
Stigmergy-based, Dual-Layer Coverage of Unknown Regions
Ori Rappel

Technion - Israel Institute of

Technology, Haifa, Israel

rappelori@campus.technion.ac.il

Michael Amir

Technion - Israel Institute of

Technology, Haifa, Israel

ammicha3@cs.technion.ac.il

Alfred M. Bruckstein

Technion - Israel Institute of

Technology, Haifa, Israel

freddy@cs.technion.ac.il

ABSTRACT
We present algorithms for uniformly covering an unknown indoor

region with a swarm of simple, anonymous and autonomous mobile

agents. The exploration of such regions is made difficult by the

lack of a common global reference frame, severe degradation of

radio-frequency communication, and ground obstacles. We propose

addressing these challenges by using airborne agents, such as Micro

Air Vehicles, in dual capacity, both as mobile explorers and, once

they land, as beacons that help other agents navigate the region.

The algorithms we propose are designed for a swarm of identical

ant-like agents with local sensing capabilities. The agents enter

the region, which is represented as a graph, over time from one

or more entry points and are required to occupy all of its vertices.

Unlike many works in this area, we consider the task of informing

an outside operator with limited information that the coverage

mission is complete. Even with this additional requirement we

show, both through simulations and mathematical proofs, that the

dual role concept results in linear-time termination, while also

improving many well-known algorithms in the literature in terms

of energy use.

KEYWORDS
swarm robotics, mapping and exploration, uniform dispersion, un-

known environment, dual-layer coverage, ant-like robots

ACM Reference Format:
Ori Rappel, Michael Amir, and Alfred M. Bruckstein. 2023. Stigmergy-based,

Dual-Layer Coverage of Unknown Regions. In Proc. of the 22nd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Rescue workers coming to a rescue scene have neither an up-to-date

map of the region nor a way of monitoring hazards such as harmful

chemical leakages or structural instability. For the workers to safely

and efficiently navigate the scene, it is desirable to continuously

monitor it before and during the workers’ operations. Several works

have proposed addressing this problem by flooding the region with

a swarm of simple, airborne agents prior to workers’ entrance

[7, 16, 17, 19]. The robots’ purpose is to explore and monitor the

scene in a distributed fashion, providing rescue workers with real

time, potentially life-saving information.

Swarm-robotic algorithms whose purpose is to flood an un-

known region with robots are broadly referred to as “uniform

dispersion” algorithms in the literature [19]. Uniform dispersion

algorithms are designed with an indoor, unknown rescue scene in

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

mind. Such a setting poses four unique challenges for multi-robot

systems: (i) robots’ movements may be hampered by rubble on the

ground or other obstacles, (ii) lack of a common reference frame

makes coordination based on common landmarks difficult or even

impossible, (iii) robots have limited energy stores and can only

operate at full capacity for a limited time, and (iv) in difficult indoor

rescue regions, severe multi-path and signal attenuation errors limit

radio frequency communication between the robots. Although nu-

merous works have been written about each of these challenges as

separate topics (see below the “Related work” section), we are not

aware of any prior work about uniform dispersion that attempts to

address all four challenges.

In this work, we propose overcoming these challenges by using

Micro Air Vehicles (e.g., small quadcopters), which we will refer to

as agents. We envision agents small enough to navigate difficult

indoor environments (such as collapsed buildings or underground

tunnels) and to settle inside. The agents enter the region one after

another via predefined entry points and explore it in a distributed

manner according to a local sensing-based algorithm. Agents grad-

ually create beacons throughout the region. These beacons help
agents navigate through local visual signals, and enable real time

monitoring and pathfinding inside the region.

This kind of airborne swarm approach is limited by several fac-

tors: first, using airborne agents comes at the cost of limited flight

time due to their high power consumption and limited battery ca-

pacity. Next, although rescue scenes such as collapsed buildings

befit small agents, their limited payload capability severely limits

their ability to carry and dispense the aforementioned beacons. To

overcome both energy and payload limitations, rather than have

beacons be something that the agents dispense throughout the re-

gion, our idea is to let the agents settle down as soon as possible

and act as beacons themselves, so as both to conserve energy and

guide the remaining flying agents. This idea draws upon the bio-

inspired concept of stigmergy–communication via the environment

[20, 29, 31]. In swarm robotics, stigmergy is usually implemented

through agents deploying beacons, “virtual pheromones”, or other

kinds of marks inside the environment. In contrast, our implementa-

tion of stigmergy utilizes agents themselves as a medium to change

the state of the environment by having agents become beacons.
The algorithmswe propose successfully cover regions that can be

represented as a graph G(𝑉 , 𝐸), where vertices represent locations

and edges between them represent the ability of an agent to move

from one location to the next. For the sake of concreteness, we

model the rescue scene as a discrete 2D grid graph composed of

equally sized cells (Figure 3).We assume that each cell can contain at

most two agents: one agent on the ground serving as a beacon, and

one agent flying above-ground. Once an agent enters the region it

moves autonomously according to a local sensing-based algorithm.

As is common in swarm robotics, we assume the agents to be

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1439

anonymous and identical, hence executing the same algorithm.

The algorithm results in an environment uniformly covered with

beacons, such that each cell of the grid graph contains a beacon.

We assume agents are capable of reading local visual signals from

nearby beacons. Visual signals (i.e., lights) can encode information

using color and blinking frequency, as shown in e.g. [21]. Since the

agents’ direct (e.g., radio) communication capabilities are severely

degraded, they rely on these signals to navigate the environment.

Results. We present several stigmergy-based “gradient ascent”

algorithms for uniformly filling the region with beacons and study

their time to completion and energy use via simulations and formal

analysis. The algorithms work by maintaining and growing a sub-

region of beacons that generate a virtual “gradient” which flying

agents ascend to efficiently find new locations to explore. We prove

that the algorithms’ time to completion is linear in the size of the

environment in both a synchronous and a bounded asynchronous

time setting (in the sense of [12]). The best-performing algorithm

that we study is the “Single-Layer Unlimited Gradient” (SLUG) al-

gorithm. We compare SLUG to recent works [3] as well as to the

well-known, non-stigmergy based algorithms of Hsiang et al. [19]

and find that SLUG’s energy use is significantly lower, suggesting

that dual layer-based approaches to coverage have significant en-

ergy savings over traditional approaches. Desirably, we also show

that SLUG can recover from several kinds of crashes and errors.

An often overlooked topic in swarm robotics which is especially

relevant in non-synchronous time settings (where we cannot infer

much from the passage of time) is the ability of an operator to

detect mission completion. In this work, we take the perspective

that an external observer’s (e.g., a rescue worker’s) ability to tell

whether the agents have completed the coverage mission is just as

important as the agents’ ability to do so. Hence, in our view, the

agents’ labor is not complete until they have managed to somehow

deliver information about the job’s completion to such an observer.

The primary metric we study and minimize is thus termination time

- the earliest point in time in which robots can inform an external

observer monitoring only the region’s entry points that the region

is completely covered with beacons. We show that the observer can

quickly and correctly be informed of mission termination through

back-propagation of the beacons’ states.

