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ABSTRACT
Adaptive mesh refinement (AMR) is necessary for efficient finite
element simulations of complex physical phenomenon, as it allo-
cates limited computational budget based on the need for higher or
lower resolution, which varies over space and time. We present a
novel formulation of AMR as a fully-cooperative Markov game, in
which each element is an independent agent who makes refinement
and de-refinement choices based on local information. We design a
novel deep multi-agent reinforcement learning (MARL) algorithm
called Value Decomposition Graph Network (VDGN), which solves
the two core challenges that AMR poses for MARL: posthumous
credit assignment due to agent creation and deletion, and unstruc-
tured observations due to the diversity of mesh geometries. For
the first time, we show that MARL enables anticipatory refinement
of regions that will encounter complex features at future times,
thereby unlocking entirely new regions of the error-cost objective
landscape that are inaccessible by traditional methods based on lo-
cal error estimators. Comprehensive experiments show that VDGN
policies significantly outperform error threshold-based policies in
global error and cost metrics. We show that learned policies gen-
eralize to test problems with physical features, mesh geometries,
and longer simulation times that were not seen in training. We also
extend VDGN with multi-objective optimization capabilities to find
the Pareto front of the tradeoff between cost and error.
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1 INTRODUCTION
The finite element method (FEM) [5] is instrumental to numerical
simulation of partial differential equations (PDEs) in computational
science and engineering [19, 25]. For multi-scale systems with large
variations in local features, such as combinations of regions with
large gradients that require high resolution and regions with flat
solutions where coarse resolution is sufficient, an efficient trade-off
between solution accuracy and computational cost requires the use
of adaptive mesh refinement (AMR). The goal of AMR is to adjust
the finite element mesh resolution dynamically during a simulation,
by refining regions that can contribute the most to improvement in
accuracy relative to computational cost.

For evolutionary (i.e., time-dependent) PDEs in particular, a long-
standing challenge is to find anticipatory refinement strategies that
optimize a long-term objective, such as an efficient tradeoff between
final solution accuracy and cumulative degrees of freedom (DoF).
Anticipatory refinement strategies would preemptively refine re-
gions of the mesh that will contain solution features (e.g., large
gradients) right before these features actually occur. This is hard for
existing approaches to achieve. Traditional methods for AMR rely
on estimating local refinement indicators (e.g., local error [41]) and
heuristicmarking strategies (e.g., greedy error-basedmarking) [3, 6].
Recent data-driven methods for mesh refinement apply supervised
learning to learn a fast neural network estimator of the solution
from a fixed dataset of pre-generated high-resolution solutions
[21, 35]. However, greedy strategies based on local information
cannot produce an optimal sequence of anticipatory refinement
decisions in general, as they do not have sufficient information
about features that may occur at subsequent time steps, while
supervised methods do not directly optimize a given long-term
objective. These challenges can be addressed by formulating AMR
as a sequential decision-making problem and using reinforcement
learning (RL) [30] to optimize a given objective directly. However,
current single-agent RL approaches for AMR either do not easily
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support refinement of multiple elements per solver step [39]; faces
different definitions of the environment transition at training and
test time [9]; or work by selecting a single global error threshold
[10], which poses difficulties for anticipatory refinement.

In this work, we present the first formulation of AMR as aMarkov
game [16, 23] and propose a novel fully-cooperative deep multi-
agent reinforcement learning (MARL) algorithm [8, 14, 38] called
Value Decomposition Graph Network (VDGN), shown in Figure 1,
to train a team of independently and simultaneously acting agents,
each of which is a decision-maker for an element, to optimize a
global performance metric and find anticipatory refinement poli-
cies. Because refinement and de-refinement actions at each step of
the AMR Markov game leads to the creation and deletion of agents,
we face the posthumous credit assignment problem [7]: agents who
contributed to a future reward are not necessarily present at the
future time to experience it. We show that VDGN, by virtue of cen-
tralized training with decentralized execution [22], addresses this
key challenge. By leveraging graph networks as the inductive bias
[4], VDGN supports meshes with varying number of elements at
each time step and can be applied to meshes of arbitrary size, depth,
and geometry. Moreover, graph attention layers [34] in VDGN
enable each element to receive information within a large local
neighborhood, so as to anticipate incoming or outgoing solution
features and learn to take preemptive actions. Experimentally, us-
ing the advection equation as a pedagogical benchmark problem,
we show for the first time that MARL: (a) displays anticipatory
refinement behavior; (b) generalizes to different initial conditions,
initial mesh resolutions, simulation durations, and mesh geome-
tries; (c) significantly improves error and cost metrics compared
to local error threshold-based policies, and unlocks new regions of
the error-cost optimization landscape. Furthermore, we augment
VDGN with a multi-objective optimization method to train a single
policy that discovers the Pareto front of error and cost.

2 PRELIMINARIES
2.1 Finite Element Method
The finite element method [5] models the domain of a PDE with a
mesh that consists of nonoverlapping geometric elements. Using the
weak formulation and choosing basis functions to represent the PDE
solution on these elements, one obtains a system of linear equations
that can be numerically solved. The shape and sizes of elements
determine solution error, while the computational cost is primarily
determined by the number of elements. Improving the trade-off
between error and cost is the objective of AMR. This work focuses
purely on ℎ-refinement, in which refinement of a coarse element
produces multiple new fine elements (e.g., isotropic refinement of a
2D quadrilateral element produces four new elements), whereas de-
refinement of a group of fine elements restores an original coarse
element. In both cases, the original coarse element or fine elements
are removed from the FEM discretization.

