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ABSTRACT
Redistribution mechanism design aims to redistribute the revenue

collected by a truthful auction back to its participants without af-

fecting the truthfulness. We study redistribution mechanisms for

diffusion auctions, which is a new trend in mechanism design [19].

The key property of a diffusion auction is that the existing partici-

pants are incentivized to invite new participants to join the auctions.

Hence, when we design redistributions, we also need to maintain

this incentive. Existing redistribution mechanisms in the traditional

setting are targeted at modifying the payment design of a truthful

mechanism, such as the Vickrey auction. In this paper, we do not

focus on one specific mechanism. Instead, we propose a general

framework to redistribute the revenue back for all truthful diffusion

auctions for selling a single item. The framework treats the original

truthful diffusion auction as a black box, and it does not affect its

truthfulness. The framework can also distribute back almost all the

revenue.

KEYWORDS
Mechanism design; Redistribution framework; Social networks.

ACM Reference Format:
Sizhe Gu, Yao Zhang, Yida Zhao, and Dengji Zhao. 2023. A Redistribution

Framework for Diffusion Auctions. In Proc. of the 22nd International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2023), London,
United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
We focus on a resource allocation problem that involves a group of

self-interested agents competing for the resources. One important

goal of the allocation problem is to maximize social welfare, and

a common method is to hold an auction so that the agents with

the highest valuations of the resources can be found. The Vickrey-

Clarke-Groves (VCG) mechanism [2, 5, 17] is a well-known method

under which the agents will truthfully report their valuations and

the resources will be allocated to the agents with the highest valua-

tions. This will also lead to a high revenue for the seller. However,

in many situations, we do not seek for a profit. Hence, there is

another body of studies on how to return the revenue to the par-

ticipants [1, 6–9, 15, 16], which is called redistribution mechanism

design.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

In recent years, researchers have started to design mechanisms

on social networks [3, 10], where the goal is to incentivize agents to

invite new agents via their social connections to join in [11, 13, 14,

18, 20, 21]. By doing so, the mechanism can further improve social

welfare or revenue in, for example, auctions. Therefore, introducing

social network to redistribution problems is a good choice to break

through the efficiency limitations of traditional settings. There are

many realistic scenarios of redistribution on social networks. For

example, consider a non-profit organization like a government

who has some idle resources, such as properties confiscated from

criminals. These resources are normally destroyed and sold cheaply

to a small group of people, as the organization does not want to

gain much profit from clearing the resources. By utilizing social

networks, we could attract more buyers who are willing to pay

more to receive the idle resources, but the profit could still be

redistributed back to participants.

Redistribution on networks is also more challenging than tra-

ditional settings because the action space of the participants is

enlarged. Therefore, we are not able to directly apply the existing

solutions such as Cavallo’s mechanism [1]. The intuition behind this

failure is that agents will have no incentives to invite their competi-

tors in an auction, or invite others to share a limited redistribution.

Another difficulty is that agents’ valuations not only determine the

winner of the auction, but also relate to how much revenue can be

redistributed. Therefore, the redistribution problem is not about a

simple combination of a truthful auction mechanism and a truthful

reward distribution mechanism, which may not produce a truthful

redistribution mechanism.

More importantly, there are a bunch of different diffusion mech-

anisms with different allocation and payment policies. It is complex

and tedious to design the redistribution mechanism for each diffu-

sion auction separately. Hence, we design the first general redistri-

bution framework for all diffusion auctions. The framework can

redistribute almost all the revenue of any diffusion auction back to

all agents without affecting the properties of incentive compatibility

and individual rationality. In fact, our framework can also be applied

to all traditional auctions. In particular, when the input mechanism

is VCG, the mechanism generated by our framework is Cavallo’s

mechanism. Therefore, our framework is a general solution for

redistribution mechanism design with or without networks.

2 PRELIMINARIES
We consider a setting where a sponsor 𝑠 wants to allocate a single

item on a social network. Apart from the sponsor, the social network
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consists of𝑛 agents denoted by𝑁 = {1, ..., 𝑛}. Each agent 𝑖 ∈ 𝑁∪{𝑠}
has a private neighbour set 𝑟𝑖 ⊆ 𝑁 ∪ {𝑠}\{𝑖}, which represents the

agents with whom 𝑖 can communicate directly. Furthermore, each

agent 𝑖 ∈ 𝑁 has a private valuation for the item of 𝑣𝑖 ≥ 0. Initially,

the sponsor can only invite her neighbours to participate in the

allocation. In order to attract more participants, the sponsor asks

participants who have already joined the allocation to further invite

their neighbours to join. However, participants are competitors,

so they would not invite each other by default. Thus, we need to

design mechanisms to incentivize them to invite each other, which

are called diffusion mechanisms.

Formally, the diffusion mechanism requires each agent to re-

port not only her valuation but also her neighbour set (which is

equivalent to inviting her neighbours). Let 𝜃𝑖 = (𝑣𝑖 , 𝑟𝑖 ) be the

type of an agent 𝑖 ∈ 𝑁 and 𝜃 ′
𝑖
= (𝑣 ′

𝑖
, 𝑟 ′
𝑖
) be the reported type of

𝑖 , with 𝑟 ′
𝑖
⊆ 𝑟𝑖 representing the actual neighbour set she has in-

vited, which can only be a subset of her true neighbour set 𝑟𝑖 . Let

𝜃 ′ = (𝜃 ′
1
, . . . , 𝜃 ′𝑛) = (𝜃 ′

𝑖
, 𝜃 ′−𝑖 ) be the overall report profile, and 𝜃

′
−𝑖

is the overall report profile except for 𝑖 . Let Θ𝑖 represent the type

space of agent 𝑖 and Θ = (Θ1, . . . ,Θ𝑛) represent the type profile
space of all agents. Given any report profile 𝜃 ′, it induces a directed
graph denoted by 𝐺 (𝜃 ′) = (𝑉 (𝜃 ′), 𝐸 (𝜃 ′)), where 𝑉 (𝜃 ′) = 𝑁 ∪ {𝑠}
and 𝐸 (𝜃 ′) = {(𝑠, 𝑗) | 𝑗 ∈ 𝑟𝑠 } ∪ {(𝑖, 𝑗) |𝑖 ∈ 𝑁, 𝑗 ∈ 𝑟 ′

𝑖
}. Let 𝐷𝑠 (𝐺 (𝜃 ′))

denote the set of agents accessible from 𝑠 in 𝐺 (𝜃 ′). Because the
others cannot receive the proper invitation started by the sponsor,

only the agents in 𝐷𝑠 (𝐺 (𝜃 ′)) can actually join the allocation (in

practice, this means that the others will not be informed about the

allocation at all). An example of the induced graph 𝐺 (𝜃 ′) is shown
in Figure 1.

The goal of the sponsor is to allocate the item to the agent with

the highest valuation, but she does not want to gain any profit from

the allocation. Hence, the sponsor need to redistribute the revenue

from a given diffusion auction mechanism.

