
Intelligent Onboard Routing in Stochastic Dynamic
Environments using Transformers

Rohit Chowdhury
Indian Institute of Science, Bangalore

Bangalore, India
rohitc1@iisc.ac.in

Raswanth Murugan
Indian Institute of Technology,

Palakkad
Palakkad, India

raswanth99@gmail.com

Deepak Subramani
Indian Institute of Science, Bangalore

Bangalore, India
deepakns@iisc.ac.in

ABSTRACT
Autonomous marine agents find extensive applications in envir-
onmental data collection, naval security, and exploration of harsh
ocean regions. As intelligent agents, they must perform onboard
routing, collect data about their surroundings and update their route
to minimize mission travel time, energy, or data collection. While
Markov Decision Processes (MDPs) and Reinforcement Learning
(RL) are often used for path planning, they are computationally
expensive for onboard routing as they need in-mission re-planning.
In the present paper, we develop a novel, deep learning method
based on the decision transformers for optimal path planning and
onboard routing of autonomous marine agents. The transformer
architectures convert the RL-based optimal path planning prob-
lem into a supervised learning problem via sequence modeling.
Before the mission, during the offline planning phase, the envir-
onment is first modeled as a stochastic dynamic ocean flow with
dynamically orthogonal flow equations. A training dataset for the
transformer model is created by solving the stochastic dynamically
orthogonal Hamilton-Jacobi level set partial differential equations
or a dynamic programming solution for MDPs. These paths are
then processed to obtain sequences of states, actions and returns
for our transformer models, where the agent’s state is typically its
spatio-temporal coordinate and other collectible data. We propose
and analyze multiple state modeling choices against the agent’s
state estimation capabilities and scenarios with multiple target loc-
ations. We demonstrate that (i) a trained agent learns to infer the
surrounding flow and perform optimal onboard routing when the
agent’s state estimation is accurate,(ii) specifying the target loca-
tions (in case of multiple targets) as a part of the state enables a
trained agent to route itself to the correct destination, and (iii) a
trained agent is robust to limited noise in state transitions and is
capable of reaching target locations in completely new flow scen-
arios. We extensively showcase end-to-end planning and onboard
routing in various canonical and idealized ocean flow scenarios.
We analyze the predictions of the transformer models and explain
the inner mechanics of learning through a novel visualization of
self-attention of actions and states on the trajectories.

KEYWORDS
Path Planning; Onboard Routing; Decision Transformers; Reinforce-
ment Learning; Supervised Learning; Robot Planning and Control

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

ACM Reference Format:
Rohit Chowdhury, Raswanth Murugan, and Deepak Subramani. 2023. Intel-
ligent Onboard Routing in Stochastic Dynamic Environments using Trans-
formers. In Proc. of the 22nd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 –
June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Autonomous marine vehicles are often tasked with critical mis-
sions in harsh and unknown ocean regions. For tasks such as ocean
data collection, monitoring underwater assets, and tracking the
movement of adversaries in naval security, optimal operation of the
autonomous agents is necessary to reduce costs. In some missions,
it is sufficient for the agent to follow a pre-determined sequence of
waypoints if an accurate deterministic forecast of the environment
is available. For stochastic situations, when the uncertainty of the
ocean is well quantified, the agent can be made to follow a pre-
computed risk optimal path or an optimal in expectation policy that
is computed from a model of the environment and the Hamilton
Jacobi equations [18, 26, 27] or a Reinforcement Learning algorithm
[7, 34], or a Markov Decision Process algorithm [5, 6, 16, 20]. How-
ever, in most applications, autonomous agents are required to follow
pre-computed paths and perform intelligent onboard routing by
taking decisions based on real-time in-mission measurements of
the environment or their position on the fly. A key challenge for
such agents is that they are easily advected by strong, dynamic, and
uncertain ocean currents. Therefore, fast and scalable onboard rout-
ing algorithms for real-time applications and accurate environment
modeling techniques are imperative for successful path-planning
operations.

