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ABSTRACT
The multi-agent setting is intricate and unpredictable since the
behaviors of multiple agents influence one another. To address
this environmental uncertainty, distributional reinforcement learn-
ing algorithms that incorporate uncertainty via distributional out-
put have been integrated with multi-agent reinforcement learning
(MARL) methods, achieving state-of-the-art performance. How-
ever, distributional MARL algorithms still rely on the traditional
𝜖-greedy, which does not take cooperative strategy into account.
In this paper, we present a risk-based exploration that leads to col-
laboratively optimistic behavior by shifting the sampling region of
distribution. Initially, we take expectations from the upper quantiles
of state-action values for exploration, which are optimistic actions,
and gradually shift the sampling region of quantiles to the full dis-
tribution for exploitation. By ensuring that each agent is exposed
to the same level of risk, we can force them to take cooperatively
optimistic actions. Our method shows remarkable performance in
multi-agent settings requiring cooperative exploration based on
quantile regression appropriately controlling the level of risk.
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1 INTRODUCTION
Reinforcement Learning (RL) [33] has been successfully used in var-
ious domains, such as robotics, autonomous driving, video games,
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Figure 1: Motivation, Predator & Prey [6]. (a) represents how
the environment works. (b) exhibits the reward per episode
for each scenario. The lines are the mean of 6 random seeds.

economy, and operations research. Multi-agent reinforcement learn-
ing (MARL) [26, 29–31], which is an extension from the single-agent
setting to the multi-agent setting, is in the spotlight because it can
solve the complexity of a more realistic environment than single-
agent learning. However, the behaviors of MARL algorithms are
often very unpredictable because the actions chosen by each agent
may influence other agents. As the complexity of simulators evolves,
the unpredictability makes it difficult for algorithms to approxi-
mate the exact state-action value. To address this environmental
uncertainty, distributional variants of deep RL algorithms [3, 9, 10]
have been adopted in MARL, leading to the state-of-the-art perfor-
mance in multi-agent settings such as the StarCraft Multi-Agent
Challenges (SMAC) [27]. The distributional form of the state-action
value reflects the aleatoric uncertainty arising from stochastic en-
vironments, multiple agents, and variances of reward distribution.
When representing state-action value as a distribution, there are
two important features: variance and risk. The variance per action
reflects the amount of uncertainty associated with parametric and
intrinsic factors when an agent acts. Thus, choosing actions with
high variance is considered an optimistic approach that has the
potential for a high return and is used for exploration [1, 21, 23].
The concept of risk has its roots in economics and the stock market
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where prudent or audacious decisions are required. It has been ap-
plied to RL in which the agent selects actions based on their risks;
some approaches include Risk-Sensitive RL [22] and Safe RL [12].

In this study, we employ distributional RL to address one of the
most fundamental challenges in RL, the exploration & exploita-
tion tradeoff. Exploration collects informative samples, whereas
exploitation exploits the (estimated) samples or actions. In the early
stages, it is more advantageous to train agents with exploratory be-
havior, and in the later stages start to gradually converge it towards
exploitation. In multi-agent settings, the problem of exploration is
more complicated due to the intrinsic uncertainty that arises from
the multiple agents and unpredictable transition probability, which
can be formalized using the Partially Observable MDP (POMDP)
[14]. Previous works on distributional MARL algorithms either rely
on 𝜖-greedy [3, 9, 10, 18, 35] or UCB-based methods [8, 21, 36],
both of which are inappropriate since they do not take cooperative
strategies into account. However, distributional MARL algorithms
still rely on the 𝜖-greedy exploration [25, 29, 30], whereas numer-
ous studies have proposed exploration strategies for distributional
RL.

Figure 1 shows the environment and performance results of
Predator & Prey [6] in the grid-world setting, which serves as an
illustration of the importance of cooperative exploration. Predators,
which are agents, get a reward when they capture prey. When two
predators catch a single prey at the same time, they receive a reward
of +10 and a penalty of -2 when catching a prey solely. After two
predators simultaneously capture a prey, the predators are immobile
and eliminated. Due to the danger of obtaining a negative reward,
predators must locate and capture prey and work with other agents
to maximize the reward. As shown in Figure 1(b), 𝜖-greedy and
UCB-based explorations (DLTV) [21] shows low performance. The
result indicates that exploration methods typically employed in
distributional MARL are ineffective in multi-agent environments
where cooperation between agents is necessary. To overcome the
unpredictability of the environment, learning to cooperate between
agents requires cooperatively optimistic exploration.

