
Model-Based Reinforcement Learning for Auto-bidding in
Display Advertising

Shuang Chen∗
Ant Group

Shanghai, China
shuangchen.cs@alibaba-inc.com

Qisen Xu∗
Ant Group

Shanghai, China
qisen.xqs@antgroup.com

Liang Zhang
Ant Group

Shanghai, China
zhuyue.zl@antgroup.com

Yongbo Jin
Ant Group

Shanghai, China
yongbo.jyb@antgroup.com

Wenhao Li†
The Chinese University of Hong

Kong, Shenzhen
Shenzhen, China

liwenhao@cuhk.edu.cn

Linjian Mo†
Ant Group

Shanghai, China
linyi01@antgroup.com

ABSTRACT
Real-time bidding (RTB) achieves outstanding success in online
display advertising, which has become one of the most influen-
tial businesses. Given historical ad impressions under the second
price auction mechanism, the advertiser’s optimal bidding strat-
egy is determined by the core parameter corresponding to the
optimal solution of a constrained optimization problem. However,
the sequentially arrived impressions in online display advertising
make it highly non-trivial to obtain the optimal core parameter in
advance without knowing the complete impression set. For this
reason, recent methods have generally transformed the core param-
eter determination problem into a sequential parameter adjustment
problem and solved it using reinforcement learning (RL). This paper
proposes a simple and effectiveModel-Based Automatic Bidding
algorithm, MBAB, which explicitly models the uncertainty of the
dynamic auction environment and then uses the dynamic program-
ming algorithm to obtain the current optimal adjustment of the
core parameter. MBAB can avoid burdensome simulated environ-
ment construction and is more suitable for production deployment
without the thorny sim-to-real issue than model-free methods. Fur-
thermore, MBAB uses the optimal bidding formula to carry out
coarse-grained modeling of the online market environment to alle-
viate the scalability problem caused by fine-grained environment
modeling of previous model-based methods. In order to accurately
describe the impression distribution and non-stationarity of the on-
line market environment, we introduce the probabilistic modeling
method and propose a novel monotonicity constraint to regulate
the model output. Numerical experiments show that the proposed
MBAB substantially outperforms existing baselines on various con-
strained RTB tasks in the production environment.
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1 INTRODUCTION
Real-time bidding (RTB) achieves outstanding success in online
display advertising, which has become one of the most influential
businesses, with $56.7 billion revenue and holds a 30% share of
total internet advertising revenue for FY 2021 in US alone [13].
In RTB, advertisers need to adopt a bidding strategy to deliver
their bids to compete for each ad impression opportunity, which is
usually associated with the expectation of the desired ad clicks and
conversions. The actual bidding cost of advertisers depends on the
auction mechanism adopted by the advertising platforms. In this
paper, we focus on the second-price auction mechanism, i.e., each
ad impression opportunity is assigned to the highest bidder, which
only needs to pay the second highest bid [8].

In order to satisfy the different demands of advertisers, such as
maximizing conversions while keeping the average cost per im-
pression/conversion within specific budgets, advertising platforms
usually provide advertisers with customized bidding strategies. This
bidding strategy generally corresponds to an online optimization
problem with constraints, or more specifically, a feasible solution
to the online knapsack problem [16, 30]. Under the second price
auction mechanism, given the value 𝑣 for each ad impression oppor-
tunity, an advertiser’s optimal bidding strategy corresponds to the
hyperparameter𝑤 value. However, in RTB of online display adver-
tising, the optimal value for𝑤 is highly non-trivial to obtain because
the bidding strategy optimization algorithm needs to consider a
large number of ad impressions and the specific needs of differ-
ent advertisers at the same time, coupled with the non-stationary
nature of the bidding environment [27].

In other words, since the impressions arrive sequentially in a day,
it is of great challenge to calculate the optimal value for hyperparam-
eter𝑤 in advance without the complete impression set. Therefore,
recent works consider the online data stream properties of the im-
pressions described above and transform the determination of the
optimal value of𝑤 into a sequential parameter tuning problem, or
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a sequential decision problem, in the framework of constrained bid-
ding. Thanks to the excellent performance of deep reinforcement
learning (RL) algorithms in dealing with sequential decision prob-
lems, the above methods can be divided into two main categories,
model-free reinforcement learning (MFRL) methods [10, 27] and
model-based reinforcement learning (MBRL) methods [4].

Directly deploying the bidding agent to interact with the envi-
ronment in an online task will likely lead to economic losses and
customer churn. Therefore, RL methods can only train to bid agents
"offline" 1 based on historical bidding data. The existing MFRL and
MBRL methods mainly take two approaches to distill knowledge
from historical data, respectively. The former simulates online RTB
scenarios by directly replaying historical data, supplemented by ran-
dom disturbances and advertising platform filtering rules to build a
simulation environment. The latter converts the constrained RTB
problem into a Markov Decision Process (MDP), preprocesses the
historical data, and converts it into transition data to support the
training of transition dynamic model based on supervised learning.

However, the construction of the simulator involves the calibra-
tion of a large number of parameters to fit the realistic environment
for model-free methods. In addition, existing model-free methods
mainly adopt the independent learning scheme [23], and the agent
does not perceive the existence of other agents in the environment
when optimizing the policy but regards these agents as part of the
environment. A non-stationary environment due to simultaneous
policy updates of all agents will make the migration of the agents
trained in the simulator to the production environment face the
thorny sim-to-real [32] issue. Although model-based methods can
naturally avoid the above issues, the algorithm needs to consider
hundreds of millions of impressions to provide advertisers with the
optimal bidding strategy in online RTB markets, making it difficult
to accurately model the state transition and extend the existing
model-based methods to practical tasks. The engineering overhead
associated with simulator construction, policy transfer, and gener-
alization from simulated to actual environments, or the difficulty
of modeling high-dimensional stochastic RTB environments, leave
much room for improvement in existing RL-based automated bid-
ding methods for RTB tasks in online display advertising.