Definition 2.1. A diffusion auction mechanism M is defined

by an allocation policy 𝜋 = {𝜋1, .., 𝜋𝑛} and a payment policy

𝑥 = {𝑥1, ..., 𝑥𝑛}, where 𝜋𝑖 : Θ → {0, 1} and 𝑥𝑖 : Θ → R are

the allocation and payment for 𝑖 respectively. Additionally, for all

report profiles 𝜃 ′ ∈ Θ,

• for any agent 𝑖 ∉ 𝐷𝑠 (𝐺 (𝜃 ′)), 𝜋𝑖 (𝜃 ′) = 0 and 𝑥𝑖 (𝜃 ′) = 0;

• for any agent 𝑖 ∈ 𝐷𝑠 (𝐺 (𝜃 ′)), 𝜋𝑖 (𝜃 ′) and 𝑥𝑖 (𝜃 ′) are indepen-
dent of the reports of agents who are not in 𝐷𝑠 (𝐺 (𝜃 ′));

• ∑
𝑖∈𝑁 𝜋𝑖 (𝜃 ′) ≤ 1.

Given the agents’ report profile 𝜃 ′, 𝜋𝑖 (𝜃 ′) = 1 means that the

item is allocated to agent 𝑖 , while 𝜋𝑖 (𝜃 ′) = 0 means that 𝑖 does not

get the item. In addition, 𝑥𝑖 (𝜃 ′) ≥ 0 means that 𝑖 pays 𝑥𝑖 (𝜃 ′) to
the sponsor, and 𝑥𝑖 (𝜃 ′) < 0 indicates that 𝑖 receives |𝑥𝑖 (𝜃 ′) | from
the sponsor. Therefore, the surplus of the payment transfers in the

mechanism (i.e., the revenue) is defined by

𝑆 (𝜃 ′) =
∑︁
𝑖∈𝑁

𝑥𝑖 (𝜃 ′) .

Then in our setting, given the type 𝜃𝑖 = (𝑣𝑖 , 𝑟𝑖 ) of an agent 𝑖

and the report profile 𝜃 ′, the utility of agent 𝑖 under the diffusion

auction mechanism M = (𝜋, 𝑥) is

𝑢𝑖 (𝜃𝑖 , 𝜃 ′) = 𝜋𝑖 (𝜃 ′) · 𝑣𝑖 − 𝑥𝑖 (𝜃 ′) .

(1) (2)

Figure 1: An example of induced graphs by agents’ type
profile and report profile. The number in each node is the
real/reported valuation of the agent. (1) is the graph induced
by agents’ real types. (2) is the graph induced by agents’ re-
port profile where agent 𝐵 misreports 𝜃 ′

𝐵
= (5, {𝐷}) (only

agents in 𝐷𝑠 (𝐺 (𝜃 ′)) are shown). Then, agents 𝐸, 𝐻 and 𝐼 can-
not participate in the mechanism.

In the following, we will define several properties that are re-

quired for the diffusion auction mechanism. First, an agent should

not suffer a loss if she reports her true valuation on the item.

Definition 2.2. A diffusion auction mechanism M = (𝜋, 𝑥) is
individually rational (IR) if for all 𝑖 ∈ 𝑁 and all 𝜃 ′ ∈ Θ, we have

𝑢𝑖 (𝜃𝑖 , ((𝑣𝑖 , 𝑟 ′𝑖 ), 𝜃
′
−𝑖 )) ≥ 0.

Next, we want to incentivize all agents not only to report their

true valuations but also to invite all their neighbours to join the

mechanism, i.e., reporting their true types is a dominant strategy.

Definition 2.3. A diffusion auction mechanism M = (𝜋, 𝑥) is
incentive compatible (IC) if for all 𝑖 ∈ 𝑁 with 𝜃𝑖 ∈ Θ𝑖 , and all

𝜃 ′
𝑖
∈ Θ𝑖 , 𝜃

′
−𝑖 ∈ Θ−𝑖 , we have

𝑢𝑖 (𝜃𝑖 , (𝜃𝑖 , 𝜃 ′−𝑖 )) ≥ 𝑢𝑖 (𝜃𝑖 , (𝜃
′
𝑖 , 𝜃

′
−𝑖 )).

The sum of the payment transfers should be non-negative for

the sponsor 𝑠; otherwise, she will pay a deficit.

Definition 2.4. A diffusion auction mechanism M = (𝜋, 𝑥) is
non-deficit (ND) if for all 𝑖 ∈ 𝑁 and all 𝜃 ′ ∈ Θ, we have

𝑆 (𝜃 ′) =
∑︁
𝑖∈𝑁

𝑥𝑖 (𝜃 ′) ≥ 0.

Finally, recall that our sponsor does not want to gain any profit.

Our goal is to establish a framework that can create a diffusion re-

distribution mechanism from a given diffusion auction mechanism

M𝑎 = (𝜋𝑎, 𝑥𝑎). Given the report profile 𝜃 ′ ∈ Θ, denote the revenue
achieved by M𝑎

as 𝑆𝑎 (𝜃 ′) = ∑
𝑖∈𝑁 𝑥

𝑎
𝑖
(𝜃 ′). Then our framework is

to decide the amount 𝑅𝑖 that is returned to each agent 𝑖 , i.e., to de-

cide a redistribution mechanism M = (𝜋, 𝑥) with 𝜋𝑖 (𝜃 ′) = 𝜋𝑎𝑖 (𝜃
′)

and 𝑥𝑖 (𝜃 ′) = 𝑥𝑎𝑖 (𝜃
′) −𝑅𝑖 (𝜃 ′). A diffusion redistribution mechanism,

speaking formally, is also a diffusion auction mechanism, but we

want it to redistribute the revenue back to agents as much as pos-

sible, i.e., the sum of the payment transfers should be close to 0,

which is define as follows.
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Definition 2.5. A diffusion redistribution mechanismM = (𝜋, 𝑥)
is asymptotically budget-balanced (ABB) if for all 𝜃 ′ ∈ Θ,

lim

𝑛→∞
𝑆 (𝜃 ′) = 0.

It means that the remaining revenue that has not been redis-

tributed is approaching zero if the number of agents in the under-

lying network is large enough. We also consider an approximation

to ABB when it is hard to achieve.

Definition 2.6. A diffusion redistribution mechanismM = (𝜋, 𝑥)
is 𝜖-asymptotically budget-balanced (𝜖-ABB) if for all 𝜃 ′ ∈ Θ,

lim

𝑛→∞
𝑆 (𝜃 ′) ≤ 𝜖

where 𝜖 > 0 is a constant.

Before we introduce our framework, we show that directly ap-

plying classic Cavallo’s mechanism fails to satisfy our properties.

We recall Cavallo’s mechanism as follows.

Cavallo’s Mechanism
(1) Given 𝐺 (𝜃 ′), the mechanism chooses the winner𝑤 ∈

argmax𝑖∈𝑁 𝑣 ′
𝑖
, and set 𝜋𝑤 (𝜃 ′) = 1.

