a problem of interest in reinforcement
learning. However, the nature of learning in such mechanisms is
unconstrained, often resulting in the accumulation of several un-
usable, unsafe or misaligned skills. In order to avoid such issues
and ensure the discovery of safe and human-aligned skills, it is
necessary to incorporate humans into the unsupervised training
process, which remains a largely unexplored research area. In this
work, we propose Controlled diversity with Preference (CDP)1 , a
novel, collaborative human-guided mechanism for an agent to learn
a set of skills that is diverse as well as desirable. The key principle
is to restrict the discovery of skills to those regions that are deemed
to be desirable as per a preference model trained using human pref-
erence labels on trajectory pairs. We evaluate our approach on 2D
navigation and Mujoco environments and demonstrate the ability
to discover diverse, yet desirable skills.

KEYWORDS
Skill Diversity; Human Preferences; Reinforcement Learning
ACM Reference Format:
Maxence Hussonnois, Thommen George Karimpanal, and Santu Rana. 2023.
Controlled Diversity with Preference : Towards Learning a Diverse Set of
Desired Skills. In Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2023), London, United Kingdom,
May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Deep Reinforcement learning [17] is a powerful computational ap-
proach for solving sequential decision making tasks by maximizing
prespecified rewards over time. Despite its proven success in a num-
ber of applications ranging from Atari games to robotics [15, 17],
the framework is typically task-specific, and the effectiveness of
the learned policy is contingent on a carefully designed extrinsic
reward function.

However, in the real world, an agent is likely to come across
complex and unstructured tasks, for which it may need to learn
several sub-behaviors or skills, possibly, without access to any
extrinsic rewards. In order to autonomously discover and learn
these skills, prior works have proposed information theory-based
diversity objectives as an intrinsic reward to explore and learn
diverse task-agnostic skills without a reward function [4, 6, 21].
1See code here: (https://github.com/HussonnoisMaxence/CDP)
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Figure 1: With unconstrained skill discovery, a cooking robot
may discover undesirable skills (such as harming humans)
using a kitchen knife.

While such unsupervised methods of skill discovery can pro-
duce promising results, their unconstrained nature may lead to the
acquisition of useless, dangerous, or misaligned skills. For example,
as depicted in Figure 1, a robot tasked with learning diverse skills
with a kitchen knife may learn undesirable skills such as harming
a human. This type of behavior can occur because the agent lacks
context about the real world. Without context, the agent views
all aspects of the environment as equally relevant, and learns to
correlate its skills with any part of the environment regardless of
its importance or safety.

In order to address this issue, Eysenbach et al. [6] attempted
to limit the diversity of skills by manually selecting features for
the agent to be diverse in. However, the effectiveness of this ap-
proach is limited, as it is still possible for agents to learn undesirable
skills while being diverse about a specific feature. Recent works
[11] have suggested relying on expert demonstrations to guide the
agent towards expert-visited regions. Such demonstrations are gen-
erally expensive and thus would not be available in large quantities,
thereby negatively impacting skill diversity. As such, designing on-
line approaches for learning simultaneously diverse and desirable
behaviors remains an important and challenging open problem.

In contrast to the approaches mentioned above, in this work,
we contend that the agent can learn more desirable skills through
guidance provided by humans in the loop during the learning of
skills. Using human feedback to infer context allows much greater
flexibility, adaptability and less engineering than relying on pre-
defined extrinsic rewards. The key idea behind our approach is
that we frame the problem of controlling skill diversity as finding
regions of the environment where skill discovery will more likely
produce desirable skills. Due to the difficulty of identifying such
regions without human-provided context, we propose leveraging
recent work in learning from human preferences [5, 12, 26] to infer
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preferred regions in the environment. Intuitively, these are regions
of the environment which are generally associated with favorable
agent behaviors. We posit that such regions also correspond to suit-
able regions for learning a diverse set of skills. Once such regions
are identified, we adapt recent exploration methods to direct the
agent’s exploration towards those preferred regions. Furthermore,
by learning a representation of the state space from human pref-
erences, we show that our approach scales to higher dimensional
problems and learns skills that are discernibly diverse to human
eyes. Thus, by restricting the diversity in skill discovery to human-
preferred regions of the environment, we are capable of learning
skills that are both diverse and desirable.