Related work.Many works have been written on the topic of

multi-agent deployment under constraints [1, 10, 24, 25, 30]. The

problem of completely filling an environment with robots in a de-

centralized fashion is often called “uniform dispersion.” The version

of uniform dispersion we consider in this work can be traced back

to Hsiang et al. [19] or to Howard et al. [17, 18]. The literature on

uniform dispersion and related problems can be organized accord-

ing to assumptions regarding the capabilities of the agents, the time

scheme used (synchronous or asynchronous), the initial location

of the agents, and the properties of the region. As an example, in

[19], agents are assumed capable of direct (radio-based) inter-agent

communication, time is synchronous, agents are initially located

outside the region, and the region is grid-like. Conversely, in some

works the initial location of the agents may be inside the region

[9, 17]. The region to be covered may be a continuous part of the

two-dimensional plane [17, 22, 23, 29] or modelled as a discrete

graph (usually as a grid graph) [7–9, 15, 16, 19].

In this work we broadly follow Hsiang et al. [19]’s setting and

assume that our agents are initially located outside the region,

gradually entering it via predefined entry points. However, whereas
Hsiang et al.’s algorithms require synchronous time and direct

inter-agent messaging, our algorithms only require indirect visual

communication and can operate in a bounded asynchronous time

scheme. Additionally, unlike [19] and most works in this area, we

focus on external detection of coverage completion rather than

just achieving coverage. Hsiang et al.’s problem setting and model

are extended in numerous works including [2, 3, 7–9, 15, 16]. The

closest work to ours among these is [3], in which the concept of

covering an environment with two layers of agents is similarly

explored. The coverage algorithm presented in [3] (“DLTT”) is used

as a benchmark in our simulation results. We show that SLUG beats

it significantly in terms of termination time and energy use.

Stigmergy-based graph exploration strategies in which agents

place beacons in the environment to aid the exploration process are

widely studied [11, 14]. In contrast to the majority of these works,

our robots do not deploy beacons in the environment, but become
them. We show that using agents themselves as beacons results in
highly attractive properties, including significant energy savings

and ant-like recovery from crashes and errors. The idea of using

settled airborne agents as beacons was first studied by Stirling

et al. [28, 29] and later by Aznar et al. [4, 5] with the objective

of exploring (not coverage) and in [3, 26] with the objective of

coverage. In [26] the authors present a uniform coverage algorithm

based on stigmergy and depth-first search, however the number

of agents in each cell is not limited and agents possess unique

IDs. The assumption of unique IDs is made in [5, 6, 28, 29] as well.

Conversely, in this work and in [3] (whose DLTT algorithm we

improve upon, as per the previous paragraph) it is assumed all

robots in the swarm are anonymous and identical.

Energy is the primary constraint on the performance of swarms

composed of flying agents, and energy consumption is often mea-

sured as a performance metric [2, 5, 26, 29]. In [2], a time and

energy-optimal uniform dispersion algorithm for simply connected

environments is presented alongside theoretical lower bounds on

energy use in general environments. Aznar et al. [5] propose pre-

dicting energy consumption via recurrence equations. We study our

algorithms’ energy use in Section 4, measuring both the maximum

individual energy use of an agent and the cumulative energy use of

the swarm. Our thesis, which is corroborated by simulation results

(Section 4), is that a stigmergy-based approach where agents can

land and become beacons leads to significant energy savings.

2 MODEL AND PROBLEM FORMULATION
In this section we define the beacon coverage problem, a type of

uniform dispersion task wherein a swarm of agents seeks to com-

pletely cover a discretized, a priori unknown environment R with

beacons and to detect termination, such that in the final configura-

tion every location in R contains a beacon and an external observer

monitoring only the state of the agents at the region’s entry points

is capable of detecting that the coverage mission is complete.

We model R as a graph G(𝑉 , 𝐸) whose vertices, 𝑉 , represent

locations in R and whose edges, E, represent the connections be-
tween locations. We define 𝑛 = |𝑉 | and𝑚 = |𝐸 |. For simplicity, we

assume here that G is an arbitrary grid graph composed of equally

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1440

sized cells. However, this assumption is not required by our algo-

rithms and formal analysis, both of which can readily be extended

to arbitrary graph environments.

We assume a sufficiently large swarm of identical and anony-

mous robots 𝑎1, 𝑎2, . . . is ready to enter the region one by one via

predefined entry points located somewhere in R. 𝑎𝑖 is defined to

be the 𝑖th robot that enters R.

2.1 The Agents
At all times, an agent is either in flight and searching for a place to

settle, or has already settled somewhere in R. The former type of

agent is called mobile whereas the latter is called a beacon. Beacons
have two sub-states: they can be open or closed. Beacons remain in

place forever, conserving energy, and their function is to provide

simple information to nearby mobile agents via visual signals.

Agents are assumed to be identical (they all act according to the

same algorithm), anonymous (have no identifiers) and autonomous.

Agents wake up once per time step and perform a Look, Compute

andMove action cycle. An agent can sense other agents’ presence at

any vertex neighboring its location. As we assumeR is a grid graph,

this means agents sense adjacent cells at Manhattan distance 1 from

themselves. Mobile agents are allowed to move to an adjacent cell

as long as that cell contains no other mobile agent. Mobile agents

can settle and become beacons at any adjacent cell that contains

no other beacons. Hence, each cell of R may contain at most one

mobile agent and one beacon, reflecting the idea that beacons have

landed on the ground and mobile agents can fly above them.

Definition 2.1. The set of agents and cells sensed by agent 𝑎𝑖 at

time 𝑡 , denoted 𝜉(𝑖, 𝑡), is called “the neighborhood of 𝑎𝑖 at time 𝑡 .”

All agents are capable of detecting the state of agents in their

neighborhood (mobile, open beacon, closed beacon). Each agent 𝑖

further keeps track of an integer called a step count 𝑠𝑖 . Beacons are

capable of projecting their step counts to neighboring agents.

2.2 Time Model
The algorithms we describe work in many kinds of synchronous,

semi-synchronous and asynchronous time settings. For the pur-

poses of formal modelling and time bound analysis, in this pa-

per we focus on a type of fair 2-bounded asynchronous scheduler

(in the sense of [12]). Time, 𝑡 , is divided into integer time steps

𝑡 = 0, 1, 2, 3, . . ., such that each time step is further sub-divided into

𝑀 equal sub-time steps of duration 𝑑𝑡 = 1/𝑀 . Let𝑈 (0, 𝑀−1) denote

the uniform distribution over the integers {1, 2, . . . 𝑀 − 1}, and let

𝑡𝑖,𝑘 denote the 𝑘th time that agent 𝑎𝑖 wakes up. We define:

𝑡𝑖,𝑘 = 𝑘 +

𝑈 (0, 𝑀 − 1)

𝑀
(1)

In other words, at every time step, each agent wakes up during a

randomly chosen sub-time step (see Figure 1). An agent that wakes

up at time 𝑡 senses the configuration of agents at the previous

sub time step 𝑡 − 𝑑𝑡 . If two agents attempt to move to the same

location at the same sub time-step, we assume one of them stays

put arbitrarily. This kind of time scheme is applicable to scenarios

in which agents have an internal timer that wakes them up at some

fixed nominal rate, but are not controlled by a centralized scheduler

that guarantees precise synchronization between the agents’ clocks.

Figure 1: An illustration of the time scheme. Large vertical bars
indicate the beginning of time steps; the short bars indicate sub-time
steps. The randomly chosen wake-up times of agents 𝑖 − 1, 𝑖 and 𝑖 + 1

are depicted.