(2) For each agent 𝑖 , her payment is 𝑥𝑖 (𝜃 ′) = 𝑥𝑉𝐶𝐺𝑖
(𝜃 ′) −

𝑥𝑉𝐶𝐺
𝑤′ (𝜃 ′−𝑖 )/𝑛, where 𝑥

𝑉𝐶𝐺
𝑖

(𝜃 ′) is 𝑖’s payment under

VCG and𝑤 ′
is the winner when we run VCG without

agent 𝑖 .

Proposition 2.7. Cavallo’s mechanism is not an incentive com-
patible diffusion redistribution mechanism.

Proof. We prove this by giving an example in Figure 2. First for

the situation without diffusion shown in Figure 2(1), by Cavallo’s

mechanism, agent𝐶 wins the item and 𝜋𝐶 (𝜃 ′) ·𝑣𝐶 = 4, 𝑥𝑉𝐶𝐺
𝐶

(𝜃 ′) =
3. If agent 𝐶 is removed, 𝐵 will win the item, so 𝑥𝑉𝐶𝐺

𝑤′ (𝜃 ′−𝐶 ) = 2.

Similarly we can get 𝑥𝑉𝐶𝐺
𝑤′ (𝜃 ′−𝐴) = 3 and 𝑥𝑉𝐶𝐺

𝑤′ (𝜃 ′−𝐵) = 2. There-

fore, agent 𝐴, 𝐵 and 𝐶 will receive 1,
2

3
, and

2

3
as redistribution

respectively. However, in Figure 2(2), when agent 𝐶 invites agent

𝐷 and we still apply Cavallo’s mechanism, 𝐶 is still the winner

and all VCG payments will not change. Then, agent 𝐶 can only get

2

4
= 1

2
(since 𝑛 becomes to 4) as redistribution. The payments for

getting the item are the same, but the revenue from redistribution

decreases after inviting 𝐷 so agent𝐶 has no motivation to invite 𝐷 .

Hence, Cavallo’s mechanism is not IC with diffusion. □

3 REDISTRIBUTION FRAMEWORK FOR
DIFFUSION AUCTIONS

In this section, we propose a network-based redistribution mecha-

nism framework (NRMF) for all IC diffusion auction mechanisms.

We first consider a subproblem to redistribute a value to all agents

without affect the IC property.

3.1 Proportional Reward Sharing in a Tree
We consider a problem that a sponsor 𝑠 wants to share a reward of

𝐵 ≥ 0 with a set of agents 𝑁 connected as a tree rooted by 𝑠 .

For a tree 𝑇 (𝑁 ∪ {𝑠}, 𝐸) rooted by 𝑠 , we introduce the following

two notations.

(1) (2)

Figure 2: An example of Cavallo’s mechanism being applied
in social network. (1) is a graph of traditional setting of re-
distribution problem. (2) is a graph induced by agents’ real
types on social networks. (1) can also be viewed as the result
that agent 𝐶 does not invite agent 𝐷 in (2).

• Let 𝑝𝑖 ∈ 𝑁 ∪ {𝑠} be the parent agent of 𝑖 ∈ 𝑁 in 𝑇 .

• Let 𝐶𝑖 be the set of all agents in the subtree rooted by 𝑖 in 𝑇

(excluding 𝑖).

We define the following distribution mechanism.

Proportional Reward Sharing in a Tree (PRST)

Input: a tree 𝑇 = (𝑁 ∪ {𝑠}, 𝐸) and a reward B.

(1) Set Ω𝑠 = 1.

(2) For each agent 𝑖 ∈ 𝑁 , let

total =
|𝐶𝑖 | + 1

|𝐶𝑝𝑖 |
, base =

1

|𝐶𝑝𝑖 | − |𝐶𝑖 |
and then recursively define


𝜔𝑖 = Ω𝑝𝑖 · (base + (total − base) 𝛼)

Ω𝑖 = Ω𝑝𝑖 · total − 𝜔𝑖 = Ω𝑝𝑖 · (total − base) · (1 − 𝛼)
with predefined parameter 0 < 𝛼 < 1.

(3) Set 𝑏𝑖 = 𝜔𝑖B.

Output: the share 𝑏𝑖 for all agents 𝑖 ∈ 𝑁 .

In the PRST,𝜔𝑖 is the proportion of the reward allocated to agent

𝑖 and Ω𝑖 is the proportion of the reward that agent 𝑖 gives to her

descendants. The proportion 𝜔𝑖 has two parts. The first part is the

basic reward, which is determined by the number of descendants

of her siblings (|𝐶𝑝𝑖 | − |𝐶𝑖 | in base). The second part is the reward

for her diffusion, which increases proportionally to the number of

her descendants (|𝐶𝑖 |). A running example of the PRST is given in

Figure 3.

In Figure 3, considering agent 𝐴, |𝐶𝑝𝐴 | means the number of

agents in the whole tree excluding 𝑠 , which is 18. |𝐶𝐴 | means the

number of descendants of agent 𝐴, which is 5. According to the

definition, Ω𝑝𝐴 = Ω𝑠 = 1. Therefore,

𝜔𝐴 =
1

|𝐶𝑝𝐴 | − |𝐶𝐴 |
+

(
|𝐶𝐴 | + 1

|𝐶𝑝𝐴 |
− 1

|𝐶𝑝𝐴 | − |𝐶𝐴 |

)
· 𝛼

=
1

18 − 5

+
(
5 + 1

18

− 1

18 − 5

)
· 1
2

=
8

39
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Figure 3: An example of PRST. Here, we set B = 1 and 𝛼 = 1/2.
Each node represents an agent and the value in the node is
the share 𝑏𝑖 of the agent.

Similarly, considering agent 𝐵, |𝐶𝑝𝐵 | means the number of descen-

dants of agent𝐴, which is 5. |𝐶𝐵 | means the number of descendants

of agent 𝐵, which is 2. Hence, we have Ω𝑝𝐵 = Ω𝐴 =
|𝐶𝐴 |+1
|𝐶𝑝𝐴

| −𝜔𝐴 =

6

18
− 8

39
. Therefore,

𝜔𝐵 = Ω𝑝𝐵

[
1

|𝐶𝑝𝐵 | − |𝐶𝐵 |
+

(
|𝐶𝐵 | + 1

|𝐶𝑝𝐵 |
− 1

|𝐶𝑝𝐵 | − |𝐶𝐵 |

)
𝛼

]
=

(
6

18

− 8

39

)
·
(
1

3

+
(
3

5

− 1

3

)
· 1
2

)
=

7

117

In the PRST, each agent can get a basic share when she joins the

mechanism, and the base part only depends on the number of agents

in the subtrees leading by her siblings. Then she can get a bigger

share if she invites her neighbours to join in. The proportion of the

share is determined by how many descendants she has compared

to her siblings. Intuitively, we introduce a propagation competition

among siblings, and the one with a larger propagation will get a

larger share of the reward. We illustrate several useful properties

of the procedure below.