In summary, the main contributions of this work are:

• Controlled diversity with Preference (CDP), a novel method to
control diversity in skill discovery using human preferences.
• Demonstration that our proposed approach guides the agent’s
exploration towards preferred state regions.
• Learning a representation of the state space for skill discov-
ery, that contains features relevant to human preferences.
• Qualitative and quantitative evaluation of the proposed frame-
work, with suitable comparisons with existing baselines for
learning diverse skills.

2 RELATEDWORK
Human in the loop andPreference basedRL:Human in the loop
reinforcement learning (HIL-RL) aims to improve reinforcement
learning (RL) agents by using human knowledge. In contrast to
imitation learning and inverse RL, HIL-RL uses human knowledge
during the training process rather than prior to it.

To enable the use of human feedback for more complex and
challenging tasks, Christiano et al. [5] learned a reward model
from human preference labels over trajectories. Such preference-
based frameworks offer the advantage of relatively easy/intuitive
supervision, while being sample efficient enough to quickly learn a
reward function.

PEBBLE [12] was an approach that further developed this frame-
work to design a more sample- and feedback-efficient preference-
based RL algorithm without any additional supervision. This was
achieved by leveraging off-policy learning and utilizing unsuper-
vised pre-training to collect data to substantially improve efficiency.
Although we follow a PEBBLE-like approach to learn a reward
function from preference labels, our approach differs from PEBBLE
in that in addition to learning reward functions from preferences,
we use this learned reward function to determine a distribution of
states for guiding the agent’s exploration. We essentially utilize the
learned preference based rewards as a means for determining the
dynamic space that humans prefer.

In the context of our proposed approach, Skill Preferences (SkiP)
[25] is a related approach that combines skill learning and human
preferences. SkiP was shown to learn a reward model over skills
with human preferences and used that model to extract human-
aligned skills from offline data. In contrast to SkiP, our approach
targets the online learning setting, where skills are still under de-
velopment when we obtain preferences.

Unsupervised Reinforcement learning and Skill discovery:
Unsupervised RL is an approach for autonomously learning rele-
vant behavior in any environment based on task-agnostic intrinsic
rewards. Intrinsic rewards form the basis for many agent concepts
such as curiosity [19] , novelty [16], and empowerment [20]. In
contrast to curiosity [19], which guides exploration towards re-
gions where predictive models perform poorly, novelty [16] guides
exploration toward areas that are less frequently visited. In order to
maximize the agent’s future potential, empowerment approaches
[20] direct the agent to explore regions that offer it more possible
states to visit.

DIAYN [6], VIC [9], and VALOR [1] suggested an empowerment
objective based on mutual information. This objective was shown
to enable the discovery and acquisition of a variety of skills relevant
to complex locomotion. To add predictability to the set of diverse
skills, DADS [21] formulated a variation of an objective based on
mutual information. EDL [4] showed that such skill discovery meth-
ods suffer from poor exploration, and proposed to split the process
into three independent phases: exploration, discovery, and learning.
In our work, we use the EDL framework, thereby separating the
discovery and learning of skills. However, we integrate the discov-
ery of skills within the exploration process by using them to gather
data more from the preferred regions.

Despite various advances in the area of autonomous skill discov-
ery, it remains challenging to learn and discover meaningful skills
in high-dimensional state spaces due to the curse of dimensionality.
Many works have mitigated this problem by learning representa-
tions of the state space, to distinguish skills based on more relevant
features. Nieto et al. [18] leverages self-supervised learning of state
representation techniques such as contrastive techniques to learn
a compact latent representation of the states. IBOL [10] proposes
a linearization of environments that promotes more diverse and
distant state transitions. Unlike these works, we do not learn or
change the representation of the state. Instead, we redirect diversity
to specific regions of the state space likely associated with meaning-
ful, desirable skills. We note that the aforementioned methods for
dealing with high dimensionality remain orthogonal to our work,
and could possibly be combined with our proposed framework to
realise more scalable solutions.

As far as controlling diversity using human data is concerned,
the work by Klemsdal et al. [11] is most closely related to ours. By
leveraging prior expert data, they obtain a state projection that
makes expert-visited states recognizable and, consequently, encour-
ages skills to visit them. However, in contrast to this approach, our
proposed framework does not require access to expert trajectories.
It instead only assumes a finite number of human-generated pref-
erence labels based on the agent’s trajectories. We contend that
this type of feedback is relatively easier to collect, with minimal
cognitive load on the human collaborator.