This paper considers time-optimal path planning and onboard
routing of an autonomous marine agent in a stochastic, dynamic
ocean environment. Various approaches can tackle this problem
(see a detailed survey in [29]). For example, there are path plan-
ners based on Dijkstra’s algorithm [25], variants of A∗ [24, 31]
and Delayed D∗ [10]. Despite working well in deterministic set-
tings, their Monte Carlo versions are computationally inefficient.
Stochastic Hamilton-Jacobi equation-based methods that give a
distribution of paths have been developed for path planning for
single objective missions in uncertain environments [17]. Recently,
path planners based on Markov Decision Process (MDP) [16] and
Reinforcement Learning (RL) [1, 7] have become popular, albeit
slow and computationally expensive for large-scale, realistic and
real-time applications. However, onboard routing with all the above
planners is still computationally intensive, requiring efficient data

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1688

assimilation schemes and re-computing optimal policies during the
mission.

Deep learning-based approaches with transformers [4, 13] have
yielded impressive results in learning policies in various determin-
istic but complex environments. In the present work, we propose
an onboard routing algorithm that exploits some of the important
properties of these transformer-based deep learning architectures
and develop a novel framework for using them in stochastic dy-
namic environments. In addition, we develop a framework that
enables the agent to make intelligent real-time decisions based on
its state estimate.

1.1 Problem Statement
Let us consider a spatiotemporal domain as shown in Figure 1,
where x ∈ IR𝑛 denotes space (𝑛 = 2, 3 for 2, 3-D space) and 𝑡 ∈ [0,∞)
denotes time. Let V(x, 𝑡 ;𝜔) be a stochastic, dynamic flow in the
domain that strongly advects the agent, where𝜔 represents a realiz-
ation of the uncertain flow field. At 𝑡 = 0, the autonomous agent is
at its initial position x0 and must travel to a pre-specified target loc-
ation x𝑓 among multiple possible targets. At any given time 𝑡 , the
agent must move relative to the flow by taking action 𝑎 according
to an optimal policy 𝜋 (x, 𝑡 |x𝑓 , 𝑦 (𝑡)), while simultaneously being
advected by the instantaneous flow velocity V. Here 𝑦 (𝑡) denotes
the agent’s trajectory up to time 𝑡 . However, the true realization
of the velocity field is unknown to the agent before the mission
and can potentially be estimated during the mission from its tra-
jectory history. Hence, the autonomous agent must intelligently
utilize its traversed trajectory and route itself optimally to reach
the pre-specified target location x𝑓 while minimizing travel time.

Figure 1: Schematic of the onboard routing problem: The autonom-
ous agent must travel from x0 to xf in a stochastic dynamic velocity
field V(x, 𝑡 ;𝜔) in the shortest time possible. Let y(t) be the path
traveled. The agent must take optimal actions 𝑎𝑡 = 𝜋 (x, 𝑡 |x𝑓 , y(t))
while simultaneously being advected by the flow v = V(x, 𝑡 ;𝜔) . The
agent’s resultant motion is along p = v + at

.

1.2 Previous Progress on Deep Learning-based
Optimal Path Planning

Over the recent years, deep learning methods have gained pop-
ularity for solving path planning problems [33, 35]. Specifically,
transformers [30] have been very successful in multiple supervised
learning applications, especially sequence modeling tasks such as
natural language translation. Recently, transformer-based architec-
tures have been successfully used for motion planning applications.
A motion planning transformer that uses the attention mechanism
to predict regions in a static, deterministic environment where valid
paths may exist has been proposed [14]. However, the actual path
planning is done using a sample-based planner in the predicted
region. Transformers have been used to learn and predict optimal
value functions given a static map with obstacles and a goal point
[3]. The actions are then computed using the predicted value func-
tion for a new planning problem. However, the environment here
is deterministic, and creating training data for large problems with
stochastic fields is intractable. [15] used transformers to solve the
traveling salesman problem, where it learns to predict the sequence
of nodes that must be visited as a stochastic policy. However, it
is trained using a reinforcement learning algorithm, which is a
non-trivial exercise. Transformers have also been used as a policy
network to learn heuristics for routing problems [2, 32]. However,
these methods are better suited to combinatorial optimization prob-
lems with deterministic environments.