2.2 Notation
Each element is identified with an agent, denoted by 𝑖 ∈ {1, . . . , 𝑛𝑡 },
where 𝑛𝑡 is variable across time step 𝑡 = 0, 1, . . . ,𝑇max within each
episode of length𝑇max, and𝑛𝑡 ∈ [𝑁max], where𝑁max is constrained
by depthmax to be 𝑛𝑥 · 𝑛𝑦 · 4depthmax in the case of quadrilateral

elements. Let each element 𝑖 have its own individual observation
spaceS𝑖 and action spaceA𝑖 . Let 𝑠 denote the global state, 𝑜𝑖 and 𝑎𝑖
denote agent 𝑖’s individual observation and action, respectively, and
𝑎 := (𝑎1, . . . , 𝑎𝑛𝑡 ) denote the joint action by 𝑛𝑡 agents. In the case of
AMR, all agents have the same observation and action spaces. Let
𝑅 denote a single global reward for all agents and let 𝑃 denote the
environment transition function, both of which are well-defined for
any number of agents 𝑛𝑡 ∈ [𝑁max]. Let 𝛾 ∈ (0, 1] be the discount
factor. The FEM solver time at episode step 𝑡 is denoted by 𝜏 (we
omit the dependency 𝜏 (𝑡) for brevity), which advances by 𝜏step in
increments of 𝑑𝜏 = 0.002 during each discrete step 𝑡 → 𝑡 + 1 up to
final simulation time 𝜏𝑓 .

For element 𝑖 at time 𝑡 , let𝑢𝑖𝑡 and𝑢
𝑖
𝑡 denote the true and numerical

solution, respectively, and let 𝑐𝑖𝑡 := ∥𝑢𝑖𝑡 − 𝑢𝑖𝑡 ∥2 denote the L2 norm

of the error. Let 𝑐𝑡 :=
√︃∑𝑛𝑡

𝑖=1 (𝑐
𝑖
𝑡 )2 denote the global error of a

mesh with 𝑛𝑡 elements. Let depth(𝑖) = 0, 1, . . . , depthmax denote
the refinement depth of element 𝑖 . Let 𝑑𝑡 :=

∑𝑡
𝑠=0 DoF𝑠 denote the

cumulative degrees of freedom (DoF) of the mesh up to step 𝑡 , which
is a measure of computational cost, and let 𝑑thres be a threshold
(i.e., constraint) on the cumulative DoF seen during training.

2.3 Value Decomposition Network
In the paradigm of centralized training with decentralized exe-
cution (CTDE) [22], global state and reward information is used
in centralized optimization of a team objective at training time,
while decentralized execution allows each agent to take actions
conditioned only on their own local observations, independently
of other agents, both at training time and at test time. One simple
yet effective way to implement this in value-based MARL is Value
Decomposition Networks (VDN) [29]. VDN learns within the class
of global action-value functions 𝑄 (𝑠, 𝑎) that decompose additively:

𝑄 (𝑠, 𝑎) :=
𝑛∑︁
𝑖=1

𝑄𝑖 (𝑠𝑖 , 𝑎𝑖 ) , (1)

where 𝑄𝑖 is an individual utility function representing agent 𝑖’s
contribution to the joint expected return.

This decomposition is amenable for use in Q-learning [37], as it
satisfies the individual-global-max (IGM) condition:

argmax
a∈Π𝑛

𝑖=1A𝑖

𝑄 (𝑠, 𝑎) =
[
argmax
𝑎1∈A1

𝑄1 (𝑠1, 𝑎1), . . . , argmax
𝑎𝑛 ∈A𝑛

𝑄𝑛 (𝑠𝑛, 𝑎𝑛)
]
.

(2)

This means the individual maxima of 𝑄𝑖 provide the global maxi-
mum of the joint𝑄 function for the Q-learning update step [18, 37],
which scales linearly rather than exponentially in the number of
agents. Using function approximation for𝑄𝑖

𝜃
with parameter 𝜃 , the

VDN update equations using replay buffer B are:

𝜃 ← 𝜃 − ∇𝜃E(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1)∼B
[
(𝑦𝑡+1 −𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 ))2

]
(3)

𝑦𝑡+1 := 𝑅𝑡 + ⊥𝛾𝑄𝜃 (𝑠𝑡+1, 𝑎) |𝑎=[argmax
𝑎𝑖

𝑄𝑖
𝜃
(𝑠𝑖
𝑡+1,𝑎

𝑖 ) ]𝑛
𝑖=1

, (4)

where ⊥ is the stop-gradient operator.

3 AGENT CREATION AND DELETION
Each agent’s refinement and de-refinement action has long-term
impact on the global error (e.g., refining before arrival of a feature
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Figure 1: A state-action-next state transition in the Markov game for AMR. Shown in detail are the action selection (rightward)
and learning (leftward) processes in the Value Decomposition Graph Network.

would reduce error upon its arrival). However, since all elements
that refine or de-refine are removed immediately and their individ-
ual trajectories terminate, they do not observe future states and
future rewards. This is the posthumous multi-agent credit assign-
ment problem [7], which we propose to address using centralized
training. First, we show that an environment with variable but
bounded number of agents can be written as a Markov game [23]
(see proof in Appendix B).

Proposition 1. LetM denote a multi-agent environment where the
number of agents 𝑛𝑡 = 1, . . . , 𝑁max can change at every time step
𝑡 = 0, 1, . . . ,𝑇max due to agent-creation and agent-deletion actions in
each agent’s action space. At each time 𝑡 , the environment is defined

by the tuple
(
{S𝑖 }𝑛𝑡

𝑖=1, {A
𝑖 }𝑛𝑡
𝑖=1, 𝑅, 𝑃,𝛾, 𝑛𝑡 , 𝑁max

)
.M can be written

as a Markov game with a stationary global state space and joint action
space that do not depend on the number of currently existing agents.