In this paper, we focus on retaining the advantages of the model-
based method while enhancing its practicability by re-modeling
the RTB at a coarse-grained level under the MBRL context inspired
from the optimal bidding model [31]. Unlike existing model-based
methods, the MDP we constructed does not estimate the market
price of each impression and compute the auction-level metrics
but instead models the uncertainty of budget consumption and
win value, which significantly reduces the learning complexity
of the transition model. In addition, to better capture the highly
non-stationary bidding market due to dynamic bidding behavior
and independent learning modeling, we explicitly consider the
uncertainty of state transitions, which are naturally incorporated
into the modeling of coarse-grained MDPs.

1This paper does not consider offline RL [14, 20] as a technical route, and to the
best of our knowledge, there is no work that implements offline RL into online real-
time bidding scenarios. However, offline RL is theoretically well suited for solving
constrained bidding problems in online display advertising, and we will study it in
depth in our future work.

Based on the coarse-grained bidding MDP, we propose a simple
and effective Model-Based Automatic Bidding framework, MBAB
(Figure 1), which is divided into two stages, the learning of the
non-stationary transition model and the model predictive control
based on the dynamic programming of the learned model to obtain
the optimal bidding strategy under constraints. In order to accu-
rately describe the impression distribution and non-stationarity
of the online market environment, we introduce the probabilistic
modeling method and propose a novel monotonicity constraint to
regulate the model output. Numerical experiments show that the
proposed MBAB substantially outperforms existing baselines on
various constrained RTB tasks in the production environment.

Our main contributions are as follows: (1) we model the auto-
bidding problem as a coarse-grained MDP based on the optimal
bidding model, which significantly reduces the learning complexity
of the model-based method; (2) we propose a simple and effective
model-based RL framework, MBAB, which can avoid burdensome
simulated environment construction and is more suitable for pro-
duction deployment without the thorny sim-to-real issue; (3) we
introduce the probabilistic modeling method and propose a novel
monotonicity constraint to accurately describe the impression dis-
tribution and non-stationarity of the online market environment
in the transition model learning.

2 PRELIMINARIES AND RELATEDWORK
2.1 Constrained Bidding
In the RTB system [29], advertisers bid for ad impression opportuni-
ties with impression value estimation, e.g., predicted click-through
rate (PCTR) [21] and predicted conversion rate (PCVR) [6]. Their
optimization goal is to maximize the total value of winning impres-
sions under long-term constraints. Advertisers in the real world
consider various long-term constraints, such as daily budget, cost
per action (CPA), and return on investment (ROI). Under the second
price auction mechanism, Zhang et al. [31] proves the optimal bid-
ding formula for bidding with the budget constraint, and He et al.
[11] further derives a unified optimal bidding formula for the con-
strained bidding problem by the primal-dual method [2]. According
to different constraints and optimization goals, these optimal bid
formulas take different bid formats, whose core parameters can be
solved numerically by historical data [31]. However, obtaining op-
timal parameters for future bidding is not trivial. As advertisers do
not know the complete impression set in advance, and the auction
competitors are dynamic [5], the optimal parameters calculated
from historical data may not be optimal. As a result, we should
dynamically adjust the parameters in the optimal bidding formula
under the actual market environment. Automated bidding (auto-
bidding) is a machine-based bidding strategy designed to calculate
the real-time price the advertiser would like to pay for an ad oppor-
tunity. Based on this technology, a straightforward bidding strategy
is to dynamically tune core parameters of the optimal bidding for-
mulas to satisfy bidding constraints [28]. In this paper, we also take
advantage of the optimal bidding formula. An uncertainty-aware
model-based reinforcement learning framework is proposed for
auto-bidding to adjust the core parameters dynamically.
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Figure 1: Model-based reinforcement learning for Auto-Bidding (MBAB). The dynamic environment model P̂𝜃 is trained using
the dataset D collected from the logs in the online RTB system. With the parameterized distribution over the state transition
predicted by P̂𝜃 , MBAB conducts the bid planning via the dynamic programming and computes the optimal action-value
function 𝑄𝜋∗ under optimal bidding policy 𝜋∗. At each time step, the parameters w of agents are updated by maximizing
𝑄𝜋∗ (𝑠𝑡 ,w). In a real auction environment, bidding agents receive the request info and estimate the winning value 𝑣 , and then
compute the real-time bids by optimal bidding formula 𝐹 (w, 𝑣).

2.2 Reinforcement Learning
Reinforcement Learning (RL) is an area of machine learning used to
solve the MDP. The goal of an RL agent is to maximize the expected
reward when sequentially interacting with the MDP environment.
An MDP can be described by the tuple ⟨S,A,P,R, 𝛾⟩ where S and
A indicate the state and action space respectively. The immediate
reward 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) ∈ R received from the environment at new
state 𝑠𝑡+1 ∈ S after an action 𝑎𝑡 ∈ A at timestep 𝑡 is taken under the
current state 𝑠𝑡 ∈ S is determined by the reward function R : S ×
A×S → R. State transition probability function P : S×A×S →
[0, 1] measures the uncertainty of state transitions. Generally, most
RL algorithms can be categorized into model-free RL (MFRL) [10]
or model-based RL (MBRL) [17] framework. Specifically, model-free
methods learn a deterministic policy 𝜋 : S → A or a stochastic one
𝜋 : S × A → [0, 1] to maximize the expected cumulative reward
only through trial and error, but the policy in model-based methods
is learned by predicting the dynamics of the environment (reward
and/or the transition dynamic) additionally. This paper focuses on
the MBRL to learn the optimal bidding strategy.