In this paper, we present Risk-based Optimistic Exploration
(ROE), a method compatible with any existing distributional MARL
algorithms, that leads to cooperatively optimistic behavior by shift-
ing the sampling region of distribution. In this context, distribution
is the output of any distributional RL algorithm, which is precisely
the inverse CDF of the Q-value. The domain and range of the inverse
CDF are referred to as quantile fractions and quantile, respectively.
In the initial phase of training, for instance, we take expectations
from the upper quantiles of state-action values, which lead to risky
actions in pursuit of high reward, and gradually shift the sampling
region of quantiles to the entire distribution. By doing so, we en-
sure that each agent is exposed to the same overall level of risk,
compelling them to take identically optimistic actions that induce
cooperation. As shown in Figure 1, our strategy, ROE, beats other
considered exploration methods in which agents explore the op-
timal reward collaboratively. In addition, we conduct studies on
the standard MARL benchmark, SMAC [27], which is a cooperative
setting that is much more complicated than the Predator & Prey.
Experiments are conducted using the state-of-the-art distributional
MARL algorithms (DMIX, DRIMA) with our ROE as a plug-in. The
results demonstrate that our strategy outperforms other exploration

methods by a large margin. We summarize our contributions as
follows:

• We propose a novel risk-based exploration for cooperative
multi-agent settings that can be used as a plug-in for any
existing distributional MARL algorithms.
• We conduct a comprehensive evaluation of our method in
MARL environments and demonstrate substantial perfor-
mance improvement when cooperative exploration is re-
quired.

2 BACKGROUNDS
2.1 Distributional Reinforcement Learning
In reinforcement learning, the environment is often described by
the Markov Decision Process (MDP), given by a tuple ⟨𝑋,𝐴, 𝑃, 𝑅,𝛾⟩.
Here, 𝑃 (𝑥 ′ |𝑥, 𝑎) : 𝑋 × 𝐴 × 𝑋 → [0, 1] is a transition probability
function where 𝑥 ′ is the next state given a current state 𝑥 and action
𝑎. An agent inMDP receives rewards as the reward function𝑅(𝑥, 𝑎) :
𝑋 ×𝐴→ R. 𝛾 ∈ [0, 1) is the reward’s discount factor. The learner’s
goal is to find an optimal policy 𝜋 maximizing the cumulative
rewards 𝐺𝜋 =

∑∞
𝑡=0 𝛾

𝑡𝑅(𝑥𝑡 , 𝑎𝑡 ) with a policy 𝑎𝑡 ∼ 𝜋 (·|𝑥𝑡 ) that
outputs an action distribution given a state.

Unlike traditional approaches to RL, distributional RL generates
outputs as a distributional form of action. Compared to a scalar-
valued reward, a distributional form of the reward gives a much
richer structure to the underlying environment. Note that the scalar-
valued reward is the expectation of the reward distribution. In this
framework, the reward function becomes the reward distribution
𝑅, and the 𝑄 function becomes a quantile function 𝑍 . We treat the
expectation E[𝑍 (𝑥, 𝑎)] as the traditional 𝑄 (𝑥, 𝑎) value. The corre-
sponding distributional Bellman equation is defined as follows [3]
:

∀(𝑥, 𝑎) ∈ 𝑋 ×𝐴 : 𝑍 (𝑥, 𝑎) 𝑑= T𝑍 (𝑥, 𝑎) := 𝑅(𝑥, 𝑎) + 𝛾𝑍 (𝑥 ′, 𝑎′) , (1)
where 𝑥 ′∼𝑃 (·|𝑥, 𝑎), 𝑎′∼𝜋 (·|𝑥 ′).

The mapping between distributions T is called the distributional
Bellman operator [5]. This distributional RL framework with the
operator T is being widely studied, both theoretically [3] and em-
pirically [9].

Categorical DQN [3] gained popularity due to its superior per-
formance in the Arcade Learning Environment (ALE) based on
the Atari 2600 [4]. They output the return distribution given a
state and an action by fixing the return values (known as atom or
support) and approximating each return value’s likelihood. The
authors used the projected Kullback-Leibler (KL) divergence metric
for loss functions using the shifted return values resulting from
the added reward and 𝛾 . QR-DQN [10] fixes the distribution of the
return as uniform and approximates return values with quantile
regression. They proved that the distributional Bellman operator is
a 𝛾-contraction w.r.t. the metric 𝑑𝑝 , which is the maximal form of
the Wasserstein metric𝑊𝑝 :

𝑑𝑝 (𝑍1, 𝑍2) = sup
𝑥∈𝑋 ,𝑎∈𝐴

(∫ 1

0

���𝐹−1
𝑍1 (𝑥,𝑎) (𝜏) − 𝐹

−1
𝑍2 (𝑥,𝑎) (𝜏)

���𝑝 𝑑𝜏)1/𝑝

︸                                                ︷︷                                                ︸
=:𝑊𝑝 (𝑍1 (𝑥,𝑎) ,𝑍2 (𝑥,𝑎) )