Restraining behavior: Several works have aimed at controlling
the behavior of agents. For example, Giacomo et al. [7] introduced
restraining bolts to restrain agents’ behavior by offering additional
rewards when logical specifications of desired actions are satisfied.
In another direction, Alizadeh Alamdari et al. [2] also augments the
reward of the agent to consider the future wellbeing of others and
thus restraining its behavior to reduce negative side effects. Our
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work differs from these in that, through interaction using human
preferences, we learn how to regulate the diversity of skills.

3 PRELIMINARIES
In this paper, we consider the problem of controlling diverse skill
discovery by combining the EDL framework with human guidance
in the form of preference-based RL. Here, we briefly present related
concepts, before describing our method in detail in Section 4.

3.1 Skill Discovery
Consistent with prior work [4] the skill discovery problem is formal-
ized as a Markov Decision Process (MDP)M = (S,A,P) without
external rewards, S and A respectively denote the state and ac-
tion spaces, and P is the transition function. Skills introduced by
Sutton et al. [22] are temporally extended actions (sub-behavior),
which consist of a sequence of primitive actions. We define skills
as policies 𝜋 (𝑎 |𝑠, 𝑧) conditioned on a fixed latent variable 𝑧 ∈ 𝑍 .

Skill discovery methods aim to learn these latent-conditioned
policies by maximising the mutual information between S and 𝑍 .
Due to symmetry, the corresponding mutual information can be
expressed in two forms:

𝐼 (S;𝑍 ) = 𝐻 (𝑍 ) − 𝐻 (𝑍 |S)︸              ︷︷              ︸
reverse

= 𝐻 (S) − 𝐻 (S|𝑍 )︸               ︷︷               ︸
forward

(1)

where 𝐼 (·; ·) and 𝐻 (·) are respectively the mutual information and
the Shannon entropy. Following prior work, we refer to these as the
reverse and forward forms. By using either of the two forms of the
objective, prior works [4, 6, 21] have demonstrated the learning of
latent-conditioned policies that execute diverse skills. Our method
uses the forward form in Equation (1) to learn the latent-conditioned
policies 𝜋 (𝑎 |𝑠, 𝑧) .

3.2 EDL Framework
EDL optimizes the same information theoretic objective in Equation
(1), but separates the skill discovery into three distinct stages -
exploration, discovery and learning of the skill.

3.2.1 Exploration stage. The Exploration stage aims to collect envi-
ronment transitions; it can be achieved via any exploration method
[14, 16, 19].

3.2.2 Skill Discovery stage. Given a distribution over states 𝑝 (𝑠),
the Skill Discovery stage trains a Vector-Quantized VAE (VQ-VAE)
to model the posterior 𝑝 (𝑧 |𝑠) as an encoder 𝑝𝜙 (𝑧 |𝑠), and 𝑝 (𝑠 |𝑧) as
the decoder 𝑞𝜙 (𝑠 |𝑧). The VQ-VAE has the advantage of having a
discrete bottleneck, which in our case is the categorical distribution
of 𝑝 (𝑧). Typically, VQ-VAEs are trained to optimize for the objective:

LVQ-VAE = E𝑠∼𝑝 (𝑠 ) [log(𝑞𝜙 (𝑠 |𝑝𝜙 (𝑧 |𝑠)))
+∥sg[𝑧𝑒 (𝑠)] − 𝑒 ∥ + 𝛽 ∥𝑧𝑒 (𝑠) − sg[𝑒] ∥] (2)

where 𝑧𝑒 (𝑠) and 𝑒 are respectively the codebook vector and the
codebook index, and 𝑠𝑔[.] is the operation ‘stop gradient’. For more
details, we refer the reader to van den Oord et al. [24].

3.2.3 Skill Learning stage. Finally, the Skill Learning stage consists
of training the latent-conditioned policies 𝜋𝜃 (𝑎 |𝑠, 𝑧) that maximize
the forward form of the mutual information (Equation (1)) between

states and latent variables. The corresponding reward function is
then defined by:

𝑟 (𝑠, 𝑧) = log𝑞𝜓 (𝑠 |𝑧), 𝑧 ∼ 𝑝 (𝑧) (3)

where 𝑞𝜓 (𝑠 |𝑧) is given by the decoder of the VQ-VAE at the discov-
ery stage. This reward function reinforces the policy to visit states
that the decoder generates for each latent variable 𝑧. Our proposed
method builds upon the EDL Framework, although we enhance
it via two novel contributions: (1) an exploration phase guided by
preferences, which integrates with the skill discovery phase to im-
prove coverage relevance, and (2) a way to transform 𝑝 (𝑠) into a
more suitable distribution for discovering desirable skills.