Lemma 3.1. In the PRST, 𝑏𝑖 ≥ 0 for all 𝑖 ∈ 𝑁 .

Proof. Considering 𝜔𝑖 for all 𝑖 ∈ 𝑁 ,

𝜔𝑖 = Ω𝑝𝑖

[
1

|𝐶𝑝𝑖 | − |𝐶𝑖 |
+

(
|𝐶𝑖 | + 1

|𝐶𝑝𝑖 |
− 1

|𝐶𝑝𝑖 | − |𝐶𝑖 |

)
𝛼

]
Since

1

|𝐶𝑝𝑖 | − |𝐶𝑖 |
≥ 0,

|𝐶𝑖 | + 1

|𝐶𝑝𝑖 |
− 1

|𝐶𝑝𝑖 | − |𝐶𝑖 |
≥ 0, 𝛼 ≥ 0

Ω𝑝𝑖 =

(
|𝐶𝑝𝑖 | + 1

|𝐶𝑝𝑝𝑖 |
− 1

|𝐶𝑝𝑝𝑖 | − |𝐶𝑝𝑖 |

)
· (1 − 𝛼) ≥ 0.

which implies 𝑏𝑖 = 𝜔𝑖B ≥ 0. □

Lemma 3.2. In the PRST, agents have no incentives to block any of
her children’s participation.

Proof. Since the reward B is fixed, then we only need to con-

sider the coefficients 𝜔𝑖 . Suppose an agent 𝑖’s coefficient becomes

𝜔 ′
𝑖
when she blocks some of her children from participation. De-

note |𝐶𝑖 | − |𝐶′
𝑖
| by Δ|𝐶𝑖 |. Then for all agent 𝑖’s ancestor 𝑗 ∈ 𝑁 ,

denote |𝐶𝑝 𝑗
| − |𝐶 𝑗 | by |𝐶− 𝑗 |, which will not change and we have

|𝐶 𝑗 | − |𝐶′
𝑗
| = Δ|𝐶 𝑗 |. Hence

Ω′
𝑗 = Ω′

𝑝 𝑗

(
|𝐶′

𝑗
| + 1

|𝐶′
𝑝 𝑗
| − 1

|𝐶′
− 𝑗

|

)
(1 − 𝛼)

= Ω′
𝑝 𝑗

( |𝐶 𝑗 | + 1 − Δ|𝐶𝑖 |
|𝐶𝑝 𝑗

| − Δ|𝐶𝑖 |
− 1

|𝐶− 𝑗 |

)
(1 − 𝛼)

≤ Ω′
𝑝 𝑗

( |𝐶 𝑗 | + 1

|𝐶𝑝 𝑗
| − 1

|𝐶− 𝑗 |

)
(1 − 𝛼)

Assume Ω′
𝑘
≤ Ω𝑘 for agent 𝑘 . Then for any child𝑚 of 𝑘 ,

Ω′
𝑚 ≤ Ω′

𝑝𝑚

(
|𝐶𝑚 | + 1

|𝐶𝑝𝑚 | − 1

|𝐶−𝑚 |

)
(1 − 𝛼)

= Ω′
𝑘

(
|𝐶𝑚 | + 1

|𝐶𝑘 |
− 1

|𝐶−𝑚 |

)
(1 − 𝛼)

≤ Ω𝑘

(
|𝐶𝑚 | + 1

|𝐶𝑘 |
− 1

|𝐶−𝑚 |

)
(1 − 𝛼)

= Ω𝑚 (1)

The base case is that

Ω′
𝑠 = Ω𝑠 = 1 (2)

Combining (1) and (2), by induction, we know that for any agent 𝑗 ,

Ω′
𝑗 ≤ Ω 𝑗

Then, for agent 𝑖 ,

𝜔 ′
𝑖 = Ω′

𝑝𝑖

[
1

|𝐶′
−𝑖 |

+
(
|𝐶′
𝑖
| + 1

|𝐶′
𝑝𝑖
| − 1

|𝐶′
−𝑖 |

)
𝛼

]
≤ Ω𝑝𝑖

[
1

|𝐶−𝑖 |
+

( |𝐶 𝑗 | + 1 − Δ|𝐶𝑖 |
|𝐶𝑝𝑖 | − Δ|𝐶𝑖 |

− 1

|𝐶−𝑖 |

)
𝛼

]
≤ Ω𝑝𝑖

[
1

|𝐶−𝑖 |
+

( |𝐶 𝑗 | + 1

|𝐶𝑝𝑖 |
− 1

|𝐶−𝑖 |

)
𝛼

]
= 𝜔𝑖

Therefore, agent 𝑖 will suffer a loss if the amount of her descendants

decreases so she has no incentives to block any of her children’s

participation. □

Lemma 3.3. In the PRST, the total share distributed to all agents is
exactly B.

Proof. Considering an agent 𝑖 ∈ 𝑁 , we have

𝜔𝑖 = Ω𝑝𝑖

(
1

|𝐶𝑝𝑖 | − |𝐶𝑖 |
+

(
|𝐶𝑖 | + 1

|𝐶𝑝𝑖 |
− 1

|𝐶𝑝𝑖 | − |𝐶𝑖 |

)
· 𝛼

)
and the descendants of 𝑖 can at most be distributed

Ω𝑖 = Ω𝑝𝑖

(
|𝐶𝑖 | + 1

|𝐶𝑝𝑖 |
− 1

|𝐶𝑝𝑖 | − |𝐶𝑖 |

)
· (1 − 𝛼)

in total, which means that

𝜔𝑖 +
∑︁
𝑗∈𝐶𝑖

𝜔 𝑗 ≤ 𝜔𝑖 + Ω𝑖 =
|𝐶𝑖 | + 1

|𝐶𝑝𝑖 |
Ω𝑝𝑖

where the equation holds if and only if∑︁
𝑗 ∈ 𝐶𝑖

𝜔 𝑗 = Ω𝑝𝑖

(
|𝐶𝑖 | + 1

|𝐶𝑝𝑖 |
− 1

|𝐶𝑝𝑖 | − |𝐶𝑖 |

)
· (1 − 𝛼)
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Then consider an agent 𝑘 whose children are all leaf nodes (i.e.,

𝐶𝑙 = ∅ for all 𝑙 ∈ 𝐶𝑘 ). We can get∑︁
𝑙 ∈ 𝐶𝑘

𝜔𝑙 = Ω𝑝𝑘

(
|𝐶𝑘 | + 1

|𝐶𝑝𝑘 |
− 1

|𝐶𝑝𝑘 | − |𝐶𝑘 |

)
(1 − 𝛼)