2.3 RL-Based Auto-Bidding
Recently, some works [1, 4, 26] have been formulating the bidding
process as an MDP and solving it by RL [22]. Wu et al. [26] employs
a model-free RL algorithm DQN [19] to regulate the optimal bid-
ding parameter sequentially instead of directly producing bids. To
alleviate the sparse reward problem during training, Wu et al. [26]
designs a deep neural network to predict the total reward in a period.
As an improvement, USCB [10] derives a unified optimal bidding
formula and uses another model-free RL algorithm DDPG [15] to

learn the optimal parameter selection policy in continuous action
space. Apart from the single-agent modeling, some researchers tried
to solve the auction problem through multi-agent reinforcement
learning (MARL) [9] from the advertising platform perspective. Wu
et al. [25] proposes a MARL approach to derive cooperative policies
for the impression allocation problem. Furthermore, Wen et al. [24]
focuses on the equilibrium state of competition and cooperation,
where a temperature-regularized credit assignment is leveraged
to make a competition and cooperation trade-off among agents.
To the best of our knowledge, there are few auto-bidding meth-
ods based on MBRL. Cai et al. [4] uses a model-based RL agent
to generate the bidding policy by modeling the state transition in
an auction process. However, the method in Cai et al. [4] requires
estimating the market price of each impression and computing the
auction-level value function by dynamic programming, which is
computationally intensive. We use the optimal bidding model to
construct a coarse-grained environment model to reduce the com-
plexity. Then an uncertainty-aware MBRL framework is proposed
for auto-bidding to adjust the core parameters adaptively.

3 PROBLEM FORMULATION
In this paper, we focus on model-based RL methods to alleviate two
thorny issues, i.e., (1) the engineering overhead associated with
simulator construction and (2) policy transfer from simulated to real
environments, that cause the performance limitations of the cur-
rently popular model-free methods in handling non-stationary mar-
kets in production environments. This paper did not first propose
model-based auto-bidding methods. The fine-grained modeling
of advertisers’ bidding behavior by existing model-based frame-
works can produce better bidding strategies. However, the resulting
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learning complexity makes them difficult to apply to production en-
vironments other than artificial datasets, further contributing to the
current status quo of model-free methods becoming mainstream.
In order to retain the advantages of the model-based method while
enhancing its practicability, we re-model the sequential decision
problem of real-time automatic bidding at a coarse-grained level un-
der the MBRL context, starting from the optimal bidding model [31],
while ensuring the superiority of the strategy. In addition, to better
capture the highly non-stationary bidding market due to dynamic
bidding behavior and independent learning modeling, we explicitly
consider the uncertainty of state transitions, which are naturally
incorporated into the modeling of coarse-grained MDPs. Below,
we will describe the optimal bidding model under the second-price
auction mechanism and the corresponding coarse-grained Markov
decision process for auto-bidding.

3.1 Optimal Bidding Model
During a period, the ad impression opportunities sequentially arrive,
and the bidding agent competes with other agents to win the ad
impression. After the auction, the agent with the highest bid can
show ads to an audience and enjoy the impression value. Without
loss of generality, we consider clicks as the optimization target of
advertisers, while the budget is the long-term constraint:

max
∑︁

𝑖=1...𝑁
𝑥𝑖 · 𝑣𝑖 , 𝑠 .𝑡 .

∑︁
𝑖=1...𝑁

𝑥𝑖 · 𝑐𝑖 ≤ 𝐵, (1)

where 𝑁 is the total number of impressions and 𝑥𝑖 is a binary
indicator of whether the bidding agent wins impression 𝑖 . 𝑣𝑖 , 𝑐𝑖
represent the winning value and the cost the advertiser needs to
pay, respectively. Budget 𝐵 is the maximum spendable amount
set by the advertiser. Under the second price auction mechanism,
Zhang et al. [31] proved the optimal bidding formula is as follows:

𝑏𝑖 = 𝐹 (𝑤, 𝑣𝑖 ) = 𝑤 · 𝑣𝑖 , (2)

where𝑤 is a scaling parameter, the optimal parameter𝑤∗ can be
calculated through the historical data. Based on this idea, He et al.
[11] extends the optimal bidding formula to a more general form
with multiple constraints and corresponding parameters:

𝑏𝑖 = 𝐹 (w, 𝑣𝑖 ) = 𝑤0 · 𝑣𝑖 −
𝑀∑︁
𝑗=1

𝑤 𝑗 (𝑞𝑖 𝑗 (1 − I𝐶𝑅 𝑗
− 𝑘 𝑗 · 𝑝𝑖 𝑗 ), (3)

where𝑀 is the number of constraints, 𝑝𝑖 𝑗 and 𝑞𝑖 𝑗 can be any per-
formance indicators, w = [𝑤 𝑗 ]𝑀𝑗=0 ∈ R

𝑀+1 is the core constrain-
related parameter vector, I𝐶𝑅 𝑗

is an indicator function of whether
constraint 𝑗 is cost-related and 𝑘 𝑗 is the upper bound of constraint
𝑗 , which the advertiser provides in advance. Likewise, the optimal
parameters w∗ can be calculated from the historical data. Never-
theless, in practical applications, w∗ is hard to obtain as the entire
impression set can not be collected until the end of the day. Thus,
the bidding agent must adopt an approximate real-time strategy to
adjust the core parameters w under the current state.