3.3 Reward Learning from Preferences
In this work, we use preference-based RL to identify preferred re-
gions, which are then used to constrain the diversity of learned
skills. In preference-based RL, a human is presented with two tra-
jectory segments (state-action sequences) 𝜎𝑖 and 𝜎 𝑗 , and is asked
to indicate their preference 𝑦 for one over the other. For instance,
the label 𝑦 = (1, 0) would imply that the first segment is preferred
over the second.

We follow the same framework as prior works in preference-
based RL [5, 12, 26], where the aim is to model the human’s internal
reward function responsible for the indicated preferences. This
is usually done via the Bradley-Terry model [3], which models a
preference predictor using the reward function 𝑟𝜓 as follows:

𝑃𝜓 [𝜎𝑖 ≻ 𝜎 𝑗 ] =
exp(∑𝑡 𝑟𝜓 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ))∑

𝑗∈{0,1} exp (
∑
𝑡 𝑟𝜓 (𝑠

𝑗
𝑡 , 𝑎

𝑗
𝑡 ))

(4)

where 𝜎𝑖 ≻ 𝜎 𝑗 denotes the event that the segment 𝜎𝑖 is preferable
to the segment 𝜎 𝑗 . As in Lee et al. [12], we model the reward
function as a neural network with parameters𝜓 , which is updated
by minimizing the following loss:

LReward = −E(𝜎0,𝜎1,𝑦)∼D [𝑦 (0) log 𝑃𝜓 [𝜎0 ≻ 𝜎1] +

𝑦 (1) log 𝑃𝜓 [𝜎1 ≻ 𝜎0]] (5)

In the current work, the above framework is used to infer context
regarding the importance of each region of the environment by
estimating the human’s reward function 𝑟𝜓 from preferences labels
𝑦. Specifically, we use these rewards to identify regions associated
with favorable agent behaviors. For simplicity, we choose to work
with the trajectory represented as state sequences rather than state-
action sequences as introduced.

4 METHODS
In this section, we presentCDP (ControlledDiversity with Preferen
ce), a skill discovery method that utilizes preference-based RL meth-
ods to control diversity and discover more preferred skills based
on human feedback. Our main idea is that with the reward learned
from human preference feedback, we can estimate a region of the
state space where it is more likely for the agent to discover desir-
able skills and subsequently learn them. To this end, we introduce
the concept of controlled diversity and preferred regions. Then,
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Figure 2: Illustration of the guided exploration process. The
agent iterates through four steps to explore. First it learns a
reward from human preferences (b) so that it can update its
belief over the preferred region from the existing data in the
buffer (c) then it discovers skills in this region (d) and finally
it collects experience regarding the beliefs of the preferred
region.

we present how to integrate them with EDL for a more efficient
exploration of the preferred region.

4.1 Influencing Skill Discovery with Human
Feedback

4.1.1 How to control diversity? We define controlled diversity as
limiting diversity to a certain region of the state space. It differs
from the standard setting for skill-discovery problems, where di-
versity is applied to the entire state space in an unconstrained
manner. To achieve this, we follow the EDL framework, where we
encourage skill discovery towards targeted behaviors by modifying
priors through a distribution over a target region 𝑝∗ (𝑠) of the state
space. Performing skill discovery on 𝑝∗ (𝑠) assigns latent variable
𝑧 to regions within the target region. In other words, a carefully
designed target region containing only desirable skills will enable
us to correlate 𝑍 only with desirable skills.

It is however, difficult to design such a region of the state space
or to gain direct access to it. Thus, we formulate our problem of
‘controlled diversity’ as finding an approximation of this target
region. In this work, we identify such regions through their high
preference rewards, learned from human preferences.

4.1.2 Preferred regions. We define a preferred region as those re-
gions associated with high estimated preference rewards 𝑟𝜓 , where
𝑟𝜓 is learnt using the preference based RL framework, as described
in Section 3.3. Concretely, a preferred state region 𝑆 ⊆ 𝑆 is a region
of the state space 𝑆 where 𝑟𝜓 (𝑠) ≥ 𝛽 , where 𝛽 ∈ [0, 1] is a prefer-
ence reward threshold, and 𝑟𝜓 (𝑠) is normalised to be within the
range [0, 1]. That is,

𝑆 = {∀𝑠 ∈ 𝑆 |𝑟𝜓 (𝑠) ≥ 𝛽} (6)

Ideally, the preferred region would be aligned with the intended
skills if the state space was fully explored. However, the assump-
tion of full state coverage may not be realistic. Alternatively, we
iteratively build a more accurate preference model by first using
the current estimate of the preference model to sample more tra-
jectories from the highly-preferred regions, and then updating the
preference model with human labels on those trajectories. This
directed sampling makes our method more query-efficient.