For the rest of this work, unless stated otherwise, the phrase “at

time step 𝑡” refers to the time interval [𝑡, 𝑡 + 1), and the phrase “at

time 𝑡” refers to the configuration of the agents at sub-time step 𝑡 ,

after any agent wake-ups.

As a special case, our time bound result (Theorem 3.1) holds also

for synchronous time schemes where all agents always wake up at

the same sub-time step.

2.3 Agent Entry Model
Agents are initially outside the region and enter the region one

by one via predefined entry points. We assume a constant rate

entry model in which the time between successive entry attempts

of agents to the region through an entry point is bounded by an

integer parameter ∆𝑇 ≥ 1. Specifically, let 𝑝 be an entry point in R.
For every integer 𝑘 ≥ 0, an agent will enter 𝑝 at the earliest sub-

time step 𝑡0 ∈ [𝑘∆𝑇, (𝑘 + 1)∆𝑇) at which 𝑝 contains no mobile agent.

Since 𝑡0 is unique by definition (there is just one “earliest” time

𝑡 ∈ [𝑘∆𝑇, (𝑘 + 1)∆𝑇) where 𝑝 is empty), at most 𝑘 agents can enter

the region before time 𝑘∆𝑇 . An agent entering the environment at

a given time step remains there without waking for the rest of the

current time step and activates only at the subsequent time step.

Although many works in the literature of robotic coverage as-

sume similar entry models, the effect of the entry process on mis-

sion completion time is rarely explored in depth. The interaction

between the entry delay ∆𝑇 and the coverage algorithm is espe-

cially important when trying to develop a tight upper bound on

the time to mission completion. We study this topic in Sections 3.1

(analytically) and 4 (empirically).

2.4 The Agents’ Mission
It is common in works on multi-robot coverage to place primary

importance on the amount of time a coverage algorithm takes to

complete. One limitation of this approach is that an external ob-

server cannot necessarily tell that coverage has been completed,

and might not be able to proceed to the next stage of their operation

without such information. In this work, we take the perspective

that an external observer’s ability to tell whether the agents have ar-

rived at the desired configuration is just as important as the agents’

ability to do so, and so the agents’ mission is not complete until

they have managed to somehow deliver this information to such

an observer. In light of this, our agents’ mission is both (a) to com-

pletely cover R with beacons and (b) to deliver this information

back to external observers. Since R is an a priori unknown region,

we assume external observers can only see and read the states of

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1441

the agents at each of R’s entry points. We then follow the conven-

tion that, to announce mission completion, each entry point must

contain a closed beacon. Formally:

Definition 2.2. The termination time,𝑇𝐶 (R), of the multi-agent

system with respect to an environmentR is the first time 𝑡 at which

every entry point contains a closed beacon. The algorithm is said

to have executed correctly if every cell contains an (open or closed)

beacon at termination time. The termination time step is defined

as the first time step after termination occurs, i.e., ⌈𝑇𝐶 (R)⌉.
We are also interested in the total energy use of a multi-agent

system as a measure of its efficiency.We assume here that the power

consumption of a mobile agent is constant and that once an agent

becomes a beacon its energy consumption is 0 (since it no longer

needs to fly). Hence energy consumption is linear with respect to

the time an agent is mobile, and the total energy used is the sum of

the flight times of all the agents:

Definition 2.3. The energy consumption of an agent 𝑎𝑖 , denoted

𝐸𝑖 , is the duration of time 𝑎𝑖 spends as a mobile agent after entering

R up to time 𝑇𝐶 (R).

Definition 2.4. Assuming 𝑘 agents entered R before time 𝑇𝐶 (R),

the swarm’s total energy consumption is equal to

∑𝑘
𝑖=0

𝐸𝑖 . Total

energy consumption is denoted by 𝐸𝑡𝑜𝑡𝑎𝑙 (R).

We may also consider the maximal energy use of an agent in the

system.Whereas total energymeasures the swarm’s cost-effectiveness

(e.g., how much fuel or electricity it consumes), maximum energy

tells us what energy storage capabilities our robots require to com-

plete the mission:

Definition 2.5. The maximum energy consumption of a multi-

agent system with respect to an environment R is equal to max𝐸𝑖 ,

the maximum energy used among all agents at termination time.

We note that even after the termination time, redundant mobile

agents may remain in R and continue consuming energy. Although

post-termination energy use is not one of the main metrics we

explore in this paper, we will later show that beacons can be used

to send redundant agents back to entry points where they can be

recovered and stop consuming energy.

3 ALGORITHMS
In this section we describe two beacon coverage algorithms: “Dual-

Layer Limited Gradient,” abbreviated DLLG, and “Single-Layer Un-

limited Gradient,” abbreviated SLUG. DLLG is a relatively straight-

forward algorithm that completely fills the region with two layers

of agents: beacons and mobile agents. We study its properties and

prove that, when there is one entry point, its termination time step

obeys the inequality (2𝑛 − 1)∆𝑇 + 1 ≤ ⌈𝑇𝐶 (R)⌉ ≤ (2𝑛 − 1)∆𝑇 + 2 for

∆𝑇 ≥ 2. We then discuss SLUG, which is a strict improvement over

DLLG and uses DLLG as a building block. SLUG improves DLLG in

two ways: by making better use of closed beacons, and by enabling

greater freedom of movement for the robots. These improvements

can be implemented separately. In Section 4, we study (numerically)

the contribution of each type of improvement to the algorithm’s

performance in terms of termination time and energy use.

In addition to its performance improvements over DLLG, SLUG

can recover from various errors and crash faults - see Section 3.2.

3.1 Dual-Layer Limited Gradient
The idea of DLLG is to have mobile agents read the step counts

of neighboring beacons and treat them as a gradient which they

must ascend. Specifically, at every time step, mobile agents with

step count 𝑠𝑖 attempt to move to neighboring locations that contain

a beacon with step count 𝑠𝑖 + 1. Hence, the step count of every

mobile agent necessarily equals the step count of the beacon it

flies over, and agents are always “climbing” the gradient defined by

the beacons in single-step increments. Mobile agents themselves

become beacons over time: as a first priority, whenever a mobile

agent sees a neighboring empty cell, it attempts to settle in that

cell, changing its state to “open beacon” and thereafter signaling

its step count to any agent that sees it. Beacons become “closed”

in a backpropagating fashion until each entry point contains a

closed beacon. Specifically, open beacons become “closed” when

they contain a mobile agent, all their neighboring cells contain

beacons, and every neighboring beacon with higher step count

(if any such neighbor exists) is a closed beacon. This condition

guarantees that the algorithm terminates when precisely 2𝑛 agents

are present in the region: 𝑛 mobile agents and 𝑛 closed beacons.

DLLG is a distributed algorithm that is implemented via a local

action rule that all agents in R execute at every time step. The

local rule for agent 𝑎𝑖 at time 𝑡 is defined by Algorithm 1. Lines

1-9 of Algorithm 1 govern mobile agents’ behavior and we shall

refer to them as the mobile agent action rules. Lines 10-11 govern
the behavior of beacons and shall be referred to as beacon action
rules. In DLLG, beacon action rules are only necessary for detecting

termination; the mobile agent action rules are entirely sufficient

for the coverage process itself.