(2)
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where the inverse CDF 𝐹−1
𝑌

of a random variable Y can be written
as,

𝐹−1
𝑌 (𝜏) := inf {𝑦 ∈ R : 𝜏 ≤ 𝐹𝑌 (𝑦)} . (3)

Furthermore, they proposed the optimization method using the
distributional TD-error 𝛿𝜏𝜏 ′ :

𝛿𝜏𝜏 ′ = 𝑅(𝑥, 𝑎) + 𝛾𝐹−1
𝑍𝜃 (𝑥 ′,𝑎′ ) (𝜏

′) − 𝐹−1
𝑍𝜃 (𝑥,𝑎) (𝜏) , (4)

where 𝑥 ′∼𝑃 (·|𝑥, 𝑎) and 𝑎′∼𝜋 (·|𝑥 ′). In QR-DQN, each distribution
of returns per action can be defined by a linear combination of
Dirac measures as follows.

𝑍𝜃 (𝑥, 𝑎) :=
1
𝑁

𝑁∑︁
𝑖=1

𝛿𝜃𝑖 (𝑥, 𝑎) . (5)

Here, 𝜃𝑖 andN represents the return value and the number of return
values each. IQN [9] does not fix the probability of distribution and
randomly selects the quantile fractions from a uniform distribu-
tion, U[0, 1]. Distributional RL [9, 10] uses Huber [13] quantile
regression loss 𝜌𝑘𝜏 defined as:

𝜌𝑘𝜏 (𝛿𝜏𝜏 ′ ) = |𝜏 − I{𝛿𝜏𝜏 ′ < 0}| · L𝑘 (𝛿𝜏𝜏 ′ ), (6)

where

L𝑘 (𝛿) =
{

1
2𝑘 𝛿

2 if |𝛿 | ≤ 𝑘

|𝛿 | − 1
2𝑘 otherwise

(7)

Based on the distributional Bellman operator, NDQFN [36] and
SPL-DQN [18] utilized a monotonic structure design to guarantee
non-decreasing return values according to the arising quantile frac-
tions. Instead of sampling quantile fractions from a distribution, FQF
[35] samples quantile fractions as a parameterized model. Recently,
risk-sensitive RL has been conducted based on the distributional
RL due to its ability to handle quantile fractions [16].

2.2 Risk-Sensitive Policy
Generally, in risk-sensitive RL [22], risk levels can be divided into
three sections: risk-averse, risk-neutral, and risk-seeking. Due to
the variation in action space, a risk-sensitive policy can be read
differently based on the context. Nonetheless, in this section, wewill
describe the general concept of risk-related policy. A risk-averse
policy can be interpreted as acting with the highest state-action
value among the worst-case scenarios per action. A risk-seeking
policy entails selecting the same action as a risk-averse policy but
based on the best-case scenario. Risk-neutral policy positions amid
risk-averse and seeking policy positions.

2.3 Multi-Agent Reinforcement Learning
We now review some recent developments in deep MARL. VDN
[31] considers a joint state-action value (𝑄 𝑗𝑜𝑖𝑛𝑡 ), which is just the
summation of all agents’ state-action values (𝑄𝑎𝑔𝑒𝑛𝑡 ). QMIX [26],
which is the most well-known algorithm inMARL, maintains mono-
tonicity in incorporating 𝑄𝑎𝑔𝑒𝑛𝑡 to 𝑄 𝑗𝑜𝑖𝑛𝑡 . Recently, some MARL
algorithms adopted a distribution-based architecture. DMIX [30]
integrated distributional RL and MARL via mean-shape decomposi-
tion, which is inspired by QMIX [26]. In DMIX, a small number of
quantile fractions are sampled fromU[0, 1], resulting in a distorted
uniform distribution rather than a perfect one. However, when
considering the entire episode, the sampling quantile fractions ap-
proach the uniform distributionU[0, 1]. DRIMA [29] divided risk

sources into cooperative and environmental risks, and injected risk
levels into the agent utility function and centralized utility function
differently according to the environment. They employed the archi-
tecture of the QTRAN [28] for the overall structure and the QMIX
for the hypernetwork. RMIX [25] adopted the Conditional Value
at Risk (CVaR) as a surrogate of joint state-action value 𝑄 𝑗𝑜𝑖𝑛𝑡 and
developed a model that adaptively estimates CVaR at every step.

2.4 Exploration in RL
Exploration is the key problem in reinforcement learning. It has
an inherent trade-off with exploitation, which is significant as it
impacts the sample efficiency of RL, and can be affected by many
factors such as sparse or delayed reward, large state & action space,
and more. Various algorithms, such as the 𝜖-greedy [33], Boltzmann
exploration [32], noise perturbation [11], and intrinsic motivation
[2, 7, 24], have been developed to solve this problem. After being
developed using deep learning-based distributional RL [3], several
distributional RL exploration methods have utilized the distribu-
tional property. DLTV [21] uses the QR-DQN algorithm [10] with
optimistic action selection via the return distribution’s left trun-
cated variance. Analogous to the Upper Confidence Bound (UCB)
approach in bandits literature , QR-DQN suppresses the intrinsic
uncertainty by decaying the bonus such that only parametric uncer-
tainty is utilized. The Distributional Predict Error (DPE) algorithm
[36] utilizes Random Network Distillation [7] to generate two iden-
tical architectures with randomly initialized parameters and use
their Wasserstein distance to measure an action’s novelty given a
state.