Centralized training for posthumous multi-agent credit
assignment. Our key insight for addressing the posthumous credit
assignment problem stems from Proposition 1: because the envi-
ronment is Markov and stationary, we can use centralized training
with a global reward to train a global state-action value function
𝑄 (𝑠, 𝑎) that (a) persists across time and (b) evaluates the expected
future return of any (𝑠𝑡 , 𝑎𝑡 ). Crucially, these two properties en-
able 𝑄 (𝑠, 𝑎) to sidestep the issue of posthumous credit assignment,
since the value estimate of a global state will be updated by fu-
ture rewards via temporal difference learning regardless of agent
deletion and creation. To arrive at a truly multi-agent approach,
we factorize the global action space so that each element uses its
individual utility function 𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ) to choose its own action from
{no-op, refine, de-refine}. This immediately leads to the paradigm
of centralized training with decentralized execution [22], of which
VDN (eq. (1)) is an example. We discuss the pros and cons of other
formulations in Appendix E.

Effective space. Agent creation and deletion means that the
accessible region of the global state-action space changes over time
during each episode. While this is not a new phenomenon, AMR
is special in that the sizes of the informative subset of the global
state and the available action set depend directly on the current
number of existing agents. Hence, a key observation for algorithm
development is that a model-free multi-agent reinforcement learn-
ing algorithm only needs to account for the accessible state-action
space

∏𝑛𝑡
𝑖=1 S

𝑖 × A𝑖 at each time step, since the expansion or con-
traction of that space is part of the environment dynamics that

are accounted implicitly by model-free MARL methods. In practice,
this means all dummy states 𝑠� do not need to be input to policies,
and policies do not need to output the (mandatory) no-op actions
for the 𝑁max − 𝑛𝑡 nonexistent elements at time 𝑡 . This informs our
concrete definition of the Markov game for AMR in Section 4.

4 AMR AS A MARKOV GAME
State. The global state is defined by the collection of all individual
element observations and pairwise relational features. The individ-
ual observation 𝑜𝑖 of element 𝑖 consists of:
• log(𝑐𝑖𝑡 ): logarithm of error at element 𝑖 at time 𝑡 .
• 1-hot representation of element refinement depth.

Relational features 𝑒𝑖 𝑗 are defined for each pair of spatially-adjacent
elements 𝑖, 𝑗 that form edge 𝑒 = (𝑖, 𝑗) (directed from 𝑗 to 𝑖) in the
graph representation of the mesh (see Section 5), as a 1-dimensional
vector concatenation of the following:
• 1[depth(𝑖) − depth( 𝑗)]: 1-hot vector indicator of the differ-
ence in refinement depth between 𝑖 and 𝑗 .
• ⟨𝑢 𝑗 , Δ𝑥

∥Δ𝑥 ∥22
⟩ · 𝜏step: Dimensionless inner product of velocity

𝑢 𝑗 at element 𝑗 with the displacement vector between 𝑖 and
𝑗 . Here Δ𝑥 := (𝑥𝑖 − 𝑥 𝑗 ), where 𝑥𝑖 is the center of element 𝑖 .

We use the velocity 𝑢 𝑗 at the sender element so that the receiver
element is informed about incoming or outgoing PDE features and
can act preemptively.

Action. All elements have the same action space:

A := {no-op, refine, de-refine},
where no-op means the element persists to the next decision step;
refine means the element is equipartitioned into four smaller
elements; de-refine means that the element opts to coalesce into
a larger coarse element, subject to feasibility constraints specified
by the transition function (see below).

Transition. Given the current state and agents’ joint action,
which is chosen simultaneously by all agents, the transition 𝑃 : S ×
A ↦→ S is defined by these steps:
(1) Apply de-refinement rules to each element 𝑖 whose action is

de-refine: (a) if, within its group of sibling elements, amajority
(or tie) of elements chose de-refine, then the whole group is
de-refined; (b) if it is at the coarsest level, i.e., depth(𝑖) = 0, or
it belongs to a group of sibling elements in which any element
chose to refine, then its choice is overridden to be no-op.

(2) Apply refinement to each agent who chose refine.
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(3) Step the FEM simulation forward in time by 𝜏step and compute a
new solution on the updated mesh. An episode terminates when
𝜏 + 𝑑𝜏 > 𝜏𝑓 or 𝑑𝑡 > 𝑑thres. This follows standard procedure in
FEM [1] and knowledge of the transition dynamics is not used
by the proposed model-free MARL approach.
Reward. We carefully design a shaped reward [20] that encour-

ages agents to minimize the final global error. Let 𝑐0 = 1.0 be a
dummy initial global error. The reward at step 𝑡 = 1, 2, . . . is

𝑅𝑡 =


𝑝 · (𝜏 − 𝜏𝑓 ) + log(𝑐𝑡−1), if 𝑑𝑡 > 𝑑thres ∧ 𝜏 + 𝑑𝜏 < 𝜏𝑓

log(𝑐𝑡−1/𝑐𝑡 ) − 𝑝 ·max(0, 𝑑𝑡
𝑑thres

− 1), if 𝜏 + 𝑑𝜏 ≥ 𝜏𝑓

log(𝑐𝑡−1/𝑐𝑡 ), else
(5)

The first case applies a penalty 𝑝 when the cumulative DoF exceeds
the DoF threshold before reaching the simulation final time. The
second case applies a penalty based on the amount by which the
DoF threshold is exceeded when the final time is reached. The last
case provides the agents with a dense learning signal based on
potential-based reward shaping [20], so that the episode return (i.e.,
cumulative reward at the end of the episode) is 𝑅 = − log(𝑐𝑇max ) in
the absence of any of the other penalties.