Algorithm 1 Local rule for agent 𝑎𝑖 waking up at time 𝑡 + 𝑑𝑡 and

executing Dual-Layer Limited Gradient.

Require: 𝑎𝑖 has entered R
1: if 𝑎𝑖 is a mobile agent then
2: if 𝜉(𝑎𝑖 , 𝑡) contains an empty cell 𝑢 then
3: 𝑎𝑖 moves to 𝑢

4: 𝑎𝑖 sets state to “open beacon”

5: 𝑠𝑖 ← 𝑠𝑖 + 1

6: else if 𝜉(𝑎𝑖 , 𝑡) contains a cell 𝑢 with exactly one agent 𝑎 𝑗
and 𝑎 𝑗 is an open or closed beacon and 𝑠 𝑗 = 𝑠𝑖 + 1 then

7: 𝑎𝑖 moves to 𝑢

8: 𝑠𝑖 ← 𝑠𝑖 + 1

9: end if
10: else if 𝑎𝑖 is an open beacon and there is a mobile agent at 𝑎𝑖 ’s

location and every beacon 𝑎 𝑗 ∈ 𝜉(𝑎𝑖 , 𝑡) with 𝑠 𝑗 > 𝑠𝑖 is closed

and 𝜉(𝑎𝑖 , 𝑡) does not contain an empty cell then
11: 𝑎𝑖 sets state to “closed beacon”

12: end if

We can think of DLLG as creating a directed acyclic graph D
whose vertices are beacons and where there is an edge from a

beacon 𝑎𝑖 to any neighboring beacon whose step count is 𝑠𝑖 + 1

(Definition 3.2). Mobile agents are only allowed to move via directed

edges of this DAG, and they follow the paths induced by its edges

until the region is completely filled.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1442

Analysis. The rest of this section concerns the mathematical analy-

sis of DLLG. We prove that when ∆𝑇 ≥ 2, the termination time step

⌈𝑇𝐶 (R)⌉ of DLLG over any environment with one entry point obeys

the inequality (2𝑛 − 1)∆𝑇 + 1 ≤ ⌈𝑇𝐶 (R)⌉ ≤ (2𝑛 − 1)∆𝑇 + 2 (Theorem

3.1). This bound on termination is deterministically true regardless

of the randomly determined wake-up times of the agents in a given

run of DLLG, as long as we agents obey our bounded asynchronous

time scheme; in particular, it remains true if we assume all agents

always wake up at the same sub-time step, i.e., remains true in a

synchronous time scheme.

Theorem 3.1. If ∆𝑇 ≥ 2, the termination time step ⌈𝑇𝐶 (R)⌉ of
DLLG over any environment R with 𝑛 cells and one entry point obeys
the inequality (2𝑛 − 1)∆𝑇 + 1 ≤ ⌈𝑇𝐶 (R)⌉ ≤ (2𝑛 − 1)∆𝑇 + 2.

When there are multiple entry points, or when ∆𝑇 = 1, intuition

and countless numerical simulations suggest that the termination

time of any execution of DLLG is bounded by, but can be lower

than (2𝑛 − 1)∆𝑇 + 2. The formal time bound analysis of these two

situations, and especially the ∆𝑇 = 1 case, is (surprisingly) much

more complex and is left as an open problem.

For the rest of this section, let 𝑝 be the lone entry point of R.
As mentioned earlier in this section, DLLG implicitly generates a

directed acyclic graph D which spans R. Let us formally define D.

Definition 3.2. In a given execution of DLLG, define D(𝑡) to be

the subgraph of R rooted at 𝑝 whose vertices are all the vertices of

R containing beacons at time 𝑡 , and where there is an edge (𝑢, 𝑣) if𝑢

contains a beacon 𝑎𝑖 and 𝑣 contains a beacon 𝑎 𝑗 such that 𝑠 𝑗 = 𝑠𝑖 +1.

We define D = D(∞).

We note that D might not be the same between different runs

of DLLG—its precise structure depends on the stochastic activation

times of the agents, as well as their sometimes arbitrary movement

decisions. Since it is simpler to think in deterministic terms, for the

rest of this section we will be studying a fixed, arbitrary execution

of DLLG over R, thus we may assume D is fixed.

If D(𝑡) does not contain all cells in R, then there is at time 𝑡 a

beacon 𝑎𝑖 which is adjacent to an empty cell 𝑢. There is necessarily

also a path in D(𝑡) from 𝑝 to 𝑎𝑖 . DLLG constantly sends agents

across the edges of D(𝑡), thus eventually an agent will arrive at 𝑢.

This argument shows thatD(𝑡) grows with 𝑡 until there is a beacon

at every cell of R. Hence D contains every vertex of R.
To prove Theorem 1 we first need to study the structure of D.

We make use of the following definitions:

Definition 3.3. The children of a vertex 𝑣 ∈ D are all vertices

reachable from 𝑣 via a directed path of D. A leaf of D is a vertex

𝑣 ∈ D with no children.

Definition 3.4. Let 𝑣 be a vertex of D and let 𝑎𝑖 be the beacon

at 𝑣 . Let 𝑡 be the sub-time step in which 𝑎𝑖 becomes a beacon. The

depth of 𝑣 , denoted 𝑑𝑒𝑝𝑡ℎ(𝑣), is the step count 𝑠𝑖 of 𝑎𝑖 at time 𝑡 (e.g.,

𝑑𝑒𝑝𝑡ℎ(𝑝) = 0, since the beacon at 𝑝 has step count 0).

Definition 3.5. 𝑑𝑖𝑠𝑡 (𝑝, 𝑣) is the number of edges of the shortest

directed path in D from 𝑝 to 𝑣 .

Lemma 3.6. 𝑑𝑖𝑠𝑡 (𝑝, 𝑣) = 𝑑𝑒𝑝𝑡ℎ(𝑣)

Proof. By definition, the directed edges of D determine which

vertices a mobile agent can move to from a given location. In the

DLLG algorithm, a mobile agent whose step count is 𝑠 can only

move to vertices of depth 𝑠 + 1. Hence, an agent can only move

from 𝑝 to 𝑣 in exactly 𝑑𝑒𝑝𝑡ℎ(𝑣) steps, which means 𝑑𝑖𝑠𝑡 (𝑝, 𝑣) must

equal 𝑑𝑒𝑝𝑡ℎ(𝑣). □

We define next the “depth” of an agent (Definition 3.7), a time-

dependent value associated with the agent. At every time step 𝑡 , we

keep track of the depth of both agents inside R and agents outside

R that will enterR in the future. When 𝑎𝑖 is insideR, we shall show
in Lemma 3.9 that its depth is related to the depth of the vertex 𝑣 it

is located at (Definition 3.4).

Definition 3.7. Let𝑊𝑖 (𝑡) B { 𝑡 ′ | 0 ≤ 𝑡 ′ ≤ 𝑡∧𝑎𝑖 wakes up at time 𝑡 ′ }
be the set of wake-up times of agent 𝑎𝑖 before time 𝑡 (inclusive), and

define𝑊 ∗
𝑖

(𝑡) B { 𝑡 ′ ∈ Z | 0 ≤ 𝑡 ′ ≤ 𝑡∧𝑎𝑖 has not entered R at time 𝑡 ′ − 𝑑𝑡 }
to be the set of integer times that 𝑎𝑖 begins outside R.