3.2 Coarse-grained Bidding MDP
Inspired by the optimal bidding model, we formulate the online
adjustment of the core parameters w as a coarse-grained Markov

decision process under the independent learning scheme based on
state-of-the-art model-free methods [10, 26].

In an episode, the bidding agent starts with an initial bid param-
eter vector w0 and will sequentially modify it 𝑇 times (typically 1
hour between decisions) until the end of a day, which means that
the episode length is equal to 24. At timestep 𝑡 , the agent observes
the current state 𝑠𝑡 ∈ S and then takes action 𝑎𝑡 ∈ A, which is
used to generate a new parameter vector for calculating the bid-
ding in next hour. After applying the new parameter vector to bid,
the agent will transition to a new state 𝑠𝑡+1 with the probability
𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) and receive a reward 𝑟𝑡 , which is denoted by the re-
ward function 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). We now describe the key components
of the proposed coarse-grained MDP as follows:

S : From the perspective of advertisers, the state should reflect
the current agent’s advertising status, which includes its
budget consumption, the accumulated winning value, and the
current timestep.

A : We directly output the next bid parameter vector and are
different from outputting the adjustment rate to the parame-
ters, which is adopted by previous model-free methods. The
action space A = ×𝑀

𝑗=0A 𝑗 contains 𝐾 =
∏𝑀

𝑗=0 𝐾𝑗 discrete
actions, where |A 𝑗 | = 𝐾𝑗 . Then the update of the parameters
at timestep 𝑡 takes the form w𝑡 = 𝑎𝑡 , 𝑎𝑡 ∈ A.

R : Since the optimization target of advertisers is to maximize
the total winning value

∑𝑁
𝑖=1 𝑥𝑖 · 𝑣𝑖 under long-term 𝑀 +

1 constraints, the reward should both take account of the
winning value and the satisfaction of constraints. The format
of the reward function is discussed in Section 5 since the
design of the reward needs to be oriented towards the specific
task in the production environment. Furthermore, we assume
that the reward function is known to the bidding agent and
does not need to be estimated by model-based learning.

P : Since the market competition fluctuates with traffic, the
winning rate of an advertiser with the same bid will also
fluctuate. Unlike previous model-free methods, we explicitly
model the non-stationarity of state transitions and denote
the transition dynamic P : S × A × S → [0, 1] as a prob-
ability distribution over S. As a model-based RL approach,
learning P is the primary task when modeling the environ-
ment, and we also introduce a probabilistic modeling method
in Section 4 to learn this probability distribution effectively.

𝛾 : In online display advertising, the goal is to maximize the
total reward regardless of considering the reward decay over
time. In other words, bidding agents do not need to weigh
short- and long-term benefits so we set discount factor 𝛾 = 1.

The solution of the above coarse-grained MDP we aim to obtain
in the paper is just a deterministic policy 𝜋∗ : S → A, which
defines the bidding strategy in RTB for online display advertising,
and is learned by maximizing the expected cumulative reward.

Unlike existing MBRL methods, the MDP we constructed does
not estimate the market price of each impression and compute the
auction-level metrics, but instead models the uncertainty of budget
consumption and win value, which greatly reduces the learning
complexity. This enables the design of model-based methods based
on this coarse-grained MDP to bypass the two thorny issues that
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limit the performance of model-free methods in production en-
vironments with non-stationary markets and ensure practicality.
Next, we will build a simple and effective model-based automatic
bidding framework based on the above coarse-grained MDP.

4 MODEL-BASED AUTO-BIDDING
In this section, we propose a model-based RL framework for auto-
bidding, MBAB (Figure 1), which is divided into two stages: learn-
ing the non-stationary environment model via a parameterized
probabilistic model and the model predictive control based on the
dynamic programming of the learned environment model to obtain
the optimal bidding strategy under constraints. The explicit uncer-
tainty modeling of the dynamic auction environment makes MBAB
avoid burdensome simulated environment construction and is more
suitable for production deployment without the thorny sim-to-real
issue than model-free methods.

Specifically, according to the coarse-grained MDP, we consider
learning the state transition P̂𝜃 : S × A × S → [0, 1] which is
parameterized by 𝜃 . The complex changes of the bidding market in
the production environment and the independent learning scheme
adopted by the coarse-grainedMDPmake the state transition highly
uncertain or non-stationary. This prompts us tomodel the transition
function P̂𝜃 as a parameterized probabilistic distribution. Given
the dataset D = {𝑠ℓ𝑡 , 𝑎ℓ𝑡 , 𝑠ℓ𝑡+1}

𝐿
ℓ=1 collected from the RTB, the non-

stationary transition function P̂𝜃 then be approximately fitted via
two novel loss functions based on supervised learning.

Once a dynamic environment model is learned, a straightfor-
ward utilization for the agent is to find an optimal bidding strategy
by planning on it. Borrowed from many model-based RL methods
[12, 18], we introduce a classical framework called model predic-
tive control (MPC) [3] to select the bidding action at the current
timestep greedily. Under the MPC framework, we use a dynamic
programming method to obtain bidding planning results on all
possible future state sequences based on the learned environment
model. Then only the first-step plan in the sequence is chosen to
limit the accumulation of errors due to the estimated environment
model. Below we elaborate on the learning of the non-stationary
environment model and the design of the MPC framework.