Objective. We consider a fully-cooperative Markov game in
which all agents aim to find a shared parameterized policy 𝜋𝜃 : S ×
A ↦→ [0, 1] to maximize the objective

max
𝜃

𝐽 (𝜃 ) := E𝑠𝑡+1∼𝑃 ( · |𝑎,𝑠𝑡 ),𝑎∼𝜋𝜃 ( · |𝑠)

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑅𝑡

]
(6)

Remark 1. By using time limit 𝜏𝑓 and DoF threshold 𝑑thres in the
reward at training time, while not letting agents observe absolute time
and cumulative DoF, agents must learn to make optimal decisions
based on local observations, which enables generalization to longer
simulation duration and DoF budgets at test time.

Remark 2. For problems without an easily computable analytical
solution to compute the true error, one may use an error estimator
for the element observations. The reward, which is only needed at
training time and not at test time, can still be based on error with
respect to a highly resolved reference simulation. Empirical results on
this configuration are provided in Appendix D.

5 VALUE DECOMPOSITION GRAPH
NETWORK

To enable anticipatory refinement in the time-dependent case, an
element must observe a large enough neighborhood around itself.
However, it is difficult to define a fixed local observation window for
general mesh geometries, element shapes, and boundaries. Instead,
we use Graph Networks [4, 26] as a general inductive bias to learn
representations of element interactions on arbitrary meshes.

Specifically, we construct a policy based on Graph Attention
Networks [34], which incorporates self-attention [33] into graph
networks. At each step 𝑡 , the mesh is represented as a graph G =

(𝑉𝑡 , 𝐸𝑡 ). Each node 𝑣𝑖 in 𝑉 = {𝑣𝑖 }𝑖=1:𝑛𝑡 corresponds to element
𝑖 and its feature is initialized to be the element observation 𝑜𝑖 .
𝐸 = {𝑒𝑘 = (𝑟𝑘 , 𝑠𝑘 )}𝑘=1:𝑁 𝑒 is a set of edges, where an edge 𝑒𝑘 exists
between sender node 𝑠𝑘 and receiver node 𝑟𝑘 if and only if they
are spatially adjacent (i.e., sharing either a face or a vertex in the
mesh). Its feature is initialized to be the relational feature 𝑒𝑟

𝑘𝑠𝑘 .

Figure 2: Graph Attention Layer. A softmax over all edges
connected to node 𝑖 produces attention weights 𝑎𝑖 𝑗 for edge
(𝑖, 𝑗) (eq. (8)). A weighted sum over values 𝑏𝑖 𝑗 with weight 𝑎𝑖 𝑗

produces the updated node feature 𝑣𝑖 (eq. (10)).

5.1 Graph Attention Layer
In a graph attention layer, each node is updated by a weighted aggre-
gation over its neighbors: weights are computed by self-attention
using node features as queries and keys, then applied to values that
are computed from node and edge features.

Self-attention weights 𝑎𝑖 𝑗 for each node 𝑖 are computed as fol-
lows (see Figure 2): 1) we define queries, keys, and values as linear
projections of node features, via weight matrices𝑊 𝑞 ,𝑊 𝑘 , and𝑊 𝑣

(all ∈ R𝑑×dim(𝑣) ) shared for all nodes; 2) for each edge (𝑖, 𝑗), we com-
pute a scalar pairwise interaction term 𝑎𝑖 𝑗 using the dot-product
of queries and keys; 3) for each receiver node 𝑖 with sender node
𝑗 ∈ N𝑖 , we define the attention weight as the 𝑗-th component of a
softmax over all neighbors 𝑘 ∈ N𝑖 :

𝑎𝑖 𝑗 :=𝑊 𝑞𝑣𝑖 ·𝑊 𝑘𝑣 𝑗 for (𝑖, 𝑗) ∈ 𝐸 , (7)

𝑎𝑖 𝑗 := softmax𝑗 ({𝑎𝑖𝑘 }𝑘 ) =
exp(𝑎𝑖 𝑗 )∑

𝑘∈N𝑖
exp(𝑎𝑖𝑘 )

for 𝑗 ∈ N𝑖 . (8)

We use these attention weights to compute the new feature for each
node 𝑖 as a linear combination over its neighbors 𝑗 ∈ N𝑖 of projected
values𝑊 𝑣𝑣 𝑗 . Edge features 𝑒𝑖 𝑗 , with linear projection using𝑊 𝑒 ∈
R𝑑×dim(𝑒) , capture the relational part of the observation:

𝑏𝑖 𝑗 :=𝑊 𝑣𝑣 𝑗 +𝑊 𝑒𝑒𝑖 𝑗 for (𝑖, 𝑗) ∈ 𝐸 , (9)

𝑣𝑖 :=
∑︁
𝑗 ∈N𝑖

𝑎𝑖 𝑗𝑏𝑖 𝑗 for 𝑖 ∈ 𝑉 . (10)

Despite being a special case of the most general message-passing
flavor of graph networks [4], graph attention networks separate
the learning of 𝑎𝑖 𝑗 , the scalar importance of interaction between
𝑖 and 𝑗 relative to other neighbors, from the learning of 𝑏𝑖 𝑗 , the
vector determining how 𝑗 affects 𝑖 . This additional inductive bias

Session 1A: Multiagent Reinforcement Learning I  AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

17



reduces the functional search space and can improve learning with
large receptive fields around each node, just as attention is useful
for long-range interactions in sequence data [33].

Multi-head graph attention layer.We extend graph attention
by building on the mechanism of multi-head attention [33], which
uses𝐻 independent linear projections (𝑊 𝑞,ℎ,𝑊 𝑘,ℎ,𝑊 𝑣,ℎ,𝑊 𝑒,ℎ) for
queries, keys, values and edges (all projected to dimension 𝑑/𝐻 ),
and results in 𝐻 independent sets of attention weights 𝑎𝑖 𝑗,ℎ , with
ℎ = 1, 2, . . . , 𝐻 . This enables attention to different learned repre-
sentation spaces and was found to stabilize learning [34]. The new
node representation with multi-head attention is the concatenation
of all output heads, with an output linear projection𝑊 𝑜 ∈ R𝑑×𝑑 .
Appendix A.1 shows the multi-head versions of eqs. (7) to (10).