Although these methods are effective in the single-agent domain,
naïvely applying them separately and independently to each agent
in the MARL setting is bound to result in suboptimal performance.
This is because the agents mutually influence one another, creating
additional uncertainty that has to be taken into account. One way of
accounting for such uncertainty is to require cooperative behavior
between agents. Recently, there have been some works on ensuring
cooperation between the agents. MAVEN [20] uses a hierarchical
architecture to generate a shared latent vector for each agent to
explore the space cooperatively. CMAE [17] creates an exploration
compartment for each agent that is not shared with other agents,
drastically reducing the searching space via cooperative behavior.
However, none of these algorithms account for inherent uncertainty
and are applied to other MARL algorithms.

3 RISK-BASED OPTIMISTIC EXPLORATION
We propose a model-agnostic risk-based optimistic exploration
method for a cooperative multi-agent setting by shifting the sam-
pling region of the state-action value’s distribution. In Section 3.1,
we first show the limitations of existing model-agnostic exploration
methodologies and the conventional definition of risk for MARL.
In Section 3.2, we discuss how our methodology works to achieve
cooperative optimism by satisfying the 𝛾-contraction in the distri-
butional Bellman operator.
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(a) (b)

Figure 2: Toy example on 1-Step Payoff game. (a) represents
the matrix game, and (b) shows the reward of the each ap-
proach.

3.1 Risk in MARL
Figure 2 shows a clear performance gap between different explo-
ration methods for our considered toy example. In this environ-
ment, the true state-action values for all agents are 𝑄 (𝑥, 𝑎1) = −56,
𝑄 (𝑥, 𝑎2) = −30, and 𝑄 (𝑥, 𝑎3) = −26 respectively. Although the
maximum reward 8 is given when all agents choose 𝑎1, for each
agent, 𝑎3 is the best action to maximize its individual reward in
expectation. Therefore, unless the agents are altruistic, each agent
will choose 𝑎3, which is its individually optimistic action. In order
to obtain the largest reward 8, the environment must force the
agents to pick the cooperatively optimistic action, 𝑎1. We use the
DMIX algorithm in this environment and sample 𝜏 fromU[0, 1],
which is the default risk-neutral setting. As shown in Figure 2(b),
𝜖-greedy exploration fails to identify the maximum reward until
the end of the training and instead, obtains a suboptimal reward 5
in expectation. Moreover, it can be seen that 𝜖-greedy exploration
even performs worse than the risk-neutral setting, which suggests
that the 𝜖-greedy approach hinders cooperative exploration. The
multi-agent version of DLTV (UCB-based method) receives a re-
ward of 8 half of the time and a reward of 5 the other half of the
time. This is because DLTV compels agents to choose optimistic,
non-cooperative actions, which results in optimal value when they
are fortunate. We also consider a simple risk-based method (risk-
seeking) for optimistic action.

After the quantile fractions’ sampling region is specified, the
risk-based distributional RL selects an action as follows.

𝑎∗ = argmax
𝑎∈𝐴

E
𝜏∼U[𝛼,𝛽 ]

[
𝐹−1
𝑍 (𝑥,𝑎) (𝜏)

]
(8)

Usually, 𝛼 and 𝛽 are set to 0 and 1 each to utilize full distribution,
but this isn’t always the case. For instance, assuming that we want
0.5 < 𝛼 < 𝛽 and that the distribution is symmetric about 0.5, we
get a general inequality as follows:

E [𝑍 (𝑥, 𝑎)] ≤ E
𝜏∼U[𝛼,𝛽 ]

[
𝐹−1
𝑍 (𝑥,𝑎) (𝜏)

]
(9)

If the given 𝐹−1, state and action are identical, the agent over-
estimates the state-action value as shown in Equation (9) with

upper quantile fractions. Therefore, the agents now choose risk-
seeking (optimism) action, leading to superior performance than
risk-neutral policy when cooperative behavior is desired as shown
in Figure 2. Here, we set 𝛼 and 𝛽 to 0.75 and 1.0 to implement a risk-
seeking policy. Indeed, as shown in Figure 2(b), the risk-seeking
approach significantly outperforms 𝜖-greedy and DLTV, reaching
the maximum reward more often and having a greater reward in
expectation as well.