4.1 Non-stationary Environment Modeling
In general, the market price is strongly associated with the number
of auction competitors. For example, an advertiser with a fixed bid
wins more ad impressions when there are fewer competitors, while
its win rate decreases in a more competitive market. As a result,
the deterministic transition model fails to capture this aleatoric
uncertainty [7], which arises from the inherent stochasticities of
the auction environment.We adopt a neural network (NN) to output
sufficient statistics of a parameterized distribution to model the
aleatoric uncertainty in the RTB system.

In the RTB system, the state (budget consumption and the total
winning value of ad impressions) of a bidding agent is gradually
accumulated, which means the NN needs to predict the distribution
over the increment of the current state in a specific time inter-
val. The next state is determined by the previous state and the
predicted content. The architecture of NN based dynamic state
transition model is depicted in Figure 2, whose output captures

Figure 2: Our probabilistic dynamic model is shown as an
distribution over Δ𝑠𝑡+1. The model’s input is an embedding
of the current bidding state 𝑠 and bidding parameter𝑤 .

the RTB environment’s aleatoric uncertainty by parameterizing a
joint probability distribution function over the budget consumption
and winning value in the next time interval. We assume that the
output of the NN follows a log-normal distribution and consider the
negative log prediction probability as one part of the loss function:

JP = −
|D |=𝐿∑︁
ℓ=1

log P̂𝜃 (Δ𝑠ℓ𝑡+1 | 𝑠
ℓ
𝑡 , 𝑎

ℓ
𝑡 = wℓ

𝑡 ), (4)

where 𝑠ℓ𝑡 and 𝑠ℓ
𝑡+1 are two consecutive states. Δ𝑠ℓ

𝑡+1 refers to the
state shift in next time interval and the predicted next state 𝑠ℓ

𝑡+1 is
determined by the current state 𝑠ℓ𝑡 and Δ𝑠

ℓ
𝑡+1 ∼ P̂𝜃 (Δ𝑠

ℓ
𝑡+1 |𝑠

ℓ
𝑡 , 𝑎

ℓ
𝑡 ), i.e.,

𝑠ℓ
𝑡+1 = 𝑠

ℓ
𝑡 +Δ𝑠ℓ𝑡+1. For distinguish, we define 𝑠

ℓ
𝑡+1 ∼ P̂𝜃 (𝑠

ℓ
𝑡+1 |𝑠

ℓ
𝑡 , 𝑎

ℓ
𝑡 ) =

𝑠ℓ𝑡 + P̂𝜃 (Δ𝑠ℓ𝑡+1 |𝑠
ℓ
𝑡 , 𝑎

ℓ
𝑡 ) in the following. We define our predictive

model to output a multivariate normal distribution with a mean
vector 𝜇𝜃𝜇 (𝑠ℓ𝑡 , 𝑎ℓ𝑡 ) and a diagonal covariance matrix Σ𝜃Σ (𝑠ℓ𝑡 , 𝑎ℓ𝑡 ) pa-
rameterized by 𝜃𝜇 and 𝜃Σ respectively. And then we have 𝜃 =

{𝜃𝜇 , 𝜃Σ}. Based on this parameterized distribution, the predicted
Δ𝑠ℓ

𝑡+1 ∼ N(𝜇𝜃𝜇 (𝑠
ℓ
𝑡 , 𝑎

ℓ
𝑡 ), Σ𝜃Σ (𝑠ℓ𝑡 , 𝑎ℓ𝑡 )) follows a Gaussian distribution,

and then the loss function 4 becomes

JP =

|D |=𝐿∑︁
ℓ=1

[
𝜇𝜃𝜇

(
𝑠ℓ𝑡 , 𝑎

ℓ
𝑡

)
− Δ𝑠ℓ𝑡+1

]⊤
Σ−1
𝜃Σ

(
𝑠ℓ𝑡 , 𝑎

ℓ
𝑡

)
·[

𝜇𝜃𝜇

(
𝑠ℓ𝑡 , 𝑎

ℓ
𝑡

)
− Δ𝑠ℓ𝑡+1

]
+ logDet Σ𝜃Σ

(
𝑠ℓ𝑡 , 𝑎

ℓ
𝑡

)
.

(5)

Besides, considering a specific fact for the market competition: the
rise of the bid value usually leads to an increase in the budget
consumption and win rate. We also optimize a gradient-based loss
function to guarantee the monotonicity of predictions:

J𝑚𝑜𝑛𝑜 =

|D |=𝐿∑︁
ℓ=1

max

(
0,−

𝜕(𝜇𝜃𝜇 (𝑠ℓ𝑡 , 𝑎ℓ𝑡 ) + Diag(Σ𝜃Σ (𝑠ℓ𝑡 , 𝑎ℓ𝑡 )))
𝜕𝑎ℓ𝑡

)
. (6)
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Then the final loss function takes the form of JP +𝛽 ∗ J𝑚𝑜𝑛𝑜 , where
𝛽 is a weight parameter. Using the prediction model loss of (5) and
(6), the learning of the transition model can adopt the supervised
learning scheme, which is well-studied in previous works.