By the definition of 𝜔𝑘

𝜔𝑘 = Ω𝑝𝑘

(
1

|𝐶𝑝𝑘 | − |𝐶𝑘 |
+

(
|𝐶𝑘 | + 1

|𝐶𝑝𝑘 |
− 1

|𝐶𝑝𝑘 | − |𝐶𝑘 |

)
· 𝛼

)
Then

𝜔𝑘 +
∑︁

𝑙 ∈ 𝐶𝑘

𝜔𝑙 =
|𝐶𝑘 | + 1

|𝐶𝑝𝑘 |
Ω𝑝𝑘

Hence, by induction, 𝜔𝑖 +
∑

𝑗∈𝐶𝑖
𝜔 𝑗 =

|𝐶𝑖 |+1
|𝐶𝑝𝑖

| Ω𝑝𝑖 holds for all

agent 𝑖 ∈ 𝑁 . Then the total share of all agents are∑︁
𝑖∈𝑁

𝑏𝑖 =
∑︁
𝑖∈𝑁

𝜔𝑖B = B
∑︁
𝑖∈𝑁

𝜔𝑖

= B
∑︁
𝑖∈𝑟𝑠

©«𝜔𝑖 +
∑︁
𝑗 ∈ 𝐶𝑖

𝜔 𝑗
ª®¬

= B · Ω𝑠

∑︁
𝑖∈𝑟𝑠

|𝐶𝑖 | + 1

|𝐶𝑠 |
= B

Therefore, the total share distributed is exactly B. □

3.2 Network-based Redistribution Framework
Now we propose our redistribution framework for diffusion auc-

tions. We first introduce a key concept called the diffusion critical
tree, which reveals who takes the most important role for each

agent’s participation and simplifies the graph structure.

Given a report profile 𝜃 ′, and the induced graph 𝐺 (𝜃 ′), we can
generate a diffusion critical tree 𝑇 (𝜃 ′) from 𝐺 (𝜃 ′) as the following.

• 𝑇 (𝜃 ′) is a rooted tree, where sponsor 𝑠 is the root and there

is an edge (𝑠, 𝑖) for all 𝑖 ∈ 𝑟𝑠 .
• For all agents 𝑖, 𝑗 ∈ 𝑁 , there is an edge (𝑖, 𝑗) if and only

if (1) 𝑖 is a cut-point to disconnect 𝑗 from 𝑠 , (2) there is no

cut-point to disconnect 𝑗 from 𝑖 . Intuitively, agent 𝑖 is the

closest agent to 𝑗 whose leaving will block 𝑗 ’s participation.

(1) (2)

Figure 4: (1) is a network 𝐺 (𝜃 ′). (2) is the corresponding dif-
fusion critical tree 𝑇 (𝜃 ′). The number in each node is the
reported valuation of the agent.

Figure 4 shows an example of the above process. In Figure 4(1),

taking agent 𝐻 as an example, we can see that the closest agent

whose leaving will block her participation is agent 𝐴. Hence, the

parent of agent𝐻 in𝑇 (𝜃 ′) is agent𝐴. We call agent𝐴 as𝐻 ’s critical
parent, and agent 𝐻 and 𝐴 are 𝐽 ’s critical ancestors.

Then, we present our network-based redistribution mechanism

framework with diffusion auction mechanism M𝑎
as the input.

Network-based Redistribution Mechanism Framework
(NRMF)

Input: a diffusion auction mechanism M𝑎
and

a report profile 𝜃 ′.

(1) Run diffusion auction mechanism M𝑎
on 𝜃 ′ and it out-

puts 𝜋𝑎 (𝜃 ′), 𝑥𝑎 (𝜃 ′). The revenue gain byM𝑎
is 𝑆𝑎 (𝜃 ′).

(2) Let 𝜋 (𝜃 ′) = 𝜋𝑎 (𝜃 ′).
(3) Let 𝑇 (𝜃 ′) be the diffusion critical tree of 𝐺 (𝜃 ′). Let 𝑇𝑖

be the subtree in 𝑇 (𝜃 ′) rooted by 𝑖 ∈ 𝑁 .

(4) Set B = 1 and run the PRST on 𝑇 (𝜃 ′), and get 𝑏𝑖 for

each 𝑖 ∈ 𝑁 .

(5) Let 𝑟𝑠 be the set of the neighbours of the sponsor

𝑠 in 𝑇 (𝜃 ′). And agents in the set are labelled as

(𝑚1, ..,𝑚 |𝑟𝑠 | ).
(6) For each subtree 𝑇𝑚𝑘

, 1 ≤ 𝑘 ≤ |𝑟𝑠 |, set 𝜃 ′′ as

𝜃 ′′𝑖 =


𝜃 ′
𝑖

if agent 𝑖 ∉ 𝑇𝑚𝑘

(0, ∅) if agent 𝑖 ∈ 𝑇𝑚𝑘

and simulateM𝑎
on 𝜃 ′′. The revenue gained byM𝑎

is

𝑆𝑎 (𝜃 ′′). Let 𝐵𝑘 = 𝑆𝑎 (𝜃 ′′).
(7) For each 𝑖 ∈ 𝑁 , set share

ˆ𝑏𝑖 = 𝑏𝑖 · 𝐵𝑘 if 𝑖 ∈ 𝑇𝑚𝑘
(1 ≤

𝑘 ≤ |𝑟𝑠 |).
(8) Let 𝑅𝑖 (𝜃 ′) = ˆ𝑏𝑖 = 𝜔𝑖𝐵𝑘 (since B = 1) and 𝑥𝑖 (𝜃 ′) =

𝑥𝑎
𝑖
(𝜃 ′) − 𝑅𝑖 (𝜃 ′).

Output: the allocation 𝜋 (𝜃 ′) and the payment 𝑥 (𝜃 ′).

Intuitively, the diffusion critical tree 𝑇 (𝜃 ′) is divided into |𝑟𝑠 |
subtrees. The 𝐵𝑘 for a subtree 𝑇𝑚𝑘

is the revenue obtained by

running M𝑎
on 𝜃 ′′ where 𝑇𝑚𝑘

is blocked. The 𝐵𝑘 is shared by

all agents in 𝑇𝑚𝑘
, and it is independent of these agents’ report

profiles. We will show that the procedure of the PRST will not

affect the independence of 𝐵𝑘 and that the whole mechanism is

incentive compatible. It should be noted that as 𝛼 grows larger,

it will redistribute more to the inviters; otherwise, the invitees

will receive more. We can flexibly change the value of 𝛼 in the

PRST according to the practical requirements without affecting the

properties. Note that when the input mechanism is simply running

traditional mechanism (e.g., the VCG mechanism) in traditional

settings (i.e., all agents are sponsor’s neighbours), NRMF still works.

Therefore, our framework is a general solution for redistribution

problems with or without networks.

We now demonstrate that NRMF can satisfy the desirable prop-

erties of IR, IC, and non-deficit if the input diffusion auction M𝑎
is

IR, IC, non-deficit and revenue monotonic.
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Theorem 3.4. The instance of diffusion redistribution mechanism
given by NRMF is individually rational (IR) if the input diffusion
auction M𝑎 is IR and non-deficit.

Proof. Consider agent 𝑖’s utility, 𝑖 ∈ 𝑁 .