Although the previous toy example suggests that risk-seeking
always yields superior performance via the effect of cooperative
optimism, this isn’t generally the case in a more complex and long-
episodic environment. In such environments, in contrast to the
1-step payoff game, continually seeking a high reward is not ex-
ploitation. As the long-term episode requires the agents to decide
their actions consecutively, the only-seeking method’s cooperative
strategy is broken. The agents have to exploit the estimated sam-
ples from the optimistic actions rather than explore only seeking
behavior.

3.2 Cooperative Optimism with Risk Scheduling
We propose ROE, Risk-based Optimistic Exploration, which ad-
dresses the difficulties of multi-agent environments requiring co-
operation as discussed in Section 3.1. We achieve cooperative op-
timism in a multi-agent setting by endowing each agent with an
identical risk level, hence inducing similar behaviors across the
agents. By imposing a high-risk level at the initial phase, (e.g.,
𝜏 ∼ U[0.75, 1]), we make the agents choose informative action in a
cooperative manner. We then gradually update the sample region,
starting from the upper domain 𝜏 ∼ U[0.75, 1] to the full domain
𝜏 ∼ U[0, 1]. Lastly, the agents exploit the estimated samples of the
entire distribution.

We allow agents to explore cooperatively optimistic actions,
gradually exploiting the optimistically estimated samples using
Equation (8) where 𝛼 and 𝛽 adjust the risk levels (confidence bound
of distribution) and keep changing through the scheduling steps as
illustrated in Algorithm 1.

3.2.1 Dynamics of risk-scheduling. ROE shifts risk levels from
the seeking to specific levels. Like to previous works [3, 15], our
method is equivalent to iterating a finite sequence of operators
{T ◦ Π𝛼𝑡 ,𝛽𝑡 }𝑇𝑡=1, where Π𝛼𝑡 ,𝛽𝑡 is the uniform projection on the
quantile range [𝛼𝑡 , 𝛽𝑡 ]. We discuss the contraction property of the
distributional Q function and apply the distributional optimality
operator T = T𝜋 for a greedy policy 𝜋 [3].

We first note the non-expansive property of the projection oper-
ator in the following Lemma 1.

Lemma 1 (Non-expansiveness). Let Π𝛼,𝛽 (0 ≤ 𝛼 < 𝛽 ≤ 1) be the
transformation on the random variable, defined by the quantile
function or inverse CDF as

𝐹−1
Π𝛼,𝛽𝑍 (𝑥,𝑎) (𝜏) = 𝐹−1

𝑍 (𝑥,𝑎) ((𝛽 − 𝛼)𝜏 + 𝛼) ,

where 𝜏 ∈ [0, 1], (𝑥, 𝑎) ∈ 𝑋 ×𝐴 .

Then the Π𝛼,𝛽 is non-expansive on the metric 𝑑∞:

𝑑∞ (𝑍1, 𝑍2) = sup
𝑥∈𝑋 ,𝑎∈𝐴

esssup
𝜏∈[0,1]

���𝐹−1
𝑍1 (𝑥,𝑎) (𝜏) − 𝐹

−1
𝑍2 (𝑥,𝑎) (𝜏)

��� .
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Algorithm 1 ROE [Linear scheduling]
Require:
1: 𝑘 ← scheduling time steps
2: 𝜔0 ← initial risk level, 𝜔𝑘 ← final risk level

# We set risk level interval to [-1, 1] for the convenience of
computation. Risk level 1 (extreme seeking), 0.5, 0 (neutral),
-0.5, -1 (extreme averse) means sampling quantile fractions from
U[1, 1],U[0.5, 1],U[0, 1],U[0, 0.5],U[0, 0] each. Therefore,
if we set 𝜔0 = 1 and 𝜔𝑘 = 0, then it means that I will schedule
the risk level from risk-seeking to neutral.

Ensure:
3: 𝜔𝑡 ← current risk level (= [𝛼𝑡 , 𝛽𝑡 ]), 0 ≤ 𝛼𝑡 ≤ 𝛽𝑡 ≤ 1
4: Risk-scheduling size 𝛿 is 𝛿 =

𝜔0−𝜔𝑘

𝑘
5: Store random trainsition (𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑥𝑡+1) in ReplayBufferD for

short learning time.
6: 𝜔𝑡 ← 𝜔0
7: while 𝑡 < 𝑇 do
8: Select an action, 𝑎𝑡 = argmax𝑎∈𝐴E𝜏∼U[𝛼𝑡 ,𝛽𝑡 ] [𝐹−1

𝑍 (𝑥,𝑎) (𝜏)]
9: Execute an action 𝑎𝑡 and observe 𝑟𝑡 and 𝑥𝑡+1
10: Store transition (𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑥𝑡+1) in ReplayBuffer D
11: Sample transition batch from ReplayBuffer D

12: L𝑘 = 1
𝑁

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝜌𝑘𝜏𝑖 (𝛿
′𝑡
𝜏𝑖𝜏 𝑗
), 𝜏𝑖 , 𝜏