The depth of an agent 𝑎𝑖 at time 𝑡 is defined as follows:

𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 , 𝑡) B |𝑊𝑖 (𝑡)|+|𝑊 ∗𝑖 (𝑡)|−(𝑖 − 1)∆𝑇

The expression |𝑊𝑖 (𝑡)|+|𝑊 ∗𝑖 (𝑡)| in Definition 3.7 counts the num-

ber of times 𝑎𝑖 has woken up by time 𝑡 , treating the integer times

where 𝑎𝑖 is outside R as “virtual” wake-ups. Every agent increases

its depth exactly once per time step during some sub-time step

(note that this is not the same as moving to a vertex of greater

vertex depth). Example: suppose that ∆𝑇 = 2, that the agent 𝑎3

enters R at time 𝑡 = 4, and that its first wake-up time occurs at time

5 + 3𝑑𝑡 . Then 𝑑𝑒𝑝𝑡ℎ(𝑎3, 2) = −2, 𝑑𝑒𝑝𝑡ℎ(𝑎3, 3) = −1, 𝑑𝑒𝑝𝑡ℎ(𝑎3, 4) = 0,

𝑑𝑒𝑝𝑡ℎ(𝑎3, 5 + 𝑑𝑡) = 0, 𝑑𝑒𝑝𝑡ℎ(𝑎3, 5 + 3𝑑𝑡) = 1 (see Section 2.2 for the

definition of 𝑑𝑡). In this example 𝑎3 enters R exactly when its depth

is 0. In Lemma 3.9 we prove this must always be the case.

Definition 3.8. The vertex location of the agent 𝑎𝑖 at time 𝑡 is

denoted 𝑣(𝑎𝑖 , 𝑡).

Lemma 3.9. Assuming ∆𝑇 ≥ 2, at any time 0 ≤ 𝑡 ≤ 𝑇𝐶 (R) the
following holds for any vertex 𝑣 ∈ D and any mobile agent 𝑎𝑖 :

(1) If (𝑖 − 1)∆𝑇 ≤ 𝑡 , 𝑎𝑖 has entered R at time (𝑖 − 1)∆𝑇 (which is
the time 𝑎𝑖 ’s depth equals 0).

(2) If 𝑣(𝑎𝑖 , 𝑡) contains an open beacon then𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 , 𝑡) = 𝑑𝑒𝑝𝑡ℎ(𝑣(𝑎𝑖 , 𝑡))

or the beacon at 𝑣(𝑎𝑖 , 𝑡) becomes a closed beacon by time
⌈𝑡⌉ − 𝑑𝑡 .

(3) If 𝑣 contains a closed beacon, it contains a mobile agent and
all its children are closed beacons.

Proof. (Sketch.) We prove this lemma by induction on 𝑡 . The

base case is straightforward: at any time in [0,∆𝑇), there is just

one agent at 𝑝 with depth 0, thus statements (1)-(3) hold. Next, we

assume for induction that at times 0, 1, . . . , 𝑡 , statements (1)-(3) are

true, and show that that (1)-(3) are true at time 𝑡 + 𝑑𝑡 as well. Due

to space constraints, for the full details of the proof please see the

full version of this paper [27]. □

Corollary 3.10. DLLG fills the graph with 2𝑛 agents, such that
the last agent always enters at time (2𝑛 − 1)∆𝑇 .

Corollary 3.10 follows immediately from Lemma 3.9, (1). We now

prove Theorem 3.1.

Proof. Let us first establish the lower bound. Lemma 3.9, (3)

implies that termination can only occur when R contains 2𝑛 agents

(𝑛 mobile and 𝑛 closed beacons). Corollary 3.10 says that agent 𝑎2𝑛

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1443

enters at time (2𝑛 − 1)∆𝑇 . The beacon at 𝑝 can only become closed

once it wakes up and sees agent 𝑎2𝑛 , hence ⌈𝑇𝐶R⌉ ≥ (2𝑛 − 1)∆𝑇 + 1.

It remains to establish the upper bound. When 𝑎2𝑛 entersR there

are 𝑛 mobile agents inR. By time (2𝑛−1)∆𝑇 + 2−𝑑𝑡 , 𝑎2𝑛 has woken

up at least once, hence its depth is 1, but it could not have moved

because every vertex in the graph contains a mobile agent. Hence

by Lemma 3.9, (2), 𝑝 is closed at time (2𝑛−1)∆𝑇 +2−𝑑𝑡 , establishing
⌈𝑇𝐶R⌉ ≤ (2𝑛 − 1)∆𝑇 + 2. □

The bound of Theorem 3.1 is precise. Whether the termination

time step is (2𝑛−1)∆𝑇 + 1 or (2𝑛−1)∆𝑇 + 2 depends on the wake-up

times of the agents. The upper bound (2𝑛−1)∆𝑇 +2 can for example

be attained on a region that is a linear path of 𝑛 vertices (Figure 3,

(a)), by always waking up the beacons before the mobile agents at

each time step; the lower bound (2𝑛 − 1)∆𝑇 + 1 is attained on the

same region by always waking the beacons after the mobile agents.

3.2 Single-Layer Unlimited Gradient
In the previous section we studied the DLLG algorithm, which

terminates with 2𝑛 agents in R - 𝑛 agents and 𝑛 beacons. DLLG is

limited by two factors:

(1) Agents can traverse only the edges of the directed acyclic

graph D, but oftentimes there are edges in R that are not in

D which could shorten the agents’ paths.

(2) The algorithm requires 2𝑛 agents to be present in R before

termination can be detected, but only 𝑛 agents are necessary

to cover R.
The Single-Layer Unlimited Gradient algorithm (Algorithm 2)

addresses these weaknesses through three straightforward improve-

ments to DLLG. The first improvement SLUGmakes is using “looser”

(i.e., less constrained) agent traversal rules. In DLLG, a mobile agent

𝑎𝑖 can only move to a beacon whose step count is 𝑠𝑖 + 1. In SLUG, 𝑎𝑖
can move to any beacon whose step count is greater than 𝑠𝑖 (if 𝑎𝑖 ’s

step count is 5, it can move to a beacon with step count 6, or 10, or

100, etc.). Under this “unlimited gradient” traversal rule, the agents
still implicitly generate and traverse a DAG D that spans the cells

of 𝑅, but D has many more edges for the agents to traverse.

The second improvement of SLUG is its better use of stigmergy

and beacons. DLLG is heavily redundant, requiring both a mobile

agent and a beacon at every location, and closed beacons are used

only to signal the algorithm’s termination to an external observer.

In SLUG, closed beacons back-propagate without requiring a mobile

agent to be on top of them, meaning that we only require a beacon at

every vertex to attain termination (hence “Single-Layer” Unlimited

Gradient). Moreover, in SLUG, closed beacons are used as a signal

for mobile agents not to enter already-explored regions.

The third improvement is giving mobile agents flying above

closed beacons the ability to descend (rather than ascend) the gra-

dient of step counts, enabling them to move from fully explored

areas to either unexplored areas or back to the entry point, if they

cannot find any. Specifically, whereas mobile agents located at open

beacons attempt to ascend the gradient (Algorithm 2, lines 6-8),

mobile agents located at closed beacons attempt to descend the

gradient (lines 9-11). This modification speeds up the exploration

process. It also naturally results in redundant mobile agents going

back toward an entry point at the end of the algorithm’s execution,

should the operator wish to recover them. We find this feature

important enough to point out, despite the matter of mobile agent

recovery not being a main focus of this work.