𝑢𝑖 (𝜃𝑖 , 𝜃 ′) = 𝜋𝑎𝑖 (𝜃
′)𝑣𝑖 − 𝑥𝑎𝑖 (𝜃

′) + 𝑅𝑖 (𝜃 ′)
The part of 𝜋𝑎

𝑖
(𝜃 ′)𝑣𝑖 − 𝑥𝑎𝑖 (𝜃

′) is the utility of 𝑖 in the diffusion

auction mechanismM𝑎
, which is non-negative if agent 𝑖 reports

her type truthfully since M𝑎
is IR, i.e.,

𝜋𝑎𝑖 ((𝜃𝑖 , 𝜃
′
−𝑖 ))𝑣𝑖 − 𝑥

𝑎
𝑖 ((𝜃𝑖 , 𝜃

′
−𝑖 )) ≥ 0 (3)

On the other hand, considering the part 𝑅𝑖 (𝜃 ′) = 𝜔𝑖𝐵𝑘 , for

𝑖 ∈ 𝑇𝑚𝑘
, 1 ≤ 𝑘 ≤ |𝑟𝑠 |, since M𝑎

is non-deficit, then

𝐵𝑘 ≥ 0 (4)

Finally, according to Lemma 3.11, we have

𝜔𝑖 ≥ 0 (5)

Combining (3), (4), and (5), we get

𝑢𝑖 (𝜃𝑖 , (𝜃𝑖 , 𝜃 ′−𝑖 )) ≥ 0

Therefore, the mechanism is individually rational. □

Theorem 3.5. The instance of diffusion redistribution mechanism
given by NRMF is incentive compatible (IC) if the input diffusion
auction M𝑎 is IC.

Proof. Consider agent 𝑖’s utility when she truthfully reports

her type 𝜃𝑖 , 𝑖 ∈ 𝑁 .

𝑢𝑖 (𝜃𝑖 , 𝜃 ′) = 𝜋𝑎𝑖 (𝜃
′)𝑣𝑖 − 𝑥𝑎𝑖 (𝜃

′) + 𝑅𝑖 (𝜃 ′)
where 𝜃 ′ = (𝜃𝑖 , 𝜃 ′−𝑖 ).

If agent 𝑖 misreports 𝜃 ′
𝑖
, then suppose ℓ is the loss of 𝑖 in diffusion

auction mechanismM𝑎
because of misreport. SinceM𝑎

is IC, ℓ ≥ 0

and we have:

𝑢𝑖 (𝜃𝑖 , 𝜃 ′) − 𝑢𝑖 (𝜃𝑖 , 𝜃 ′′) = ℓ + 𝑅𝑖 (𝜃 ′) − 𝑅𝑖 (𝜃 ′′)
where 𝜃 ′′ = (𝜃 ′

𝑖
, 𝜃 ′−𝑖 ), which means agent 𝑖 reports profile 𝜃 ′

𝑖
that

may be different from the type 𝜃𝑖 , and the report profile of all agents

except for 𝑖 remains 𝜃 ′−𝑖 .
Suppose 𝑖 ∈ 𝑇𝑚𝑘

in 𝑇 (𝜃 ′). Since 𝑖 cannot change her position
in critical diffusion tree, which only depends on agents who invite

her, then 𝑖 ∈ 𝑇𝑚𝑘
in 𝑇 (𝜃 ′′), too. Let 𝑅𝑖 (𝜃 ′) = 𝜔𝑖𝐵𝑘 and 𝑅𝑖 (𝜃 ′′) =

𝜔 ′
𝑖
𝐵′
𝑘
. Since 𝐵𝑘 and 𝐵′

𝑘
is the revenue M𝑎

can achieve without

the participation of agents in 𝑇𝑚𝑘
, we have 𝐵𝑘 = 𝐵′

𝑘
. Finally, with

misreporting, 𝑖 can only decrease the number of her descendants

in 𝑇𝑚𝑘
. According to Lemma 3.2, we have 𝜔𝑖 ≥ 𝜔 ′

𝑖
. Therefore,

𝑢𝑖 (𝜃𝑖 , 𝜃 ′) − 𝑢𝑖 (𝜃𝑖 , 𝜃 ′′) = ℓ + 𝑅𝑖 (𝜃 ′) − 𝑅𝑖 (𝜃 ′′)
= ℓ + (𝜔𝑖 − 𝜔 ′

𝑖 ) · 𝐵𝑘 ≥ 0

from which we can conclude that the mechanism is IC. □

A diffusion auction is revenue monotonic if the revenue of the

auction monotonically increases as the number of participants in-

creases.

Definition 3.6. A diffusion auction is revenue monotonic if

for all 𝜃 ′, 𝜃 ′′ ∈ Θ with 𝐷𝑠 (𝐺 (𝜃 ′)) ⊆ 𝐷𝑠 (𝐺 (𝜃 ′′)), and for all 𝑖 ∈
𝐷𝑠 (𝐺 (𝜃 ′)), 𝑣 ′

𝑖
= 𝑣 ′′

𝑖
and 𝑟 ′

𝑖
⊆ 𝑟 ′′

𝑖
, we have 𝑆 (𝜃 ′) ≤ 𝑆 (𝜃 ′′).

Furthermore, if all the new participants have relatively small

valuations, it should not affect the revenue of the sponsor since

they have no contribution. We call it revenue invariance.

Definition 3.7. A diffusion auction is revenue invariant if
• for all 𝜃 ′, 𝜃 ′′ ∈ Θ with 𝐷𝑠 (𝐺 (𝜃 ′)) ⊆ 𝐷𝑠 (𝐺 (𝜃 ′′)), and for all

𝑖 ∈ 𝐷𝑠 (𝐺 (𝜃 ′)), 𝑣 ′
𝑖
= 𝑣 ′′

𝑖
and 𝑟 ′

𝑖
⊆ 𝑟 ′′

𝑖
;

• for all agents in 𝐷𝑠 (𝐺 (𝜃 ′′)) \𝐷𝑠 (𝐺 (𝜃 ′)), any of them cannot

be the winner even if we remove the winner and all her

critical ancestors under 𝜃 ′,

then we have 𝑆 (𝜃 ′) = 𝑆 (𝜃 ′′).
It is easy to prove that almost all the existing auction mecha-

nisms (with or without diffusion) [12, 14, 17, 18], satisfy revenue

invariance.

Theorem 3.8. The instance of diffusion redistribution mechanism
given by NRMF is non-deficit (ND) if the input diffusion auction
M𝑎 is revenue monotonic.

Proof. According to Lemma 3.3, we have

∑
𝑖∈𝑁 𝜔𝑖 = 1.

On the other hand, sinceM𝑎
is revenuemonotonic, then for each

subtree𝑇𝑚𝑘
in the diffusion critical tree𝑇 (𝜃 ′), we have𝐵𝑘 ≤ 𝑆𝑎 (𝜃 ′).