′
𝑗
∼ U[𝛼𝑡 , 𝛽𝑡 ]

13: if 𝑡 ≤ 𝑘 then
14: 𝜔𝑡+1 ← 𝜔𝑡 − 𝛿
15: else
16: 𝜔𝑡+1 ← 𝜔𝑘

17: end if
18: end while

Therefore, if the distributional Bellman operator with greedy
policy T is a 𝛾-contraction, so is T ◦Π𝛼,𝛽 on 𝑑∞, for fixed 𝛼 and 𝛽 .
Furthermore, by the Banach fixed point theorem, there also exists
a unique fixed point 𝑍𝛼,𝛽 for T ◦ Π𝛼,𝛽 . Each fixed point, which
is precisely the distributional 𝑄 function, reflects the various risk
level by allowing agents to behave differently.

From these observations, we propose a scheduling method to
allow the agents to various risk-sensitivity. Since the iterating oper-
ator changes with time, the procedure is governed by the temporal
evolution of the operator. This is especially true when 𝛼𝑡 and 𝛽𝑡
change at a rate of 𝑜 (𝑇 −1). In such cases, a mere convergence re-
sult does not provide much information. Instead, we show that the
distance between the 𝑡-th step and the fixed point 𝑍 ∗𝛼𝑡 ,𝛽𝑡 can be
bounded as shown in the following proposition :

Proposition 1. Let us consider the iterative process 𝑍𝑡 ← T ◦
Π𝛼𝑡 ,𝛽𝑡 (𝑍𝑡−1), and denote 𝑍 ∗𝛼𝑡 ,𝛽𝑡 as the unique fixed point of T ◦
Π𝛼𝑡 ,𝛽𝑡 . Then we have the upper bound between the distance of the
𝑡-th state and the fixed point of 𝑡-th operator as:

𝑑∞
(
𝑍𝑡 , 𝑍

∗
𝛼𝑡 ,𝛽𝑡

)
≤

𝑡−1∑︁
𝑖=1

𝛾𝑡−𝑖𝑑∞
(
𝑍 ∗𝛼𝑖 ,𝛽𝑖 , 𝑍

∗
𝛼𝑖+1,𝛽𝑖+1

)
+ 𝛾𝑡𝑑∞

(
𝑍0, 𝑍

∗
𝛼1,𝛽1

)
.

The upper bound is a weighted combination of the 𝑑∞-distance
between the neighboring fixed points. Intuitively, recent informa-
tion has a more significant influence, which exponentially decreases
with its age by a factor of 𝛾 , the discount factor. One important

Figure 3: Episode return of DMIX in Predator & Prey experi-
ments. The lines are themean of 3 random seeds with shaded
areas representing a confidence interval of 25% to 75%. The
numbers represent risk-scheduling steps.

observation is that if (𝛼𝑡 , 𝛽𝑡 ) changes moderately towards (𝛼, 𝛽),
𝑍𝑡 remains close to 𝑍 ∗𝛼,𝛽 because the distance between the fixed
points will be close.

4 EXPERIMENTS
For the experiments, we consider two variants of ROE: ROE-N
refers to ROE that adjusts the risk level from risk-seeking to risk-
neutral, and ROE-A refers to ROE that adjusts from risk-seeking
to risk-averse. We evaluate ROE-N and ROE-A in two cooperative
multi-agent settings with high aleatoric uncertainties. One is a
Predator & Prey environment and the other is the Starcraft Multi-
Agent Challenges (SMAC). As an ablation study, we also consider a
single-agent setting that does not require a cooperative strategy.

4.1 Environments
Predator & Prey As dealt with previously in the Introduction
section, Predator & Prey [6] is a grid environment in which the 8
predators (agents) must capture 8 prey cooperatively. The environ-
ment has inherent stochasticity as follows: with probability 0.1 an
"up" action will not be executed, and the transition of each predator
is governed by a transition probability kernel 𝑃 (𝑥 ′ |𝑥, 𝑎). Each prey
begins each episode at an arbitrary point and behaves in a random
manner, resulting in an inability to remember sequences for agents.
Moreover, agents can observe only within two grids from them,
which makes this environment a POMDP. The environment thus
requires cooperative strategies and optimistic exploration to cap-
ture the prey. Additionally, in the harder scenario Hare Grid, there
exist rabbits that are similar to prey in the way of giving rewards
but provide reward 1. Such rabbits are used as deceptive reward
signals which hinder predators from capturing prey.

StarCraft Multi-Agent Challenges (SMAC) For more com-
plex POMDP multi-agent settings, we conduct experiments on
SMAC environments [27], the standard cooperative multi-agent RL
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Figure 4: Comparison of exploration algorithms in Superhard scenarios. The lines are the mean of 3 random seeds using five
parallel training with shaded areas representing a confidence interval of 25% to 75%. Baseline architecture is DRIMA.