Algorithm 2 Local rule for agent 𝑎𝑖 waking up at time 𝑡 + 𝑑𝑡 and

executing Single-Layer Limited Gradient.

Require: 𝑎𝑖 has entered R
1: if 𝑎𝑖 is a “mobile” agent then
2: if 𝜉(𝑎𝑖 , 𝑡) contains an empty cell 𝑢 then
3: 𝑎𝑖 moves to 𝑢

4: 𝑎𝑖 sets state to “open beacon”

5: 𝑠𝑖 ← 𝑠𝑖 + 1

6: else if 𝜉(𝑎𝑖 , 𝑡) contains a cell 𝑢 with just one agent 𝑎 𝑗 and
𝑎 𝑗 is an open beacon and 𝑠 𝑗 > 𝑠𝑖 then

7: 𝑎𝑖 moves to 𝑢

8: 𝑠𝑖 ← 𝑠 𝑗
9: else if 𝑎𝑖 ’s current location contains a closed beacon and

𝜉(𝑎𝑖 , 𝑡) contains a cell 𝑢 with just one agent 𝑎 𝑗 and 𝑎 𝑗 is an

open or closed beacon and 𝑠 𝑗 < 𝑠𝑖 then
10: 𝑎𝑖 moves to 𝑢

11: 𝑠𝑖 ← 𝑠 𝑗
12: end if
13: else if 𝑎𝑖 is an open beacon and every beacon 𝑎 𝑗 ∈ 𝜉(𝑎𝑖 , 𝑡)

with 𝑠 𝑗 > 𝑠𝑖 is closed and 𝜉(𝑎𝑖 , 𝑡) does not contain an empty

cell then
14: 𝑎𝑖 sets state to “closed beacon”

15: end if

An example run of SLUG in a square grid region is depicted in

Figure 2. Simulation results suggest that SLUG terminates faster

than DLLG, and that its total energy use tends to be an order of

magnitude smaller (see Section 4).

Figure 2: Snapshots from a run of SLUG ordered left to right, top to
bottom. Empty cells are black, obstacles are white, cells containing
an open beacon are yellow and cells containing a closed beacon are
brown. Beacons’ step count is denoted by the red numbers. Green
“X”s are mobile agents that have never entered a closed beacon’s lo-
cation, and red “X”s are mobile agents that have. Red agents descend
the gradient until they find new open beacons. ⌈𝑇𝐶 (R)⌉ = 508.

“Ant-like” recovery from crash faults and errors. An often-sought

property of multi-robot systems is their ability to recover from

crash faults and memory errors. The mobile agent layer of SLUG

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1444

is provably resilient to crash faults: a mobile robot can crash and

disappear from the environment at any time without affecting the

algorithms’ correctness (and often barely affecting termination

time). Furthermore, three straight-forward changes to SLUG can

be implemented to make the mobile agents provably resilient to

memory corruption and positional errors, without any additional

assumptions. Due to space constraints, please see the full version

of this paper: [27].

4 SIMULATION RESULTS AND BENCHMARKS
In this section we employ numerical simulations to study the per-

formance of SLUG and DLLG in terms of energy, termination time,

and other related parameters, and compare these algorithms to

well-known algorithms from the literature.

Recall that SLUG makes two independent conceptual improve-

ments over DLLG: (i) it has looser traversal rules, and (ii) it makes

better use of closed beacons. It is interesting to ask what each of

these improvements provides: what is the the impact of looser, or

stricter traversal rules on DLLG’s termination time and energy use?

What is the impact of the closed beacon strategy?

We investigate these questions numerically by comparing the

termination time and energy use of DLLG to SLUG and to two

variants of DLLG: a variant with stricter traversal rules called Dual-
Layer Tree Traversal (DLTT), and a variant with looser traversal

rules called Dual-Layer Unlimited Gradient (DLUG). All three Dual-
Layer algorithms operate under the same underlying principle of

gradient climbing and dual-layer coverage, filling R with 𝑛 mobile

agents and 𝑛 closed beacons—the only difference is the underlying

directed acyclic graph which the agents construct and traverse, D.

In DLTT, an algorithm first described in [3] and which can directly

be compared to our algorithms as a benchmark, D is restricted

to be a tree. This results in more limited traversal than DLLG,

where D is not necessarily a tree. In DLUG, similar to SLUG, the

agents are not restricted in terms of gradient steepness: an agent 𝑎𝑖
can move to any neighboring beacon whose step count is at least

𝑠𝑖 + 1, thus D is has more edges compared to DLLG (where 𝑎𝑖 can

only move to a neighboring beacon whose step count is exactly

𝑠𝑖 + 1), and mobile agents’ traversal rules are consequently less

restricted. Comparing DLUG, DLLG and DLTT gives us insight

into the impact of traversal rules on the energy and time costs of a

dual-layer coverage algorithm. We shall show that DLUG, which

has the least restrictive gradient ascent rules, outperforms DLGG

and DLTT. Comparing these algorithms to SLUG gives us insight

into the cumulative impact of using looser traversal rules and the

closed beacon strategy.We find that SLUG significantly outperforms

DLLG, DLTT and DLUG.

Our numerical simulations were run on the regions depicted

in Figure 3. The top three regions are simple regions that can be

generalized to different sizes, and through which the effect of region

size on termination time and energy use can be investigated. The

three regions depicted in the bottom row were replicated from

[13] as examples of complex regions that more closely resemble

real-life scenarios. Each data point in the figures of this section is

the average of data from 50 runs of an algorithm on one of these

regions (when simulating the time model we set𝑀 = 100).

The impact of ∆𝑇 on DLLG and SLUG’s termination time step

⌈𝑇𝐶 (R)⌉ is investigated in Figure 4, (a) for the 6 types of regions

(a) (b) (c)

(d) (e) (f)

Figure 3: Regions used in simulation experiments. Obstacles are
marked in white and empty cells are marked in black. The entry
point is at the upper-left corner, marked in blue. Region labels are as
follows: (a) linear (b) square (c) saw tooth (d) complex 1 (e) complex 2
(f) complex 3. Regions (a), (b) and (c) can be generalized to different
sizes - e.g., we run simulations on linear regions of different sizes.

depicted in Figure 3. We see that for every value of ∆𝑇 and every

region, SLUG’s termination time is significantly lower than DLLG’s.

Figure 4, (a) also confirms the termination time bounds of Theorem

3.1 for DLLG: as claimed, we clearly see that ⌈𝑇𝐶 (R)⌉/𝑛 ≊ 2∆𝑇

in the plot of Figure 4, (a) corresponding to DLLG. Figure 4, (b)

investigates the number of agents present in a region at termination

time when using SLUG and DLLG. By construction, every region

always contains 2𝑛 agents at DLLG’s termination, but when it

comes to SLUG, the ratio of agents to region size quickly converges

to 1 as ∆𝑇 goes to infinity. In other words, as ∆𝑇 grows, there are

less redundant agents in the environment. Hence, by increasing ∆𝑇

in SLUG, we can reduce the number of redundant agents at the cost
of larger makespan.