4.2 Model Predictive Constrained Bidding
Once the environment model is available, we can use it to plan vari-
ous bidding strategies by predicting future outcomes with a virtual
bid. Then, a set of candidate bidding trajectories are obtained by
sequentially predicting the bidding result under different strategies.
Within these trajectories, a current optimal policy for the agent is
to seek an action sequence to maximize the expected reward of the
successor auctions.

max
𝑎𝑡 :𝑇
E𝑠𝑡 ′+1∼𝑝 (𝑠𝑡 ′+1 |𝑠𝑡 ′ ,𝑎𝑡 ′ )

[
𝑇∑︁

𝑡 ′=𝑡

𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′ )
]
, (7)

where the state will recursively evolve from one timestep to the
next one through the transitionmodel, e.g.:𝑠𝑡 ′+1 ∼ 𝑝 (𝑠𝑡 ′+1 | 𝑠𝑡 ′ , 𝑎𝑡 ′ ).
For many MBRL methods [12, 18], a classical framework, model
predictive control (MPC) [3], is often applied to plan an optimized
sequence of actions in the model. Among the real applications, the
agent will select the first action 𝑎𝑡 of the action sequence 𝑎𝑡 :𝑇 and
take it to interact with the environment at each timestep. In our
proposed MBRL framework for auto-bidding, a similar technique is
adopted to choose the current optimal bidding parameters.

Random shooting is a basic method for an MPC controller to
optimize the action sequence. Generally, the controller randomly
samples a number of uniform action sequences in the action space
at each time step and applies them in the model via state transitions.
After that, the accumulated reward of each trajectory can be com-
puted to evaluate the action sequence. This online planning process
is easy to implement while computationally intensive due to the
numerous rollouts at each time step. In our work, we consider to use
the dynamic programming method to estimate the value function
𝑄 (𝑠𝑡 , 𝑎𝑡 ) in advance, which denote the expected reward-to-go with
starting state 𝑠𝑡 , taking action 𝑎𝑡 .

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) = E𝑠𝑡+1∼P̂𝜃 ,𝑎𝑡+1∼𝜋 [𝐺𝑡 | 𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡 ]
= E

𝑠𝑡+1∼P̂𝜃 ,𝑎𝑡+1∼𝜋 [𝑟𝑡 + 𝛾𝐺𝑡+1 | 𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡 ]

= 𝑟𝑡 + 𝛾
∫
𝑠𝑡+1
P̂𝜃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 )𝑉 (𝑠𝑡+1) 𝑑𝑠𝑡+1,

(8)

where 𝐺𝑡 = E[
∑𝑇
𝑡=1 𝛾

𝑡−1𝑟𝑡 ] and 𝑉 (𝑠𝑡 ) is the value function, which
represents the expected return with starting state 𝑠𝑡 , following the
policy 𝜋

𝑉 (𝑠𝑡 ) = max
𝑎𝑡 ∈A

{
𝑟𝑡 + 𝛾

∫
𝑠𝑡+1
P̂𝜃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 )𝑉 (𝑠𝑡+1) 𝑑𝑠𝑡+1

}
. (9)

Similarly, with the value function, we have the optimal policy in
state 𝑠𝑡 as:

𝜋∗ (𝑠𝑡 ) = argmax
𝑎𝑡 ∈A

{
𝑟𝑡 + 𝛾

∫
𝑠𝑡+1
P̂𝜃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 )𝑉 (𝑠𝑡+1) 𝑑𝑠𝑡+1

}
.

(10)
To settle the integration over 𝑠𝑡+1 in (9), we discretize the bidding

state and compute the approximation of the optimal value function

𝑉 (𝑠𝑡 ) in the discrete state space S𝑑 :

𝑉 (𝑠𝑡 ) = max
𝑎𝑡 ∈A

𝑟𝑡 + 𝛾
|S𝑑 |∑︁
𝑑=1
P̂𝜃

(
𝑠𝑑𝑡+1 | 𝑠𝑡 , 𝑎𝑡

)
𝑉

(
𝑠𝑑𝑡+1

) . (11)

The pseudocode of the dynamic programming is described further
in Algorithm 1.

Algorithm 1: Offline Training of MBAB.

Input :historical data D = {𝑠ℓ𝑡 , 𝑎ℓ𝑡 , 𝑠ℓ𝑡+1}
𝐿
ℓ=1 collected from

the online RTB system, episode length 𝑇 , state
space S𝑑 , action space A;

Output :optimal action-value function 𝑄∗ (𝑠𝑡 , 𝑎𝑡 );
1 Learn the dynamic model P̂𝜃 with historical data D;
2 for each 𝑠 ∈ S do
3 Initialize 𝑉 (𝑠) = 𝑟 (𝑠);
4 end for
5 for 𝑡 ← 𝑇 − 1 to 0 do
6 for each pair (𝑠𝑡 , 𝑎𝑡 ) ∈ S × A do
7 Obtain the estimated 𝑠𝑡+1 from the output

distribution of P̂𝜃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 );
8 Update 𝑉 (𝑠𝑡 ) via (11);
9 end for

10 Evaluate actions as:

11 𝑄∗ (𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡 + 𝛾
∑ |S𝑑 |
𝑑=1 P̂𝜃

(
𝑠𝑑
𝑡+1 | 𝑠𝑡 , 𝑎𝑡

)
𝑉

(
𝑠𝑑
𝑡+1

)
.

12 end for

After updating the value function, we can use it to adjust param-
eters in the optimal bidding model adaptively. At each time step,
the optimal action is state 𝑠𝑡 is

𝑎∗𝑡 = argmax
𝑎∈A

𝑄∗ (𝑠𝑡 , 𝑎). (12)

The online auto-bidding algorithm is described in Algorithm 2.

Algorithm 2: MPC-like Online Deployment.
Input :action value function 𝑄∗ (𝑠𝑡 , 𝑎𝑡 );

1 for 𝑡 ← 0 to 𝑇 − 1 do
2 Observe current state 𝑠𝑡 ;
3 Select optimal action via (12);
4 Update bidding parameter: w𝑡 = 𝑎

∗
𝑡 .