Figure 5: Performance sensitiveness of our method (ROE) according to the risk-scheduling steps on Easy scenario (3s5z) and
Superhard scenarios (MMM2 & 6h vs 8z). The lines are the mean of 3 random seeds using five parallel training with shaded
areas representing a confidence interval of 25% to 75%. Baseline architecture is DRIMA.

benchmark, with a focus on micro-management challenges. Each
SMAC environment consists of allies and enemies, each evaluating
their win rate. Allies are controlled by the MARL algorithms, while
enemies are controlled by the original StarCraftII agents with a
difficulty level 7 out of 10. Allies receive the episode’s reward of 200
when they win a battle, as well as small rewards of 10 for killing an
enemy and a payout equal to the amount of damage they dealt to
adversaries. To win a battle, agents must cooperate among them-
selves to manage their group behavior, like focusing fire while not
overkilling the enemies, or kiting to lure the enemies and kill them
one by one. We report the results for SuperHard scenario, where
the importance of cooperation is crucial in winning.

Atari We evaluated the validity of our method in an Atari game
[4, 19], a single-agent setting where intrinsic uncertainty is very
low and cooperation is not necessary. Here, the environment is fully
deterministic, and the reward consists of {-1, 0, 1}. Specifically, the
experiments are conducted in situations where complex exploration
is needed [34].

4.2 Implementation
For risk-based optimistic exploration, we shift the sampling region
of distribution with linear scheduling. We plugged in our ROE
method to IQN, DMIX, and DRIMA. For IQN and DMIX, we define

risk-averse, risk-neutral, and risk-seeking to be the sampling quan-
tile fractions fromU[0, 0.25],U[0, 1], andU[0.75, 1], respectively;
for DRIMA, they were set to be the sampling quantile fractions from
U[0, 0.1],U[0.4, 0.5], andU[0.9, 1.0]. To schedule risk in IQN and
DMIX from seeking to neutral, we initialized (𝛼, 𝛽) = (0.99, 1.0)
in Equation 8 at first, for more optimistic exploration, which is
generally set to (0.75, 1) for risk-seeking policy. Then, quantile frac-
tions 0.99 (𝛼) is linearly decayed to 0. When 𝛼 becomes 0, the risk
level is positioned at risk-neutral, which samples quantile fractions
fromU[0, 1]. In DRIMA, we linearly shift the quantile sampling
index fromU[0.9, 1.0] toU[0.4, 0.5] by an increment of 0.1 to cor-
respond to the architecture of the underlying algorithm. In SMAC
environment, we evaluate both ROE-N and ROE-A. This is because
we have observed that, depending on the risk level of the agents,
SMAC displays distinct behaviors that directly influence the win
rate.

4.3 Results
In MARL experiments with high uncertainty levels where cooper-
ation is necessary, our risk-based exploration yields a significant
performance advantage over 𝜖-greedy, UCB-based exploration, and
static risk level-based approaches.
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Figure 6: Win-rate Results of DMIX and DRIMA in Superhard scenarios. The label of X-axis and Y-axis represent algorithm -
risk level and scenarios respectively. The lines are the mean of 5 random seeds in DMIX, 3 random seeds in DRIMA using five
parallel training with shaded areas representing a confidence interval of 25% to 75%.

Predator & PreyWe compare our method with static risk level-
based approaches. Figure 3 shows the training curves of each al-
gorithm. Predators plugged with our method effectively resolve
the problem that static predators could not. In environments 10x10
Grid and 15x15 Grid, which lack deceptive reward compared to
Hare Grid, risk-neutral predators could evade the negative reward
that results from solely capturing, but they do not learn how to
get a greater reward. Risk-seeking predators demonstrate moder-
ately superior or even worse than risk-neutral predators. However,
our method initially receives negative rewards but has cooperative
optimism, which will be decayed to find better rewards, so they
learn the appropriate methods and employ them effectively. In the
setting that has a deceptive reward, Hare, shows similar results.
Risk-neutral predators only capture rabbits (deceptive rewards),
hence never capturing prey. It is easy for static risk-neutral preda-
tors to learn how to take rabbits but difficult to learn how to capture
prey. Although risk-seeking predators perform similarly to ROE
predators in the 15x15 Hare Grid, they do poorly in the 10x10
Hare Grid. However, predators appear to perform well with our
ROE that maximizes rewards in all Hare Grid while effectively

avoiding rabbits. This phenomenon illustrates that our methodolo-
gies are robustly operational, even in smaller or more challenging
maps (i.e., 10x10 Hare Grid) where it is easier to receive deceptive
rewards.