5.2 Value Decomposition Graph Network
We use the graph attention layer to define the Value Decomposition
Graph Network (VDGN), shown in Figure 1. Firstly, an indepen-
dent graph network block [4] linearly projects nodes and edges
independently to R𝑑 .

Figure 3: VDGN layer

Each layer 𝐹 of VDGN
involves two sub-layers: a
multi-head graph attention
layer followed by a fully-
connected independent graph
network blockwith ReLU non-
linearity. For each of these
sub-layers, we use residual
connections [13] and layer
normalization [2], so that
the transformation of input
graph 𝑔 is LayerNorm(𝑔 +
SubLayer(𝑔)). This is visu-
alized in Figure 3. We de-
fine a VDGN stack as 𝑆 :=
𝐹𝐿 (𝐹𝐿−1 (· · · 𝐹1 (𝑔) · · · )) with
𝐿 unique layerswithoutweight
sharing, then define a sin-

gle forward pass by 𝑟 recurrent applications of 𝑆 : 𝑃 (𝑔) =

𝑆 (𝑆 (· · · 𝑆 (𝑔) · · · )) with 𝑟 instances of 𝑆 . Finally, to produce |A|
action-values for each node (i.e., element) 𝑖 , we apply a final graph
attention layer whose output linear projection is𝑊 𝑜

out ∈ R |A |×𝑑 , so
that each final node representation is 𝑣𝑖 ∈ R |A | , interpreted as the
individual element utility 𝑄 (𝑜𝑖 , 𝑎𝑖 ) for all possible actions 𝑎𝑖 ∈ A.

VDGN is trained using eq. (1) in a standard Q-learning algorithm
[18] (see the leftward process in Figure 1). Since VDGN funda-
mentally is a 𝑄 function-based method, we can extend it with a
number of independent algorithmic improvements [15] to single-
agent Deep Q Network [18] that provide complementary gains in
learning speed and performance. These include double Q-learning
[32], dueling networks [36], and prioritized replay [27]. Details
are provided in Appendix A.2. We did not employ the other im-
provements such as noisy networks, distributional Q-learning, and
multi-step returns because the AMR environment dynamics are
deterministic for the PDEs we consider and the episode horizon at
train time is short.

5.3 Symmetries
Methods for FEM and AMR should respect symmetries of the
physics being simulated. For the simulations of interest in this
work, we require a refinement policy to satisfy two properties: a)
spatial equivariance: given a spatial rotation or translation of the
PDE, the mesh refinement decisions should also rotate or translate
in the same way; b) time invariance: the same global PDE state
at different absolute times should result in the same refinement
decisions. By construction of node and edge features, and the fact
that graph neural networks operate on individual nodes and edges
independently, we have the following result, proved in Appendix B.

Proposition 2. VDGN is equivariant to global rotations and trans-
lations of the error and velocity field, and it is time invariant.

5.4 Multi-objective VDGN
In applications where a user’s preference between minimizing error
and reducing computational cost is not known until test time, one
cannot a priori combine error and cost into a single scalar reward at
training time. Instead, one must take a multi-objective optimization
viewpoint [12] and treat cost and error as separate components of
a vector reward function R = (𝑅𝑐 , 𝑅𝑒 ). The components encourage
lower DoFs and lower error, respectively, and are defined by

𝑅𝑐𝑡 :=
𝑑𝑡−1 − 𝑑𝑡
𝑑thres

; 𝑅𝑒𝑡 := log(𝑐𝑡−1) − log(𝑐𝑡 ). (11)

The objective is R2 ∋ J(𝜃 ) := E𝑠𝑡+1∼𝑃 ( · |𝑎,𝑠𝑡 ),𝑎∼𝜋𝜃 ( · |𝑠) [
∑𝑇
𝑡=0 𝛾

𝑡R𝑡 ],
which is vector-valued. We focus on the widely-applicable setting
of linear preferences, whereby a user’s scalar utility based on pref-
erence vector 𝜔 is 𝜔𝑇R (e.g., 𝜔 = [0.5, 0.5] implies the user cares
equally about cost and error). At training time, we randomly sample
𝜔 ∈ Ω in each episode and aim to find an optimal action-value func-
tion Q∗ (𝑠, 𝑎, 𝜔) := arg𝑄 sup𝜋 ∈Π 𝜔𝑇E𝜋 [

∑𝑇
𝑡=0 𝛾

𝑇R𝑡 ], where arg𝑄
extracts the vector 𝐸𝜋 [. . . ] corresponding to the supremum. We
extend VDGN with Envelop Q-learning [40], a multi-objective RL
method that efficiently finds the convex envelope of the Pareto front
in multi-objective MDPs; see Appendix A.3 for details. Once trained,
Q∗ induces the optimal policy for any preference 𝜔 according to
the greedy policy 𝑎∗ = argmax𝑎 𝜔𝑇Q∗ (𝑠, 𝑎, 𝜔).

6 EXPERIMENTAL SETUP
We designed experiments to test the ability of VDGN to find general-
izable AMR strategies that display anticipatory refinement behavior,
and benchmark these policies against standard baselines on error
and DoF metrics. We define the FEM environment in Section 6.1,
and the implementation of our method and baselines in Section 6.2
and Appendix C. Results are analyzed in Section 7.