5 end for

5 EXPERIMENTS
5.1 Experimental Setup
Datasets: In this paper, we evaluate the performance of MBAB on
two real-world constrained bidding tasks. Our datasets are built
from the online bidding log of the Alipay display advertising plat-
form for two specific constrained bidding problems. The first bid-
ding task is to maximize the clicks, and the constraint is the daily
budget, whose optimal bidding formula takes the form of Eq. 2. The
dataset for the first task comprises about 20 million impressions
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Figure 3: Examples of R function with different parameters

per day with the value estimations (i.e., 𝑝𝐶𝑇𝑅𝑖 ) of each campaign
from 12th Aug. to 13th Aug. 2022. The second bidding task is to
maximize the conversions under the CPA constraint [33], and the
optimal bidding formula takes the form of

𝑏𝑖 = 𝑤 ∗𝐶𝑃𝐴𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑝𝐶𝑇𝑅𝑖 ∗ 𝑝𝐶𝑉𝑅𝑖 , (13)

where𝐶𝑃𝐴𝑡𝑎𝑟𝑔𝑒𝑡 is the average expected cost per action, and the ad-
vertisers are charged per click. The dataset for this cost-constrained
task comprises about 12 million impressions per day from 10th Oct.
to 11th Oct. 2022. For both datasets, we use the first day of data
for training and the next day for evaluation. Each day comprises
an episode, and each episode consists of 24-time steps (an hour
between two consecutive time steps)

Evaluation Metrics: The two constrained bidding tasks to aim
to maximize the total value (clicks or conversions) of winning
impressions while satisfying the constraints. As we mentioned
above, the optimal parameters𝑤∗ can be calculated from the static
data from a posterior perspective, then the optimal bidding result 𝑅∗
[26] can be obtained using the optimal𝑤∗. Similarly, the total value
of winning impressions under the current bidding policy is denoted
by 𝑅. As a result, 𝑅/𝑅∗ is a simple and practical metric to evaluate
the difference between the current and optimal policies. Specifically,
the 𝑅 in the budget-constrained task is the sum predicted 𝐶𝑇𝑅
of winning impressions. While considering the cost satisfaction,
the 𝑅 in the CPA-constrained task is a trade-off between the total
value 𝑣 (the sum predicted 𝑝𝐶𝑉𝑅) of winning impressions and the
constrain of the average cost per action (CPA), which takes the
form of 𝑅 = 𝑝 ∗ 𝑣 . The weight 𝑝 is a penalty factor used to measure
constraint satisfaction.

𝑝 =


𝑚𝑎𝑥 (0, 𝛼1 − 𝛼2𝐶𝑟𝑒𝑎𝑙

𝐶
), 𝐶𝑟𝑒𝑎𝑙 > 𝐶,

1, 𝐶𝑟𝑒𝑎𝑙 = 𝐶,

𝑚𝑎𝑥 (0, 2𝐶𝑟𝑒𝑎𝑙

𝐶
− 1), 𝐶𝑟𝑒𝑎𝑙 < 𝐶,

(14)

where 𝐶𝑟𝑒𝑎𝑙 and 𝐶 respectively denote the real average CPA and
the target average CPA, 𝛼1 and 𝛼2 are the hyper-parameters to
control the penalty strength. Examples of 𝑅 with different penalty
factors are shown in Figure 3, which indicates that R decays to 0
when 𝐶𝑟𝑒𝑎𝑙 ≤ 0.5𝐶 or 𝐶𝑟𝑒𝑎𝑙 ≥ 𝛼1

𝛼2
𝐶 .

5.2 Compared Methods
In this paper, we compare our proposed method with three other
bidding strategies, which are introduced as follows:

Linear Bidding (LB): a method that bids with optimal bidding
model and fixed parameters, which can be set empirically, or the
optimal one is calculated from the historical data.

Table 1: R/R* comparison of differentmethods in two datasets
with [0%, 5%] 𝑤-derivation

R/R* Budget constraint CPA constraint

LB 0.8657 0.7238
PID 0.6029 0.7472
USCB 0.8697 0.7294
MBAB 0.8835 0.8094

Table 2: R/R* comparison of differentmethods in two datasets
with different levels of deviation

Budget constraint CPA constraint

Deviation LB PID USCB MBAB LB PID USCB MBAB

[0%, 5%] 0.8657 0.6029 0.8697 0.8835 0.7238 0.7472 0.7294 0.8094
[5%, 30%] 0.7258 0.5791 0.8713 0.8700 0.6339 0.7367 0.7263 0.8062
[30%, 50%] 0.5181 0.5668 0.7811 0.8418 0.3922 0.6791 0.7390 0.7712
[50%, +∞] 0.3690 0.5714 0.4870 0.6766 0.2527 0.5372 0.6608 0.6360
Average 0.6197 0.5800 0.7523 0.818 0.5006 0.6751 0.7139 0.7557

(a) Performance under budget constraint
with 𝑤-deviation ∈ (0%, 5%)

(b) Performance under CPA constraint
with 𝑤-deviation ∈ (0%, 30%)

Figure 4: Average performance on two tasks.

PID: a method that combines the optimal bidding formula with
current information about the satisfaction of constraints. For exam-
ple, the PID bidding policy adjusts parameters in the cost-constrained
task by computing the difference between the target CPA and the
actual average CPA so far. In the budget-constrained task, the PID
controller gives a smooth bidding policy by constraining the bud-
get consumption ratio to equal the time consumption ratio in an
episode. When the left budget ratio is lower than the time left ratio,
the agent increases the bid, otherwise decreases the bid.