In addition, for a more detailed explanation for comparing ex-
ploration methods, we use the experiment results in Introduction
section. As shown in Figure 1(b), our method outperforms the
other exploration methods with a significant performance gap. The
failure of 𝜖-greedy exploration in this environment is due to the
random exploration’s discontinuity of preferable actions and using
only expectation value to choose an action. UCB-based exploration
demonstrates better exploration (sometimes reach to maximum
reward when fortunate) than the 𝜖-greedy method, but it exhibits
most of the failure in getting rewards. This is because UCB-based
exploration, choosing based on the variance of reward distribution,
yields optimistic but non-cooperative action.

StarCraft Multi-Agent Challenges Our method results in con-
siderable performance gains in SMAC. We compare the exploration
methods (𝜖-greedy, UCB-based, MAVEN[20]), which are applicable
to any algorithms (except MAVEN) in Super Hard scenarios where
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Figure 7: Win-rate Results of MMM2 scenario in SMAC. The
lines are the mean of 3 (left) and 5 (right) random seeds with
shaded areas representing a confidence interval of 25% to
75%.

hard exploration is required. Additionally, to make sure mono-
tonicity in the inverse CDF function (quantile function), we collect
random samples in the very initial training phase for 50k steps by
random or 𝜖-greedy action selector. For long-horizontal exploration,
we searched exploration step in {50k, 100k, 1M} for our method
and 𝜖-greedy exploration and showed the best performance among
them. The hyperparameters used in UCB-based and MAVEN is that
showing the best performance in their papers. As shown in Figure
4, ROE with random (purple line) shows the best performance. Also,
we compare ROE with a static risk-neutral, averse policies with
comprehensive experiments. As depicted in Figure 6, our learning
curve converges faster and obtains a higher win rate in the majority
of scenarios compared to static risk policies.

The reason of the performance in Figure 4,6 is that ROE collects
the merits of risk-seeking and other risk-based policies by schedul-
ing the risk levels in SMAC. Risk-seeking policies at an early stage
enable allies to explore and identify cooperative winning strate-
gies, such as running away for a moment or moving to weakened
enemies to focus fire, more quickly by encouraging them to take
cooperatively optimistic actions. In contrast, risk-averse policies
generally encourage allies to focus mainly on attack, which is the
best course of action in the worst-case scenario. Since decaying the
risk level controls this trade-off effectively, ROE could achieve the
best performance among our experiments.

As demonstrated in Figure 4, similar to the results in Predator
& Prey, the MMM2 environment requires exploration, but learn-
ing is challenging with naive optimistic actions from risk-seeking
policy. However, the ROE is able to effectively balance exploration-
exploitation by adjusting the risk level over time in the more com-
plexMMM2 environment, allowing for the identification of optimal
strategies.

Sensitiveness of Scheduling There should be proper explo-
ration and exploitation steps to solve the complexity in RL environ-
ments. Here, we discuss the scheduling time of altering the region
of quantile fractions, which has an impact on the exploration &
exploitation trade-off. Risk-seeking has the effect of exploration to
search state or action, which results in a greater reward, but shift-
ing the sampling region of distribution to the entire distribution
shows exploitation based on the prior knowledge of distribution. As

Figure 8: Episode return of IQN in Atari. The lines are the
mean of 3 different risk-scheduling time steps with shaded
areas representing a confidence interval of 25% to 75%.

depicted in Figure 4 (mid, right), the longer the scheduling period
is, the higher the performance in Super hard scenarios. In contrast,
the longer the scheduling time in the Easy scenario (Figure 4 left),
which involves more exploitation than exploration, the worse the
performance. Therefore, our dynamics of risk play a role in explo-
ration and exploitation trade-offs, and appropriate risk scheduling
steps are required.

Without Aleatoric Uncertainty Although our method mainly
focuses on addressing cooperative multi-agent environment, Figure
8 shows our method’s performance in a deterministic single-agent
environment, Atari, which requires no cooperation. We conduct
experiments on hard exploration games, Montezuma’s Revenge,
and Venture. In the early stages of training in sparse reward envi-
ronments, such as Venture, our risk-based optimistic exploration
displays excellent exploration. The reason for the improvements
is a bit different but similar to other exploration approaches in
distributional RL [21, 36] with respect to considering the upper
confidence of distribution. However, we need an intrinsic reward
from distributional output to solve notably spare reward setting,
such as Montezuma’s Revenge.

5 CONCLUSION & FUTUREWORK
Endowing identical risk-seeking levels to agents makes them be-
have in a cooperatively optimistic manner. Then shifting the sam-
pling region of distribution to the entire distribution or lower re-
gion of distribution enables the agents to utilize the exploratory
samples. Experiments have demonstrated that ROE is effective in
that it enhances the model’s learning speed and improves final
performance significantly more than other exploration techniques
under aleatoric uncertainty for cooperative settings. One important
future work is to develop risk-based exploration for competitive
environments.
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