4.2 Exploration Towards a Preferred Region
In this section, we adapt the exploration phase of EDL to explore
preferred regions more effectively. To this end, we add three com-
ponents to the exploration phase - We learn a reward from human
preferences, we estimate the potential preferred regions and we
discover skills based on the potential preferred regions. Formally,
we consider latent-conditioned policies 𝜋 (𝑎 |𝑠, 𝑧), a reward function
𝑟𝜓 , a preferred state region 𝑆 and a discriminator 𝑞𝜓 (𝑠 |𝑧), which
are updated by the following processes, as illustrated in Figure (2):
• Step (a): Reward Learning - We query human for preference
over trajectories and update a reward function 𝑟𝜓 from the
preferences.
• Step (b): Preferred regions estimations - We update our belief
about the preferred subset 𝑆 as described in Section 4.1.2.
• Step (c): Discovery - We train the discriminator 𝑞𝜓 (𝑠 |𝑧), fol-
lowing VQ-VAE training, based on the most recent belief
about the preferred subset.
• Step (d): Exploration - We train latent-conditioned policies
𝜋 (𝑎 |𝑠, 𝑧) using guided intrinsic motivation to explore and
collect diverse experiences.

In the following sections, we explain how these components can
be integrated into existing explorationmethods to guide exploration
towards preferred regions.

4.2.1 State Marginal Matching. We base the exploration phase of
our work on SMM (State Marginal Matching [13]), although our
approach is not limited to this method. SMM aims to learn a state
marginal distribution log 𝜌𝜋𝑧 (𝑠) to match a given target distribu-
tion 𝑝∗ (𝑠) by minimising their Kullback-Leibler (KL) divergence.
Additionally, to explore more efficiently, Lee et al. [13] proposed to
learn latent-conditioned policies 𝜋 (𝑎 |𝑠, 𝑧) by adding the diversity
objective from Eysenbach et al. [6]. Thus, the reward function is
defined as:

𝑟𝑧 (𝑠) = 𝑟
exploration
𝑧 (𝑠) + 𝑟diversity𝑧 (𝑠) (7)

where :

𝑟
exploration
𝑧 (𝑠) = log𝑝∗ (𝑠)︸    ︷︷    ︸

(𝑎)

− log 𝜌𝜋𝑧 (𝑠)︸      ︷︷      ︸
(𝑏 )

(8)

𝑟
diversity
𝑧 (𝑠) = log𝑞𝜙 (𝑧 |𝑠)︸       ︷︷       ︸

(𝑐 )

− log(𝑝 (𝑧))︸     ︷︷     ︸
(𝑑 )

(9)

Intuitively, according to Lee et al. [13], the above equations imply
that the agent should go to states (a) with high probability under the
target state distribution, (b) where this agent has not been before,
and (c) where this skill is clearly distinguishable from other skills.
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The last term (d) encourages exploration in the space of mixture
components 𝑧.

4.2.2 Adding reward from preferences. In order to direct the explo-
ration towards preferred regions, we use 𝑟𝜓 as the target distribu-
tion 𝑝∗ (𝑠) in Equation (8) to motivate the agent to explore regions
with high preference-based rewards. Therefore Equation (8) can be
rewritten as:

𝑟
exploration
𝑧 (𝑠, 𝑎) = 𝑟𝜓 (𝑠) − log 𝜌𝜋𝑧 (𝑠) (10)

4.2.3 Adding preferred regions and skills discovery. Following the
definition of preferred region and skill discovery described in Sec-
tion 3.2.2, we define a potential preferred region 𝑆 with 𝑟𝜓 according
to (Equation (6)) on states collected online, and use it to train a
discriminator 𝑞𝜙 presented in Section 3.2.2. The discriminator 𝑞𝜙 ,
encourages each skill to explore distinct regions related to the po-
tential preferred region. In other words, we incentivize the agent
to learn diverse skills within the preferred region. Therefore, we
define the diversity reward as:

𝑟
diversity
𝑧 = log𝑞𝜙 (𝑠 |𝑧), with 𝑠 ∈ 𝑆 (11)

4.2.4 Overall objective. By combining each of the different reward
components mentioned, the overall reward function to enable ex-
ploration towards preferred regions is given by:

𝑟𝑧 (𝑠, 𝑎) = 𝑟𝜓 (𝑠)︸︷︷︸
(𝑎)

− log 𝜌𝜋𝑧 (𝑠)︸      ︷︷      ︸
(𝑏 )

+ log𝑞𝜙 (𝑠 |𝑧)︸       ︷︷       ︸
(𝑐 )

(12)

Intuitively, Equation (12) implies that the agent should go to (a)
states with high preference rewards (b) states where the agent has
not been before, and (c) to distinct regionswithin potential preferred
regions. Our overall guided exploration method is described in
Algorithm 1.

4.2.5 Learning skills. By following the previous objective in Equa-
tion (12) we explore the preferred region and train a discriminator
𝑞𝜙 to assign diverse regions of the preferred region to skills. We
then use the discriminator 𝑞𝜙 to learn skills in the skill learning
phase, as described in Section 3.2.3.

4.3 Preferred Latent Representation
Despite being able to restrict diversity to specific regions of the
environment, skills discovered in the state space might not appear
diverse from a human point of view. The state space in MuJoCo [23]
environments, for example, is a concatenation of joint positions
and velocities. Discovering skills in this space often results in static
positions. Even though easily distinguishable by the discriminator,
they may seem similar to the human eye. Hence, as recommended
by Eysenbach et al. [6], we examine using prior knowledge to
identify discernably diverse skills.

This prior can be represented as any function of the state space
and used as a prior to condition the discriminator. In this case, the
discriminator is defined as 𝑞𝜙 (𝑓 (𝑠) |𝑧) with 𝑓 (𝑠) being the prior.

Although it can be useful to encourage the learning of specific
types of skills by specifying a prior, relying on specifically designed
priors may be limiting. Thus, we present an alternative to manually
specifying this prior to learn skills that are more discernably diverse
to human eyes. Specifically, we simply use the representation in

the last hidden layer of the reward model 𝑟𝜓 learnt from human
preferences as the prior. The intuition is that the last hidden layer
of the neural network that models the internal reward function of
a human, should learn a latent state representation that captures
features that matter for human preferences. We refer to this as the
preferred latent representation.

Formally we can write 𝑟𝜓 (𝑠) as:

𝑟𝜓 (𝑠) = ℎ𝜓 (𝑓𝜓 (𝑠)) (13)

where 𝑓𝜓 , represents all layers of the reward model all layers except
the output layer and ℎ𝜓 is the output layer of the neural network.
Hence, we define the discriminator in Equation (11) as 𝑞𝜙 (𝑓𝜓 (𝑠) |𝑧).

As depicted later in the experiments, this general approach for
specifying priors achieves discernably diverse behaviors, while
obviating the need for any additional training.

Algorithm 1: Guided exploration with preferences
Initialize B , 𝜋𝑧 , 𝑟𝜓 , 𝑞𝜙 ;
foreach timestep do

Sample 𝑧 ∼ 𝑝 (𝑧) ;
// Collect data ;
for each timestep 𝑡 do

Sample action 𝑎𝑡 ∼ 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 , 𝑧);
Step environment 𝑠𝑡+1 ∼ 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) ;
Set reward 𝑟𝑧 (𝑠) as in (12);
Update policy (𝜃 ) to maximise 𝑟𝑧 with SAC [8];
Store transitions B ← B ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑧)} ;

end for
if it’s time to update the preference then

// Query instructor ;
foreach query to instructor do

Sample (𝜎0, 𝜎1) ∼ B ;
Collect preference from instructor 𝑦 = 𝜎0 ≻ 𝜎1 ;
Store transitions D ← D ∪ {(𝜎0, 𝜎1, 𝑦)}

end foreach
// Update reward model ;
foreach each gradient step do

Sample minibatch (𝜎0, 𝜎1, 𝑦)D
𝑗=1 ∼ D ;

Optimize Lreward in (5) with respect to𝜓
end foreach
// Estimate the preferred region ;
𝑆 = {∀𝑠 ∈ B|𝑟𝜓 (𝑠) ≥ 𝛽};
// Skill Discovery phase ;
foreach query to instructor do

Sample minibatch (𝑠)𝑆
𝑗=1 ∼ 𝑆 ;