Hence,

𝑆 (𝜃 ′) =
∑︁
𝑖∈𝑁

𝑥𝑖 (𝜃 ′) = 𝑆𝑎 (𝜃 ′) −
∑︁
𝑘

∑︁
𝑖∈𝑇𝑚𝑘

𝜔𝑖 · 𝐵𝑘

≥ 𝑆𝑎 (𝜃 ′) −
∑︁
𝑖∈𝑁

𝜔𝑖 · 𝑆𝑎 (𝜃 ′) = 0

Therefore, the mechanism is non-deficit. □

Then we will discuss the properties of ABB and 𝜖-ABB. In the

traditional setting, when we talk about ABB, the increase of agents

corresponds to the increase of the sponsor’s neighbours in our

setting. However, on the social networks, it is unreasonable to

only increase sponsor’s neighbours. So the number of other agents’

neighbours on the graph will grow together. Due to the existence

of common neighbours, the increase of each agent’s neighbours

on the origin graph is hard to describe. So we will discuss agents

that grow to infinity in the diffusion critical tree, which reflects

the invitation relationship in social networks. If all agents have the

same probability of inviting someone new in the critical tree, we

define it as evenly growing.

Definition 3.9. A diffusion critical tree 𝑇 is evenly growing if

for all subtree 𝑇𝑖 ⊂ 𝑇 where 𝑖 ∈ 𝑁 , we have

lim

𝑛→∞
|𝑇𝑖 |
𝑛

= 0.

Since the process of the diffusion auction is naturally seeking

more agents, then we are also interested in the increase of the

agents as a continuous process, i.e., the sponsor’s neighbours are

fixed and the critical tree only grows in height. If assuming each

neighbour of the sponsor have the same potential in terms of the

number of agents in their leading branches, we call the critical tree

is branch-independent growing.

Definition 3.10. Adiffusion critical tree𝑇 is branch-independent
growing if for all subtree 𝑇𝑖 ⊂ 𝑇 rooted by 𝑖 ∈ 𝑟𝑠 , we have

lim

𝑛→∞
|𝑇𝑖 |
𝑛

=
1

|𝑟𝑠 |
.
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Lemma 3.11. If a diffusion auction M𝑎 is IR and ND, we have
0 ≤ 𝑆𝑎 (𝜃 ′) ≤ 𝑣 , where 𝑣 is the upper bound of all possible valuations1.

Proof. Since the the diffusion auction M𝑎
is ND, we can get:

𝑆𝑎 (𝜃 ′) ≥ 0

We have mentioned in Theorem 3.2 that 𝜋𝑎
𝑖
(𝜃 ′)𝑣𝑖 −𝑥𝑎𝑖 (𝜃

′) is the
utility of agent 𝑖 in the diffusion auction mechanismM𝑎

and it is

non-negative when M𝑎
is IR. So for agent 𝑤 who wins the item,

her 𝜋𝑎𝑤 (𝜃 ′) = 1 and payment 𝑥𝑎𝑤 (𝜃 ′) ≤ 𝑣𝑤 . For others, they will

not get the item and their payment 𝑥𝑎
𝑖
(𝜃 ′) ≤ 0. Therefore,

𝑆𝑎 (𝜃 ′) =
∑︁
𝑖∈𝑁

𝑥𝑎𝑖 (𝜃
′) ≤ 𝑣𝑤

The report valuations of all agents have a finite upper bound 𝑣

(𝑚𝑎𝑥
𝑖∈𝑁

𝑣𝑖 ≤ 𝑣). Hence, 0 ≤ 𝑆𝑎 (𝜃 ′) ≤ 𝑣 .
□

Theorem 3.12. If the input diffusion auction mechanismM𝑎 is
IR, non-deficit and revenue invariant, then the instance of NRMF is

1. asymptotically budget-balanced (ABB) when the diffusion
critical tree 𝑇 (𝜃 ′) is evenly growing;

2. 𝜖-asymptotically budget-balanced (𝜖-ABB) when the dif-
fusion critical tree 𝑇 (𝜃 ′) is branch-independent growing.

Proof. After we first run diffusion auction mechanism M𝑎
on

𝜃 ′, 𝑇𝑚𝑤
is the subtree that contains the item winner and we can

get 𝑆𝑎 (𝜃 ′). Then when we remove the agents in 𝑇𝑚𝑤
from the

corresponding 𝐺 (𝜃 ′) and run M𝑎
again, the new winner is in

subtree 𝑇𝑚𝑤′ . Agent 𝑖 ∈ 𝑁 \ (𝑇𝑚𝑤
∪𝑇𝑚𝑤′ ) will never be the item

winner even if we remove the agents in 𝑇𝑚𝑤
or 𝑇𝑚𝑤′ . Therefore,

according to the definition of revenue invariance, the attendance

of these agents does not influence the revenue gained by the M𝑎
.

Hence, we can get 𝐵𝑘 = 𝑆𝑎 (𝜃 ′) for 𝑘 ∈ {1, . . . , |𝑟𝑠 |} \ {𝑚𝑤 ,𝑚𝑤′ }.
Let 𝐵𝑚𝑤

= 𝑆𝑎 (𝜃 ′′−𝑚𝑤
) and 𝐵𝑚′

𝑤
= 𝑆𝑎 (𝜃 ′′−𝑚𝑤′ ), and the remaining

part of revenue that has not been redistributed is

𝑆 (𝜃 ′) = 𝑆𝑎 (𝜃 ′) −
|𝑟𝑠 |∑︁
𝑘=1

∑︁
𝑖∈𝑇𝑚𝑘

𝜔𝑖 · 𝐵𝑘

= 𝑆𝑎 (𝜃 ′) −
|𝑟𝑠 |∑︁
𝑘=1

|𝑇𝑚𝑘
|

𝑛
· 𝐵𝑘

=
©«1 −

∑︁
𝑘∈{1,..., |𝑟𝑠 | }\{𝑚𝑤 ,𝑚𝑤′ }

|𝑇𝑚𝑘
|

𝑛

ª®¬ 𝑆𝑎 (𝜃 ′)
−

|𝑇𝑚𝑤
|

𝑛
· 𝑆𝑎 (𝜃 ′′−𝑚𝑤

) −
|𝑇𝑚𝑤′ |
𝑛

· 𝑆𝑎 (𝜃 ′′−𝑚𝑤′ )

=
|𝑇𝑚𝑤

|
𝑛

· (𝑆𝑎 (𝜃 ′) − 𝑆𝑎 (𝜃 ′′−𝑚𝑤
))

+
|𝑇𝑚𝑤′ |
𝑛

· (𝑆𝑎 (𝜃 ′) − 𝑆𝑎 (𝜃 ′′−𝑚𝑤′ ))

According to the Lemma 3.11, 𝑆𝑎 (𝜃 ′), 𝑆𝑎 (𝜃 ′′−𝑚𝑤
) and 𝑆𝑎 (𝜃 ′′−𝑚𝑤′ ) are

bounded. Obviously, (𝑆𝑎 (𝜃 ′)−𝑆𝑎 (𝜃 ′′−𝑚𝑤
)) and (𝑆𝑎 (𝜃 ′)−𝑆𝑎 (𝜃 ′′−𝑚𝑤′ ))

are also bounded.