6.1 AMR Environment
We use MFEM [1, 17] and PyMFEM [17], a modular open-source
library for FEM, to implement the Markov game for AMR. We ran
experiments on the linear advection equation 𝜕𝑢

𝜕𝑡 + 𝜈∇·𝑢 = 0 with
random initial conditions (ICs) for velocity 𝜈 and solution 𝑢 (0),
solving it using the FEM framework on a two-dimensional 𝐿2 finite
element space with periodic boundary conditions. Each discrete
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step of the Markov game is a mesh re-grid step, with 𝜏step FEM sim-
ulation time elapsing between each consecutive step. The solution
is represented using discontinuous first-order Lagrange polynomi-
als, and the initial mesh is partitioned into 𝑛𝑥 × 𝑛𝑦 quadrilateral
elements. Appendix C contains further FEM details on the mesh
partition and the construction of element observations.

Linear advection is a useful benchmark for AMR despite its seem-
ing simplicity because the challenge of anticipatory refinement can
be made arbitrarily hard by increasing the 𝜏step of simulation time
that elapses between two consecutive steps in the Markov game
(i.e., between each mesh update step). Intuitively, an optimal refine-
ment strategy must refine the entire connected region that covers
the path of propagation of solution features with large solution
gradients (i.e., high error on a coarse mesh), and maintain coarse
elements everywhere else. Hence, the larger the 𝜏step, the harder
it is for distant elements, which currently have low error but will
experience large solution gradients later, to refine preemptively.
But such long-distance preemptive refinement capability is exactly
the key for future applications in which one prefers to have few
re-meshing steps during a simulation due to its computational
cost. Moreover, the existence of an analytic solution enables us to
benchmark against error threshold-based baselines under the ideal
condition of having access to perfect error estimator.

Metric. Besides analyzing performance via error 𝑐 and cumu-
lative DoFs 𝑑 individually, we define an efficiency metric as 𝜂 =

1 −
√︁
𝑐2 + 𝑑2 ∈ [0, 1], where a higher value means higher effi-

ciency. Here, 𝑐 := 𝑐−𝑐fine
𝑐coarse−𝑐fine is a normalized solution error and

𝑑 := 𝑑−𝑑coarse
𝑑fine−𝑑coarse is normalized cumulative degrees of freedom (a

measure of computational cost). Here, the subscripts “fine“ and
“coarse” indicate that the quantity is computed on a constant uni-
formly fine and coarse mesh, respectively, that are held static (not
refined/de-refined) over time. The uniformly fine and coarse meshes
themselves attain efficiency 𝜂 = 0. Efficiency 𝜂 = 1 is unattainable
in principle, since non-trivial problems require 𝑑 > 𝑑coarse.

6.2 Implementation and Baselines
The graph attention layer of VDGN was constructed using the
Graph Nets library [4]. We used hidden dimension 64 for all VDGN
layers (except output layer of size |A|), and 𝐻 = 2 attention heads.
For depthmax = 1, with initial 𝑛𝑥 = 𝑛𝑦 = 16, we chose 𝐿 = 2
internal layers, with 𝑅 = 3 recurrent passes. Each Markov game
step has 𝜏step = 0.25, 𝜏𝑓 = 0.75 (hence 𝑇max = 3). For depthmax = 2,
with 𝑛𝑥 = 𝑛𝑦 = 8, we used 𝐿 = 𝑅 = 2. Each Markov game step has
𝜏step = 0.2, 𝜏𝑓 = 0.8 (hence 𝑇max = 4). For each training episode,
we uniformly sampled the starting position and velocity of a 2D
isotropic Gaussian wave as the initial condition. The FEM solver
time discretization was 𝑑𝜏 = 0.002 throughout. See Appendix C for
further architectural details and hyperparameters.

We compare with the class of local error-based Threshold poli-
cies, each member of which is defined by a tuple (𝜃𝑟 , 𝜃𝑑 , 𝜏step) as
follows: every 𝜏step of simulation time, all elements whose true er-
ror exceed 𝜃𝑟 are refined, while those with true error below 𝜃𝑑 are
de-refined. These policies represent the ideal behavior of widely-
used AMR methods based on local error estimation, in the limit of
perfectly accurate error estimation.

(a) depthmax = 1 (b) depthmax = 2

Figure 4: Global error versus simulation time of VDGN, com-
pared with Thresholld policies with different 𝜏step elapsed be-
tween eachmesh update step. (a) VDGNwith the longest dura-
tion 𝜏step = 125𝑑𝜏 has error growth comparable to Threshold
with the shortest duration 𝜏step = 1𝑑𝜏 . (b) VDGN significantly
outperforms its Threshold counterpart with 𝜏step = 100𝑑𝜏 .

Figure 5: At each RL step, VDGN refines the full path segment
that will be traversed by the wave over many solver steps
into the future. Here, and for all subsequent mesh visualiza-
tions, we show the process: refinements, solution after 𝜏step,
refinements, and so on.

Figure 6: VDGN chooses more level-1 refinement than neces-
sary for the wave’s location at 𝑡 + 1, so that level-2 refinement
is possible for the wave’s location at 𝑡 + 2.

Remark 3. Crucially, note that the Threshold policy class does not
necessarily contain the global optimal policy for all AMR problems
because such policies are incapable of anticipatory refinement and
cannot access the full error-cost objective landscape. Suppose an ele-
ment 𝑖 with flat features and negligible error 𝑐𝑖𝑡 ≪ 1 at time 𝑡 needs
to refine before the arrival of complex PDE features at 𝑡 + 1. If 𝜃𝑟 > 𝑐𝑖𝑡 ,
then element 𝑖 is not refined preemptively and large error is incurred
at 𝑡 + 1. If 𝜃𝑟 < 𝑐𝑖𝑡 , then many other elements 𝑗 with error 𝑐 𝑗𝑡 > 𝜃𝑟 are
also refined at 𝑡 but they may not contain complex features at 𝑡 + 1,
so DoF cost is unnecessarily increased.