Optimize LVQ-VAE in (2) with respect to 𝜙
end foreach

end if
end foreach
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5 EXPERIMENTS
In this section, we examine our proposed method to control diver-
sity with preference and to guide the agent’s exploration towards
preferred regions. We first demonstrate our approach on a 2D nav-
igation environment, following which we also show the perfor-
mance of our method in higher dimensional environments such as
MuJoCo in Section 5.3 and 5.4. The 2D environment consists of a
two-dimensional room enclosed by walls that restrain the agent.
The agent begins each episode in the middle of the room, until
episode termination, which occurs after 100 steps. The agent has
only access to its horizontal and vertical coordinates (X,Y). It can de-
terministically change its direction and amplitude of steps to freely
move in the environment. Both state space and action space are
continuous. Following previous work on preference-based RL, we
simulate human preference with an oracle ’true’ reward function.
The true reward function is designed to be a gaussian distribution,
centered around a goal position, and the reward is computed as the
negative distance to the goal.

5.1 Results in 2D navigation
In the 2D navigation environment, we intend to demonstrate that
a preferred region can be used to define a relevant area of interest.
In the interest of studying the effectiveness of preferred regions for
discovering skills, in this section, we assume an ideal state coverage
and an oracle reward function. We show both EDL and CDP results
to demonstrate the full impact of the preferred region.

By applying the definition of the preferred region described
in Section 4.1.2 to the assumed state coverage in Figure 3a, we
identify the preferred region in the top right corner, as indicated
in Figure 3b. We then discover and learn skills in those proposed
regions. As illustrated in Figure 3c and 3e, EDL discovers and learns
skills uniformly across the environment. In our case (CDP), the
discriminator concentrates all skills’ assigned regions in the top
right corner, as shown in Figure 3d. Additionally, in Figure 3d,
centroids (the most likely state under the discriminator for each
skill) are located in the top corner, resulting in skills moving to the
top right corner as illustrated in Figure 3f.

5.2 Exploration of the Preferred Region
This section aims to demonstrate that the modifications we made
to the SMM method in Section 4.2 have significant advantages with
regards to exploring the preferred region. We place ourselves in
more realistic settings where we don’t have full state coverage, or
have access to the oracle reward. We compare our method with
SMM as described in EDL and SMM+prior that uses the same prior
as us. The prior is a reward function learned from preference, and
used as described in Section 4.2.2.

As illustrated in Figure 4, we compared each method in terms of
their average returns as per the target reward function. Intuitively,
exploring more of the preferred region should result in a higher
return. Results in Figure 4 suggest that our proposed method visits
more states with higher rewards than the other methods, which
implies that it explores the preferred region more efficiently.

From a qualitative perspective, Figure 5 depicts the states visited
by each method and shows that our method visits more states in
the top right corner (preferred region). Further, the presence of

(a) Full state space (b) CDP-preferred region

(c) EDL-assigned regions (d) CDP-assigned regions

(e) EDL-learned skills (f) CDP-learned skills

Figure 3: (a), (c) and (e) are respectively the full state space, the
regions assigned to each skill by the discriminator trained on
the full state space and the skills learned with this discrimi-
nator. (b), (d) and (f) are respectively the preferred regions of
the state space obtained by our method, the regions assigned
to each skill by the discriminator trained on the preferred
region and the skills learned with this discriminator.

Figure 4: Average return achieved by each method.

darker shades (indicating the later stages of interaction) in the
top right corner indicates that the skills from our method tend to
end near or in the preferred region. This can be explained by the
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discriminator incentivizing the agent to learn diverse skills within
the preferred region. This is in contrast to the other methods in
which the discriminator only encourages agents to acquire diverse
skills, as indicated by the darker points in Figure 5a and 5b being
relatively more evenly distributed in different state regions, and
not particularly within the preferred region.

The comparisons with the first method are unfair since they
do not have access to any information about the preferred region.
In spite of this, we still feel that the comparison is relevant to
emphasize the choice to use human preference to control diversity.

(a) SMM (b) SMM+prior (c) CDP (ours)

Figure 5: States visited by each of the methods, SMM (a),
SMM+prior(b), ours(c).