The scene memory transformer [9] stores the observations in
memory, embeds them, and feeds the embeddings into the trans-
former encoder. The decoder outputs actions. This transformer,
which is effectively a memory-based policy network, is trained us-
ing deep Q-learning [19] and is therefore limited by the traditional
RL paradigm. Recently, decision transformers [4] and trajectory
transformers [13] have been proposed to model the offline RL prob-
lem as a sequence modeling problem. The key idea in this paradigm
is to view an agent’s experiences, which is a sequence of states,
actions, and rewards, as the transformer’s input sequence, and re-
turn action sequences as output. This framework uses well-studied,
high-capacity sequence model architectures like GPT-2 [22] and
may benefit from their good scaling and generalizing capabilities.

The main contribution of the paper is the development of a
novel transformer-based planning and onboard routing algorithm
by (i) creating expert datasets that embody optimal or near-optimal
behavior in stochastic, dynamic oceanic environments, thereby
enabling the attention mechanism in the decision transformer to
learn significant associations across states, actions and returns;
(ii) training a decision transformer model for path planning and
onboard routing with capabilities to learn the optimal actions to
be performed in completely unseen scenarios; and (iii) a novel
visualization of the attention mechanism on the trajectory itself
giving insights into the representation learning.

In what follows, we discuss individual components of our mod-
elling framework and necessary theoretical background (Sec. 2).
Then, we develop our transformer-based planning and onboard
routing algorithm (Sec. 3). In Sec. 4, we demonstrate our algorithm
on canonical and idealized ocean flow scenarios and discuss the
reasons behind its effective performance. Finally, Sec. 5 discusses
future research directions.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1689

2 MODELLING FRAMEWORK AND
BACKGROUND THEORY

Our onboard routing algorithm for autonomous marine vehicles
requires a stochastic ocean flow modeling system and an algorithm
to provide an ensemble of exact time-optimal paths in an ensemble
of flow scenarios for the supervised training of the transformer
model. The following subsections discuss these two systems. We
also describe the background theory of transformer models.

2.1 Probabilistic Ocean Modeling and
Simulation System

We use the Dynamically Orthogonal (DO) barotropic QuasiGeo-
strophic (QG) stochastic flow equations to forecast an idealized
ocean velocity field [17, 28]. Further, realistic 4D (3D in space and
1D in time) stochastic primitive equation simulations can also be
utilized. In the Langevin form, the stochastic barotropic QG dy-
namics may be represented as a set of equations describing the
conservation of mass, momentum, and energy [27]. We decompose
the stochastic dynamic velocity field using the DO expansion and
get explicit equations for its DO mean, modes, and coefficients (see,
e.g., [23]). The DOmethod offers a significant computational advant-
age (2–4 orders of magnitude) over naive Monte Carlo simulations
by carrying the uncertainty evolution in an adaptive and dynamic
stochastic subspace that is solved using the DO mode equations. Al-
ternatively, Polynomial Chose Expansion [21] or simple ensemble
modeling can also be used to model the probabilistic ocean flow.

2.2 Hamilton-Jacobi level set PDE
To obtain a set of exact time-optimal paths in the stochastic flow
field, we employ the DO stochastic scalar Hamilton-Jacobi-Bellman
(HJB) level-set partial differential equations (PDEs) [27] that govern
the stochastic reachability fronts. Here, the reachability front is
defined as the set of all points the agent 𝑝 can reach when starting
from x0 at 𝑡 = 0 in the flow v(x, t;𝜔). The optimal travel time
𝑇 (x𝑓 ;𝜔) is the first time instance that the reachability front reaches
x𝑓 and the optimal path X𝑃 (x0, 𝑡 ;𝜔) is computed for every 𝜔 by
solving the particle backtracking equation.