1
Otherwise, the valuation can be infinity, which is not reasonable in practice.

1. When the diffusion critical tree 𝑇 (𝜃 ′) is evenly growing,

|𝑇𝑚𝑤 |
𝑛 and

|𝑇𝑚𝑤′ |
𝑛 approach to 0 if 𝑛 approaches to infinity.

Hence,

lim

𝑛→∞
𝑆 (𝜃 ′) = 0

Therefore, the instance is asymptotically budget-balanced.

2. When the diffusion critical tree𝑇 (𝜃 ′) is branch-independent
growing, let (𝑆𝑎 (𝜃 ′)−𝑆𝑎 (𝜃 ′′−𝑚𝑤

)) and (𝑆𝑎 (𝜃 ′)−𝑆𝑎 (𝜃 ′′−𝑚𝑤′ ))
less than 𝑆𝑎 . We can get

lim

𝑛→∞
𝑆 (𝜃 ′) ≤ 2

|𝑟𝑠 |
· 𝑆𝑎 = 𝜖

where 𝜖 is a constant. Therefore, the instance is 𝜖-asymptotically

budget-balanced.

□

Note that if the corresponding diffusion auction is also revenue

monotonic, 𝑆𝑎 (𝜃 ′) ≥ 𝑆𝑎 (𝜃 ′′−𝑚𝑤
) and 𝑆𝑎 (𝜃 ′) ≥ 𝑆𝑎 (𝜃 ′′−𝑚𝑤′ ). Then

the 𝜖 in Theorem 3.12 can be
2

|𝑟𝑠 | · 𝑣 .

4 INSTANCES OF THE REDISTRIBUTION
MECHANISM FRAMEWORK

In our network-based redistribution mechanism framework, if we

require the output mechanism to be IC and IR, then the input diffu-

sion auction mechanism should also be IC, IR and non-deficit. The

largest known set of diffusion auction mechanisms with the above

properties is Critical Diffusion Mechanism (CDM) [13]. Especially,

the first diffusion auction mechanism, Incentive Diffusion Mecha-

nism (IDM) [14] is also a member in CDM, which has the highest

efficiency. In this section, we input IDM and another mechanism

in CDM called Threshold Neighbourhood Mechanism (TNM) [12]

into our framework to see the outcomes.

For convenience, we briefly introduce the idea of the IDM and

TNM with our notations. Both IDM and TNM first find the agent

with the highest valuation and their critical ancestors. Then the

mechanisms check these agents from the sponsor to the agent with

the highest valuation. For IDM, each agent will pay a certain amount

to her critical parent, which is the highest valuation after removing

herself from the graph. Then, she will acquire the item temporarily.

If her valuation is the highest after removing her critical descen-

dants, she will be the winner and the mechanism terminates. By

contrast, agent under TNM will remove all her descendants (in-

cluding non-critical ones) when we check the winner. In addition,

when agents get item, they will also pay the same amount of money

as the IDM, but their critical parents will just get the value of the

highest valuation when we ignore all their descendants. The rest

of the payments will be directly given to the sponsor.

We show two running examples of the redistribution mechanism

with IDM and TNM in Figure 5. Both IDM and TNM first find the

agent 𝐽 who has the highest valuation. Then they check the critical

path 𝑠 → 𝐴 → 𝐻 → 𝐽 . Under IDM, the item is allocated to the

agent 𝐽 and the sponsor’s revenue is 9. After removing the all agents

in the subtree rooted by agent𝐴, the revenue gained by the sponsor

under IDM is 7. Therefore, if we set 𝛼 = 0.8, the final utility of agent

𝐽 is 14− 13+ 0.032× 7 = 1.224. When it comes to TNM, the agent 𝐻

will win the item because she is the agent who reports the highest

valuation after removing the agent 𝐽 and 𝐾 on the critical path. 𝐻 ’s
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(1) (2) (3)

(4) (5) (6)

Figure 5: Two running examples of the IDM based and TNM based instance mechanisms of NRMF. (1) shows a graph 𝐺 (𝜃 ′)
generated from a report profile 𝜃 ′. (2) is the corresponding graph 𝐺 (𝜃 ′) under the diffusion action mechanism IDM, where
the red arrows mean the payment transfers of agents. The item is allocated to agent 𝐽 . (3) is the corresponding graph 𝐺 (𝜃 ′)
under TNM. The red arrows also mean the payment transfers of agents. However, the item is allocated to agent 𝐻 which is the
difference. (4) shows the coefficients 𝜔𝑖 of agents and we set 𝛼 = 0.8. (5) and (6) shows the final utilities corresponding to IDM
mechanism input and TNMmechanism input respectively.

critical parent 𝐴 will get the highest valuation 9 after removing

all 𝐴’s descendants and the rest 1 of 𝐻 ’s payment will be directly

given to the sponsor. Similarly, after removing the all agents in the

subtree rooted by 𝐴, sponsor still gets 7. The final utility of agent

𝐻 is 11 − 10 + 0.117 × 7 = 1.819.

5 DISCUSSION AND CONCLUSION
In this paper, we focus on redistributionmechanism design on social

networks, where a sponsor wants to incentivize agents to invite

their neighbours to participate in, and allocate a single item without

seeking any profit. To achieve the goal, we propose a network-based

redistribution mechanism framework (NRMF) that can construct a

diffusion redistribution mechanism from any diffusion auction. The

NRMF will maintain the properties of incentive compatibility and

individual rationality of the original diffusion auction, and also be

non-deficit if the original diffusion auction is revenue monotonic.

Moreover, without affecting the efficiency of the diffusion auc-

tion, NRMF can achieve the property of asymptotically budget-

balanced (ABB) or 𝜖-asymptotically budget-balanced. We consider

ABB rather than budget-balance (BB), which requires that all rev-

enue be returned back to buyers ideally. It is common even under

the traditional settings because no mechanisms can satisfy all the

properties of efficiency , IC, IR and BB according to Green-Laffont

impossibility theorem [4]. When it comes to our setting, the above

impossibility theorem still holds. The reason is that the special

cases where all agents are directly connected to the sponsor in

the network are equivalent to the cases in the traditional settings.

However, in diffusion auction mechanism design, efficiency is usu-

ally abandoned because it is even impossible to design a diffusion

auction mechanism that satisfies efficiency, IC, IR and non-deficit

simultaneously [12].

If we require the output mechanism to be IC and IR in NRMF,

then the input mechanism must be IC, IR and non-deficit. The

output redistribution mechanism achieves the same level of social

welfare as the input mechanism.

In theory, without efficiency, the impossibility that BB cannot be

achieved is missing in our setting. Actually, it is possible to satisfy

the properties of IC, IR and BB simultaneously. For example, when

we input the fixed pricing diffusion auction mechanisms into our

framework, the corresponding output mechanisms are always BB. It

is an interesting future work that finding the relationship between

the efficiency and the residual budget after the redistribution.
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