Unified Solution toConstrainedBidding (USCB): themethod
proposed in [10] is the state-of-the-art algorithm for bidding pa-
rameters control, a unified solution to constrained bidding using
the model-free RL. Likewise, the model-free agent takes advan-
tage of the optimal bidding formula and dynamically adjusts the
parameters: w𝑡+1 = (1 + 𝑎𝑡 )w𝑡 .

Model-based RL for Auto-Biding (MBAB): The method pro-
posed in this paper, which also utilizes the optimal bidding formula
and learns a model-based RL agent to plan a new parameter via Eq.
12 at each time step.

5.3 Evaluation Results
In this section, we conduct experiments to compare the performance
of LB, PID, USCB, and MBAB. As mentioned above, the optimal
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parameters𝑤∗ can be calculated from the historical data and used
as a prior for bidding strategies. In our experiments, we use this
prior to initializing the𝑤0 at the beginning of each episode. Due to
the non-stationary auction environment and the dynamic of auc-
tion competitors, the previous optimal𝑤∗𝑝𝑟𝑒 may deviate from the
optimal𝑤∗ of the current episode. Firstly, the performance compar-
ison of different methods on two datasets with small𝑤-derivation
([0%-5%]), defined as |𝑤0 −𝑤∗ |/𝑤∗, are reported in Table 1. In the
comparison on 𝑅/𝑅∗, we find that (i) our proposed method performs
the best on both budget-constrained tasks and CPA-constrained
tasks, verifying the effectiveness of MBAB; (ii) Compared to the
other three bidding strategies, MBAB performs particularly well
on the CPA-constrained task; (iii) PID gives the worst performance
on the budget-constrained task since its smooth delivery strategy
is not suitable for uneven distribution of traffic quality.

Furthermore, to investigate the performance of each method
with different levels of 𝑤-deviation, we divide campaigns in the
dataset into four groups according to the 𝑤-deviation and evalu-
ate different bidding strategies for each group. Table 2 provides
a detailed comparison of different methods on two constrained
bidding tasks with different levels of 𝑤-deviation. All methods’
performance gradually decreases as the𝑤-deviation increases, es-
pecially the LB. To explain this phenomenon, we should understand
that𝑤-deviation is an indicator of how volatile the market is, which
is affected by many factors, such as budget, auction competitors,
and market price distribution. Take the budget-constrained task
as an example, an advertiser with a big budget tends to bid ag-
gressively. However, the same strategy may lead to budget over
when the budget decreases significantly. Due to the unawareness
of the market volatility, we can see that the LB strategy using a
fixed 𝑤0 gives the worst performance. On the contrary, the PID
strategy performs stably since its bidding strategy has a low corre-
lation with𝑤0. Among all𝑤-deviation settings, RL-based bidding
strategies perform better than other bidding strategies, and MBAB
achieves the best average performance on two tasks. It shows that
MBAB is more robust when the auction environment is unstable.
USCB, a model-free RL method, has stable performance when the
𝑤-deviation is not large (𝑤-deviation ∈ [0%, 30%]), but R/R* drops
significantly (lower than 0.5) on budget-constrained task when𝑤-
deviation exceeds 50%. A possible reason for this phenomenon is
that the learning of USCB is influenced by previously identified
episodes, lacking the capture of the uncertainty of the auction en-
vironment. To better understand the performances of all bidding
strategies, we also present the average R/R* increase over time steps
on two constrained bidding tasks in Figure 4.

By calculating and normalizing the average bidder per ad im-
pression at each timestep, we evaluate the fierce market competi-
tion on two constrained bidding tasks in Figure 5(a). For budget-
constrained tasks, competition in the morning will be more fierce,
whichmeans that the optimization space of bidding strategies is also
larger. Compared to the LB bidding strategy, Figure 5(b) and Figure
5(c) show the average R/R* improvement of two RL-based methods
over timesteps. We observe that (i) For both MBAB and USCB, the
main improvement on the budget-constrained task is in the morn-
ing (about 5:00 am to 11:00 am); (ii) For the CPA-constrained task,
MBAB performs better than USCB at each time step and enjoys

Figure 5: (Top): Normalized market competition. (Bottom):
Average R/R* improvement over time steps on two con-
strained bidding tasks.

positive improvements throughout the day, which shows that the
performance of MBAB is more stable than the model-free method.

Table 3 shows the performance of MBAB under different scales
of datasets. We observe that (i) the improvement is not significant
when the training data exceeds 30% of datasets; (ii) The increment
of training data does not always benefit the performance of MBAB.

Table 3: Performance under various scales of datasets.

R/R* 10% 30% 50% 60% 80%

Budget constraint 0.5066 0.8514 0.8641 0.8835 0.8782
CPA constraint 0.6659 0.7877 0.7582 0.7758 0.8076

6 CLOSING REMARKS
This paper proposes a MBRL algorithmMBAB for constrained auto-
bidding in display advertising. The bidding strategy takes advantage
of the optimal bidding formula and sequentially adjusts its core
parameters. According to the MDP formulation, a parameterized
distribution is learned to capture the uncertainty of the auction
environment. After that, an action-value function is used to rep-
resent how good it is for an agent to choose a particular bidding
parameter in a state, which is equal to the expected total reward
from now on. The optimal action-value function is then updated
using dynamic programming, and the optimal policy is derived
by taking the action that maximizes the expected total reward at
each time step. Experimental results on two real-world constrained
bidding tasks demonstrated the superiority of MBAB over several
baselines in the industry and the state-of-the-art method.
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