5.3 Results using Preferred Latent
Representations

In this section, we demonstrate that preferred latent representations
facilitate the acquisition of appropriate skills in a general manner,
that are capable of scaling to larger state and action spaces. To this
end, we performed experiments on a MuJoCo-based modified Half
Cheetah agent, in which moving backwards was preferred. It was
specified by using a version of the original half-cheetah reward
function modified (by multiplying the original reward by -1) to
encourage the agent to move backwards as far as possible along the
horizontal axis. In other words, we aim to achieve diverse velocities
corresponding to the desired behavior of moving backwards.

As shown in Figure 7a, without additional prior knowledge about
the state space, the agent does not learn any relevant skills. However,
when using the preferred latent representation (Figure 7b), the agent
is able to learn diverse skills that go backward at varying speeds
similar to skills learned while using a manually-specified prior (the
agent’s velocity) over velocity (Figure 7c).

Additionally, we repeat the 2D navigation experiments from
Section 5.1, but using preferred latent representations to learn di-
verse and desirable skills. As seen in Figure 6 the agent learns skills
comparable to those in Section 5.1. We note that the trajectories
in Figure 6 are relatively more noisy when compared to those in
Figure 3f, probably due to the inherent noise associated with learn-
ing the preferred latent representations. However, the fact that
preferred latent representations also enable the agent to learn the
intended skills implies that they do indeed capture relevant features
of the state space, be it in the navigation task, or the more complex
backwards Half Cheetah environment.

Figure 6: Skill learned using the preferred latent representa-
tion as a prior to discover skills.

(a) Modified Half cheetah’s skill learned using the state
space to discover skills

(b)ModifiedHalf cheetah’s skill using the preferred latent
representation to discover skills

(c) Modified Half cheetah’s skill using a manually speci-
fied prior over velocity to discover skills

Direction of motion

Figure 7:ModifiedHalf cheetah’s skill learned using different
representations of the state space to discover skills

5.4 Effect of 𝛽
Here, we examine the effect of varying 𝛽 (used in Equation (6)) on
the resulting skills obtained. We show results for both the MuJoCo-
based modified Half Cheetah and 2D navigation experiments. 𝛽
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determines how much emphasis is placed on skill discovery cen-
tered around high rewards. This can be viewed as a parameter that
controls how much we exploit the reward function to constrain
skill discovery. In Figure 8, we use the setting described in Section
5.1 to show that a low 𝛽 will produce skills that may be far away
from the goal, while a high 𝛽 will learn skills around the goal.

(a) 𝛽=0.1 (b) 𝛽=0.5 (c) 𝛽=0.9

Figure 8: Regions assigned to each skill by the discriminator
trained on preferred regions set by different values of 𝛽 .

Similarly, in Figure 11, a low 𝛽 results in skills that only cover
shorter distances, as these are easier to learn. On the other hand,
an agent that exploits the reward (high 𝛽) learns skills that cover
larger distances. However, high 𝛽 values may cause the agent to
be overly exploitative, leading to a lower diversity of learned skills.
This phenomenon is illustrated in Figures 9 and 10 which show
that the variance of velocity across skills is relatively low for both
high and low values of 𝛽 , while it is the highest for the intermediate
value of 𝛽 = 0.5. Hence, a user favoring a more uniform distribution
of skills might choose a more balanced 𝛽 of 0.5, while one favoring
skills more relevant to the task should select a relatively high 𝛽 .

(a) 𝛽=0.3 (b) 𝛽=0.5 (c) 𝛽=0.9

Figure 9: Average velocity over time for each skill.

6 CONCLUSION
We introduced a novel approach for addressing the issue of under-
constrained skill discovery. Our proposed approach, Controlled
diversity with preference (CDP) was designed to leverage human
feedback to identify human-preferred regions, following which we
discovered diverse skills within those regions, thereby ensuring the
learning of diverse and desirable skills. In addition, we show that our
method can be used to guide exploration towards possible preferred
regions. We validated our proposed approach in 2D navigation and
Mujoco environments. Empirically, our agents demonstrated the

Figure 10: Comparaison of the variance between skill’s ve-
locity over time for each of the 𝛽 values.

(a) 𝛽=0.3

(b) 𝛽=0.5

(c) 𝛽=0.9

Direction of motion

Figure 11: Modified Half cheetah skills learned with different
𝛽 values.

ability to favor the exploration of the preferred regions and to
learn diverse skills in these regions. We also empirically studied
the effect of the user-controlled hyperparameter 𝛽 to demonstrate
its effects on the diversity of learned skills. As such, we believe that
our approach presents a way to control the autonomous discovery
of skills, while still obtaining safe, aligned and desirable skills.
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