7 EXPERIMENTAL RESULTS
Overall, we find that VDGN policies display anticipatory refine-
ment, generalize to different initial conditions, mesh resolutions
and simulation durations, thereby uncovering Pareto-efficient re-
gions of the error-cost trade-off that were previously inaccessible by
traditional error-estimator-based methods. VDGN policy runtimes
are comparable to Threshold policies (see Table 4)
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(a) 𝑛𝑥 = 𝑛𝑦 = 16, max depth 1, 500
solver steps

(b) 𝑛𝑥 = 𝑛𝑦 = 8, max depth 2

(c) 𝑛𝑥 = 𝑛𝑦 = 16, max depth 1,
2500 solver steps.

(d) Pareto front ofmulti-objective
VDGN.

Figure 7: Trade-off between error and computational cost.
VDGN unlocks regions inaccessible by threshold policies.

7.1 Anticipatory Refinement
As discussed in Section 6.1, each mesh update incurs a computa-
tional cost, which means AMR practitioners prefer to have a long
duration of simulation time between each mesh update step. Fig-
ure 4 shows the growth of global error versus simulation time of
VDGN and Threshold policies with different 𝜏step between each
mesh update step. In the case of depthmax = 1, VDGN was trained
and tested using the longest duration 𝜏step = 125𝑑𝜏 (i.e., it has the
fewest mesh updates), but it matches the error of the most expen-
sive threshold policy that updates the mesh after each 𝜏step = 1𝑑𝜏
(see Figure 4a). This is possible only because VDGN preemptively
refines the contiguous region that will be traversed by the wave
within 125𝑑𝜏 (e.g., see Figure 5). In contrast, Threshold must up-
date the mesh every 1𝑑𝜏 to achieve this performance, since coarse
elements that currently have negligible error due to their distance
from the incoming feature do not refine before the feature’s arrival.

Moreover, in the case of depthmax = 2, the agents learned to
choose level-1 refinement at 𝑡 = 1 for a region much larger than the
feature’s periphery, so that these level-1 elements can preemptively
refine to level 2 at 𝑡 = 2 before the feature passes over them. This
is clearly seen in Figure 6. This enabled VDGN with 𝜏step = 100𝑑𝜏
(fewest update steps) to have error growth rate close to that of
Threshold with 𝜏step = 1𝑑𝜏 (see Figure 4b).

Symmetry. Comparing Figure 12 with Figure 5, we see that
VDGN policies are equivariant to rotation of initial conditions. Re-
flection equivariance is also visible for the opposite moving waves
in Figure 10. Translation equivariance can be seen in Figure 13.
Note that perfect symmetry holds only for rotation by integer mul-
tiples of 𝜋/2 and translation by integer multiples of the width of
a level-0 element. Symmetry violation from mesh discretization is
unavoidable for other values.

7.2 Pareto Optimality
Figure 7 shows that VDGN unlocks regions of the error-cost land-
scape that are inaccessible to the class of Threshold policies in all
of the mesh configurations that were tested. We ran a sweep over
refinement threshold 𝜃𝑟 ∈ [5×10−3, . . . , 5×10−8, 5×10−15] with de-
refinement threshold 𝜃𝑑 = 4 × 10−15. In the case of depthmax = 1, 2
with 500 solver steps, and depthmax = 1 with 2500 solver steps,
Figures 7a to 7c show that VDGN lies outside the empirical Pareto
front formed by threshold-based policies, and that VDGN Pareto-
dominates those policies for almost every value of 𝜃𝑟 : given a de-
sired error (cost), VDGN has much lower cost (error). The “In-
distribution” group in Table 1 shows that VDGN has significantly
higher efficiency than Threshold policies for all tested threshold
values, for depthmax = 1, 2.

To understand the optimality of VDGN policies, we further com-
pared multi-objective VDGN to brute-force search for the best
sequence of refinement actions in an anisotropic 1D advection
problem with 𝑛𝑥 = 64, 𝑛𝑦 = 1 and two mesh update steps. To
make brute-force search tractable, we imposed the constraint that
a contiguous region of 𝑛 elements are refined at each step (while
all elements outside the region are de-refined). We searched for
the starting locations of the region that resulted in lowest final
global error. By varying 𝑛, this procedure produces an empirical
Pareto front of such brute-force policies in the error-cost landscape,
which we plot in Figure 7d. For multi-objective VDGN, we trained
a single policy and evaluated it with 100 randomly sampled pref-
erences 𝜔 = [𝛼, 1 − 𝛼] where 𝛼 ∼ Unif[0, 1]. Figure 7d shows that
a single multi-objective VDGN policy produces a Pareto front (o)
that approaches the Pareto front formed by brute force policies
(o). Moreover, we see that Threshold policies with various refine-
ment thresholds (o) are limited to a small section of the objective
landscape, whereas VDGN unlocks previously-inaccessible regions.

Figure 8: Policy trained on isotropic 2D Gaussian can be ap-
plied to anisotropic 2D Gaussian.

Figure 9: Policy trained on isotropic 2D Gaussian can be ap-
plied to ring functions.

7.3 Generalization
Longer time. At training time for VDGN, each episode consisted
of approximately 400-500 FEM solver steps. We tested these policies
on episodes with 2500 solver steps, which presents the agents with
features outside of its training distribution due to accumulation of
numerical error over time. Table 1 shows that: a) VDGN maintain
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Table 1: Mean and standard error of efficiency of VDGN versus local error threshold-based policies, over 100 runs with uniform
random ICs. Policies used in generalization tests were trained on isotropic Gaussian features on a squaremeshwith quadrilateral
elements for less than 500𝑑𝜏 per episode. Last row shows the efficiency ratio of VDGN to the best threshold policy.