Figure 5 depicts the effect of region size on the termination time

and total energy use of SLUG, DLTT, DLLG and DLUGwhen ∆𝑇 = 1

(Figure 5, (a) and (c)) and when ∆𝑇 = 2 (Figure 5, (b) and (d)). We

see that SLUG significantly outperforms DLTT, DLGG and DLUG

in terms of energy use and termination time. Additionally, several

facts about the impact of traversal rules can be inferred from the

figure: first, looser traversal rules confer a benefit on energy use:

𝐸𝑡𝑜𝑡𝑎𝑙 is reduced in DLUG compared to DLTT and DLLG. Next,

when ∆𝑇 ≥ 2, termination time is unaffected by the looseness or

strictness of traversal rules. However, when ∆𝑇 = 1, looser traversal

rules improve termination time: of the three dual-layer algorithms,

DLUG’s termination time is lowest, followed by DLLG.

Benchmarks from the literature. We compared SLUG to the well-

known Depth-First and Breadth-First Leader-Follower coverage

algorithms of Hsiang et al. [19] in terms of termination time and en-

ergy use. Hsiang’s algorithms assume synchronous time, a greater

sensing range than ours, and direct radio-based inter-agent com-

munication. Due to these differing assumptions, an exact one-to-

one comparison of our work and [19] is not possible–but we can

nevertheless draw some conclusions. Figure 6, (a) compares the

termination time of SLUG to Hsiang et al.’s algorithms on square

grid regions. Assuming ∆𝑇 = 1, SLUG’s termination time is sig-

nificantly lower than BFLF or DFLF’s, whereas when ∆𝑇 = 2, its

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1445

(a) (b)

Figure 4: (a) Each line plots ⌈𝑇𝐶 (r)⌉/𝑛 (termination time step divided
by region size) against ∆𝑇 in simulations of DLLG or SLUG on one
of the regions of Figure 3. The color of a line determines the region,
as detailed in the legend. The parentheses in the legend indicate
region size. We plot two lines of the same color per region - one
corresponding to simulations of DLLG on that region, and one cor-
responding to simulations of SLUG. Lines corresponding to SLUG’s
termination time on a region are strictly below those corresponding
to DLLG, indicating that SLUG outperforms DLLG. (b) Each line plots
the number of agents present in a region at termination time divided
by the size of the region, against ∆𝑇 .

(a) (b)

(c) (d)

Figure 5: (a) Each data point denotes the average termination time
step ⌈𝑇𝐶 (r)⌉ of DLTT (orange square), DLLG (blue cirle), DLUG (yel-
low diamond) or SLUG (gray square) on one of the region types in
Figure 3 plotted against region size, assuming ∆𝑇 = 1. Linear regions
of various sizes (Figure 3, (a)) had the worst termination times, and
data points representing these regions aremarked by blue arrows. (b)
Each data point denotes average termination time step when ∆𝑇 = 2.
(c) Each data point denotes total energy use step when ∆𝑇 = 1. (d)
Each data point denotes total energy use when ∆𝑇 = 2.

termination time is slightly higher. Figure 6, (b) compares total

energy use, showing that SLUG’s energy use (in both the ∆𝑇 = 1

and ∆𝑇 = 2 cases) is significantly lower than either of Hsiang’s

algorithms (by nearly an order of magnitude on a 41x41 square

grid). Figure 6, (c) shows that SLUG’s maximum energy use (Def-

inition 2.5) is significantly lower than BFLF and DFLF’s as well.

These findings suggest that the beacon-based approach results in

large energy savings compared to BFLF and DFLF, despite the fact

that (unlike Hsiang et al.) SLUG inserts more than 𝑛 robots into

the region, thus inevitably “wastes” energy on redundant mobile

robots that are not needed to complete the coverage.

Another interesting metric that Hsiang et al. measures is the

total travel, i.e., the total number of movements the robots make.

We measured total travel (not depicted in the Figure) and found

that SLUG significantly outperforms DFLF, and is comparable to

BFLF in terms of total travel on all of our test regions.

(a) (b) (c)

Figure 6: (a) The termination time of SLUG and Hsiang et al.’s BFLF
and DFLF algorithms on square grid regions of various sizes (Figure
3, (b)). (b) The total energy use of the algorithms on square grid
regions. (c) The maximum individual energy (Definition 2.5) use of
the algorithms on square grid regions.

5 DISCUSSION
In this work we investigated the problem of covering unknown

indoor environments with a swarm of aerial robots. To address the

energy and communication challenges that arise in this setting,

we proposed algorithms that draw upon the meta-concept of “stig-

mergy” - communication via the environment. In our algorithms,

robots that settle inside the region become part of the environ-

ment in the form of beacons that guide mobile robots to as-yet

unexplored locations. We described two algorithms based on this

concept, DLLG and SLUG, and studied their performance through

formal mathematical analysis (of DLLG) and through simulation

results. SLUG attains large energy savings over algorithms that ap-

peared in previous work ([3] and [19]) and is competitive in terms

of termination time and other metrics, hinting at the potential of

beacon-based approaches.

We view our results as a preliminary exploration of the advan-

tages of beacon-based, dual-layer approaches in multi-robot de-

ployment problems. Several extensions of our work readily come

to mind. First, since we wanted to be able to derive rigorous math-

ematical results, we studied an idealized robot model in which

movements are instantaneous and precise. In a real life implementa-

tion of beacon coverage, however, motion, sensing, and localization

pose technical challenges that need to be addressed. In future work,

we are interested in experimenting with physical implementations,

and are currently evaluating various platforms (e.g., Crazyflie 2.1).

Next, we’ve shown that SLUG, by construction, directs redundant

mobile agents that are left over after coverage is complete toward

one of the entry points, where they can be recovered. However, we

did not formally model this process in this paper nor consider its

impact on energy. We believe much further research should be done

regarding the time and energy costs of agent recovery upon mission

termination, both in this and broader contexts. Finally, given that

we’ve shown several beneficial effects of agent-beacon duality in

swarm-robotic coverage tasks, we may naturally ask what other

swarm robotics-related problems can benefit from this concept, and

in what other ways this idea can be employed.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1446

REFERENCES
[1] Yaniv Altshuler, Alex Pentland, and Alfred M Bruckstein. Introduction to Swarm

Search. Springer, 2018.
[2] Michael Amir and Alfred M. Bruckstein. Minimizing Travel in the Uniform

Dispersal Problem for Robotic Sensors. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, pages

113–121, Richland, SC, 2019. International Foundation for Autonomous Agents

and Multiagent Systems.

[3] Michael Amir and Alfred M. Bruckstein. Fast uniform dispersion of a crash-prone

swarm. Robotics: Science and Systems, 2020.
[4] Fidel Aznar, Mar Pujol, Ramon Rizo, Francisco A. Pujol, and Carlos Rizo. Energy-

Efficient Swarm Behavior for Indoor UAV Ad-Hoc Network Deployment. Sym-
metry (20738994), 10(11):632, November 2018. Publisher: MDPI Publishing.

[5] Fidel Aznar, Mar Pujol, Ramón Rizo, and Carlos Rizo. Modelling multi-rotor

UAVs swarm deployment using virtual pheromones. PLOS ONE, 13(1):e0190692,
January 2018. Publisher: Public Library of Science.