In-distribution Generalization

𝜃𝑟

Depth 1
375 steps

Depth 2
400 steps

Triangular
1250 steps

Depth 1
2500 steps

Depth 2
2500 steps

Anisotropic
2500 steps

Ring
2500 steps

Opposite
2500 steps

Star
750 steps

5 × 10−3 0.35 (0.01) 0.35 (0.01) 0.69 (0.02) 0.52 (0.02) 0.41 (0.01) 0.62 (0.02) 0.61 (0.02) 0.56 (0.002) 0.85 (0.01)
5 × 10−4 0.74 (0.02) 0.51 (0.01) 0.76 (0.01) 0.57 (0.02) 0.43 (0.02) 0.64 (0.02) 0.56 (0.02) 0.61 (0.01) 0.92 (0.01)
5 × 10−5 0.84 (0.01) 0.56 (0.01) 0.66 (0.02) 0.46 (0.02) 0.34 (0.02) 0.53 (0.02) 0.48 (0.02) 0.50 (0.01) 0.87 (0.01)
5 × 10−6 0.82 (0.01) 0.55 (0.01) 0.56 (0.02) 0.37 (0.02) 0.26 (0.01) 0.42 (0.02) 0.39 (0.02) 0.42 (0.01) 0.83 (0.01)
5 × 10−7 0.77 (0.01) 0.50 (0.01) 0.47 (0.02) 0.30 (0.02) 0.20 (0.01) 0.33 (0.02) 0.31 (0.02) 0.32 (0.01) 0.79 (0.01)
5 × 10−8 0.70 (0.01) 0.44 (0.01) 0.38 (0.02) 0.24 (0.02) 0.15 (0.01) 0.26 (0.02) 0.25 (0.02) 0.26 (0.01) 0.74 (0.01)
5 × 10−15 0.34 (0.01) 0.27 (0.01) 0.10 (0.01) 0.08 (0.01) 0.05 (0.003) 0.07 (0.01) 0.07 (0.01) 0.07 (0.01) 0.45 (0.02)

VDGN 0.92 (0.01) 0.66 (0.01) 0.80 (0.01) 0.84 (0.004) 0.73 (0.01) 0.78 (0.02) 0.82 (0.01) 0.63 (0.03) 0.93 (0.01)
VDGN/best 𝜃𝑟 1.10 1.18 1.05 1.47 1.70 1.22 1.34 1.03 1.13

Figure 10: Policy trained on one bump with one velocity can
be applied to two bumps with opposite velocities.

Figure 11: Policy trained on square mesh, run on a star mesh.

highest top performance; b) the performance ratio between VDGN
and the best Threshold policy actually increases in comparison to
the case with shorter time (e.g., 1.47 in the “Depth 1 2500 steps” col-
umn, as opposed to 1.10 in the “Depth 1” column). This is because
the error of threshold-based policies accumulates quickly over time
due to the lack of anticipatory refinement, whereas VDGN miti-
gates the effect. Figure 16 shows that VDGN sustains anticipatory
refinement behavior in test episodes longer than training episodes.

Out-of-distribution test problems. Even though VDGN poli-
cies were trained on square meshes with 2D isotropic Gaussian
waves, we find that they generalize well to initial conditions and
mesh geometries that are completely out of the training distribu-
tion. On anisotropic Gaussianwaves (Figure 8), ring-shaped features
(Figure 9), opposite-moving waves (Figure 10), star-shaped meshes
(Figure 11), VDGN significantly outperforms Threshold policies
without any additional fine-tuning or training (see the “General-
ization” group in Table 1). Figure 15 shows qualitatively that a
policy trained on quadrilateral elements shows rational refinement
decisions when deployed on triangular elements.

Scaling. Since VDGN is defined by individual node and edge
computations with parameter-sharing across nodes and edges, it is
a local model that is agnostic to size and scale of the global mesh.
Figures 17 and 18 show that a policy trained on 𝑛𝑥 = 𝑛𝑦 = 16 can
be run with rational refinement behavior on an 𝑛𝑥 = 𝑛𝑦 = 64 mesh.

8 RELATEDWORK
A growing body of work leverage machine learning and deep neural
networks [11] to improve the trade-off between computational cost
and accuracy of numerical methods: e.g., reinforcement learning for
generating a fixed (non-adaptive) mesh [24], unsupervised cluster-
ing for marking and 𝑝-refinement [31], and supervised learning for
target resolution prediction [21], error estimation [35], and mesh
movement [28]. The following three are the closest work to ours.
Yang et al. [39] proposed a global single-agent RL approach for
h-adaptive AMR. It does not naturally support refining multiple
elements per mesh update step, and anticipatory refinement was
not conclusively demonstrated. Gillette et al. [10] work within the
class of marking policies parameterized by an error threshold and
showed that single-agent RL finds robust policies that dynamically
choose the error threshold and outperform fixed-threshold policies
in elliptic problems. However, threshold-based policies may not
contain the optimal policy for time-dependent problems that re-
quire anticipatory refinement. Foucart et al. [9] proposed a local
single-agent RL approach whereby the agent makes a decision for
one randomly-selected element at each step. At training time, the
global solution is updated every time a single element action oc-
curs; at test time, the agent faces a different environment transition
since the global solution is updated only after it has acted for all
elements. Our multi-agent approach enables the definition of the
environment transition to be the same at training and test time.

9 CONCLUSION
We have formulated a Markov game for adaptive mesh refinement,
shown that centralized training addresses the posthumous credit
assignment problem, and proposed a novel multi-agent reinforce-
ment learning method called Value Decomposition Graph Network
(VDGN) to train AMR policies directly from simulation. VDGN
displays anticipatory refinement behavior, enabling it to unlock
new regions of the error-cost objective landscape that were inacces-
sible by previous threshold-based AMR methods. We verified that
trained policies work well on out-of-distribution test problems with
PDE features, mesh geometries, and simulation duration not seen in
training. Our work serves as a stepping stone to apply multi-agent
reinforcement learning to more complex problems in AMR.
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