[6] Fidel Aznar Gregori, Mar Pujol, and Ramón Rizo. UAV Deployment Using Two

Levels of Stigmergy for Unstructured Environments. October 2020. Accepted:

2020-11-05T14:46:58Z Publisher: MDPI.

[7] Eduardo Mesa Barrameda, Shantanu Das, and Nicola Santoro. Deployment

of Asynchronous Robotic Sensors in Unknown Orthogonal Environments. In

Sándor P. Fekete, editor, Algorithmic Aspects of Wireless Sensor Networks, volume

5389, pages 125–140. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[8] Eduardo Mesa Barrameda, Shantanu Das, and Nicola Santoro. Uniform Dispersal

of Asynchronous Finite-State Mobile Robots in Presence of Holes. In Paola

Flocchini, Jie Gao, Evangelos Kranakis, and Friedhelm Meyer auf der Heide,

editors, Algorithms for Sensor Systems, volume 8243, pages 228–243. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2014.

[9] Lali BarrièRe, Paola Flocchini, Eduardo Mesa-Barrameda, and Nicola Santoro.

UNIFORM SCATTERING OF AUTONOMOUS MOBILE ROBOTS IN A GRID.

International Journal of Foundations of Computer Science, 22(03):679–697, April
2011.

[10] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile

sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243–255,
April 2004.

[11] Yann Disser, Jan Hackfeld, and Max Klimm. Tight bounds for undirected graph

exploration with pebbles and multiple agents. Journal of the ACM (JACM),
66(6):1–41, 2019.

[12] Xavier Défago, Maria Gradinariu, StéphaneMessika, and Philippe Raipin-Parvédy.

Fault-Tolerant and Self-stabilizing Mobile Robots Gathering. In Shlomi Dolev,

editor, Distributed Computing, Lecture Notes in Computer Science, pages 46–60,

Berlin, Heidelberg, 2006. Springer.

[13] Ettore Ferranti, Niki Trigoni, and Mark Levene. Brick Mortar: an on-line multi-

agent exploration algorithm. In Proceedings 2007 IEEE International Conference
on Robotics and Automation, pages 761–767, April 2007. ISSN: 1050-4729.

[14] Nobuhiro Funabiki, Benjamin Morrell, Jeremy Nash, and Ali-akbar Agha-

mohammadi. Range-aided pose-graph-based slam: Applications of deployable

ranging beacons for unknown environment exploration. IEEE Robotics and Au-
tomation Letters, 6(1):48–55, 2020.

[15] Attila Hideg and Tamás Lukovszki. Asynchronous filling by myopic luminous

robots. In International Symposium on Algorithms and Experiments for Sensor

Systems, Wireless Networks and Distributed Robotics, pages 108–123. Springer,
2020.

[16] Attila Hideg, Tamás Lukovszki, and Bertalan Forstner. Improved runtime for the

synchronous multi-door filling. Periodica Polytechnica Electrical Engineering and
Computer Science, 66(1):12–19, 2022.

[17] Andrew Howard, Maja J. Matarić, and Gaurav S. Sukhatme. An Incremental

Self-Deployment Algorithm for Mobile Sensor Networks. Autonomous Robots,
13(2):113–126, September 2002.

[18] Andrew Howard, Maja J. Matarić, and Gaurav S. Sukhatme. Mobile Sensor

Network Deployment using Potential Fields: A Distributed, Scalable Solution to

the Area Coverage Problem. SpringerLink, pages 299–308, 2002.
[19] Tien-Ruey Hsiang, Esther M. Arkin, Michael A. Bender, Sándor P. Fekete, and

Joseph S. B. Mitchell. Algorithms for Rapidly Dispersing Robot Swarms in

Unknown Environments. SpringerLink, pages 77–93, 2004.
[20] James F. Kennedy, Russell C. Eberhart, and Yuhui Shi. Swarm intelligence. The

Morgan Kaufmann series in evolutionary computation. Morgan Kaufmann Pub-

lishers, San Francisco, 2001.

[21] Alexander B Maxseiner, Daniel M Lofaro, and Donald A Sofge. Visible light

communications with inherent agent localization and simultaneous message

receiving capabilities for robotic swarms. In 2021 18th International Conference
on Ubiquitous Robots (UR), pages 633–639. IEEE, 2021.

[22] Yash Mulgaonkar, Anurag Makineni, Luis Guerrero-Bonilla, and Vijay Kumar.

Robust Aerial Robot Swarms Without Collision Avoidance. IEEE Robotics and
Automation Letters, 3(1):596–603, January 2018.

[23] Anıl Özdemir, Melvin Gauci, Andreas Kolling, Matthew D Hall, and Roderich

Groß. Spatial coverage without computation. In 2019 International Conference on
Robotics and Automation (ICRA), pages 9674–9680. IEEE, 2019.

[24] David Peleg. Distributed Coordination Algorithms for Mobile Robot Swarms:

New Directions and Challenges. In Distributed Computing – IWDC 2005, pages
1–12. Springer, Berlin, Heidelberg, December 2005.

[25] Dmitry Rabinovich, Michael Amir, and Alfred M. Bruckstein. Optimal physical

sorting of mobile agents. https://arxiv.org/abs/2111.06284, 2021.

[26] O. Rappel and J.Z. Ben-Asher. Area coverage – A swarm based approach. In 59th
Israel Annual Conference on Aerospace Sciences, IACAS 2019, pages 35–55. Israel
Annual Conference on Aerospace Sciences, 2019.

[27] Ori Rappel, Michael Amir, and Alfred M. Bruckstein. Stigmergy-based,

dual-layer coverage of unknown indoor regions. arXiv 2209.08573

(https://arxiv.org/abs/2209.08573), 2022.

[28] Timothy Stirling and Dario Floreano. Energy-Time Efficiency in Aerial Swarm

Deployment. In Alcherio Martinoli, Francesco Mondada, Nikolaus Correll, Gré-

gory Mermoud, Magnus Egerstedt, M. Ani Hsieh, Lynne E. Parker, and Kasper

Støy, editors, Distributed Autonomous Robotic Systems, volume 83, pages 5–18.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[29] Timothy Stirling, Steffen Wischmann, and Dario Floreano. Energy-efficient

indoor search by swarms of simulated flying robots without global information.

Swarm Intelligence, 4(2):117–143, 2010.
[30] Vu Phi Tran, Matthew A Garratt, Kathryn Kasmarik, and Sreenatha G Anavatti.

Robust multi-robot coverage of unknown environments using a distributed robot

swarm. arXiv preprint arXiv:2111.14295, 2021.
[31] Ouarda Zedadra, Nicolas Jouandeau, Hamid Seridi, and Giancarlo Fortino. Multi-

agent foraging: state-of-the-art and research challenges. Complex Adaptive
Systems Modeling, 5(1):1–24, 2017.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1447

	Abstract
	1 Introduction
	2 Model and Problem Formulation
	2.1 The Agents
	2.2 Time Model
	2.3 Agent Entry Model
	2.4 The Agents' Mission

	3 Algorithms
	3.1 Dual-Layer Limited Gradient
	3.2 Single-Layer Unlimited Gradient

	4 Simulation results and benchmarks
	5 Discussion
	References