2.3 Modelling the underlying MDP
The underlying MDP of the offline path planning RL problem is
defined by the tuple < S,A,R,P, 𝛾 >, whereS andA are the state
and action spaces, P is the matrix of state transition probabilities,
R is the one-step rewards, and 𝛾 is the discount factor. For our
problem, we choose to model the state 𝑠 ∈ S as 𝑠 = (𝑡, 𝑥,𝑦) (or
alternatively 𝑠 = (𝑡, x), where 𝑡 ∈ {0, 1, 2, ..,𝑇 } denotes the time
step , x = (𝑥,𝑦) ∈ IR2 denote the spatial coordinate. Additionally,
the local velocity measurement v = (𝑢, 𝑣) ∈ IR2 observed at the
spatio-temporal coordinate (𝑡, 𝑥,𝑦) may also be included in the
state if required. The action space A = [0, 2𝜋), where an action
𝑎 ∈ A denotes the agent’s heading, as it moves with a constant
speed 𝐹 , relative to the flow. While the state transition probabilities
P are induced by the stochastic flow field, we need not compute it
explicitly. The rewards R are defined to minimize travel time, with
a one-step reward 𝑟𝑡 that gives the agent a large positive reward

𝑟𝑡𝑒𝑟𝑚 if it reaches the target state and a large negative penalty
𝑟𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 if it goes out of bounds of the domain. Mathematically,

𝑟𝑡 (𝑠, 𝑎, 𝑠′) =

𝑟𝑡𝑒𝑟𝑚 𝑠′ ∈ S𝑡𝑎𝑟𝑔
𝑟𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 𝑠′ ∈ S𝑝𝑒𝑛𝑎𝑙𝑡𝑦
−Δ𝑡 𝑜 .𝑤 .

(1)

where 𝑠′ is the next state to which the agent transitions, based
on the environment dynamics captured in the state transition prob-
abilities P,S𝑡𝑎𝑟𝑔 = {𝑠 = (𝑡, x) | 𝑠 ∈ S, | |x−xf | |2 < 𝜖},S𝑝𝑒𝑛𝑎𝑙𝑡𝑦
is the set of all states, whose coordinates lie outside the planning
domain. Lastly, the discount factor 𝛾 = 1, since we are modeling
the problem as a finite-horizon MDP.

2.4 Transformers for offline Reinforcement
Learning

The causally masked self-attention mechanism is the key ingredient
of a transformer that allows it to attend to the most important parts
of the input and output sequences and draw dependencies between
them. A simplified summary is as follows. Let a sequence consists of
𝐾 tokens, which are first projected to an embedding space of a fixed
dimension through multiple transformations. Let these transformed
tokens be (𝑤1,𝑤2, ..𝑤𝐾). Then, the similarity score 𝛼𝑖 𝑗 of each
transformed token 𝑤𝑖 for 𝑖 = 1, 2, ..𝐾 with the previous tokens
(𝑤1,𝑤2, ..𝑤𝑖) is computed through a scaled dot product operation,
leading to a lower triangularmatrix of attentionweights. The output
of the attention mechanism is a sequence of context-aware tokens
(or vectors) (𝑤 ′1,𝑤

′
2, ..𝑤

′
𝐾
), where𝑤 ′

𝑖
=
∑
𝑗=1:𝑖 𝛼𝑖 𝑗𝑤 𝑗 . The attention

mechanism is causally masked because each token attends only
to the previous tokens in the sequence. Finally, the context-aware
sequence is passed through a feed-forward layer to get the desired
output. We refer the reader to [30] for further details.

Offline RL is a paradigm that involves learning optimal policies
using data from previously collected interactions with the environ-
ment or a simulator. Hence, policies are learned from a fixed dataset
rather than online experiences. Recently, decision transformers [4]
were introduced, which allows solving offline RL problems as a se-
quence modeling problem using the transformer architecture. The
key idea is to treat trajectories of experience from a given dataset as
an input sequence of the form (𝑅1, 𝑠1, 𝑎1, 𝑅2, 𝑠2, 𝑎2, ...𝑅𝑇 , 𝑠𝑇), where
𝑠𝑖 , 𝑎𝑖 and 𝑅𝑖 are the state, action, and returns-to-go at the 𝑖th time-
step and converted to embeddings, which in turn are processed
by an autoregressive transformer model. The model is trained to
predict the next action given the previous tokens. During inference,
a target return value and start state are specified, and the model
iteratively predicts an action given all the previous returns-to-go,
states, and actions. Fig 2 shows a schematic of the decision trans-
former architecture with the causal self-attention mechanism. We
refer the reader to [4] for further details. Decision transformers
have proven to be very successful in various environments, capable
of learning better policies than even the behavior policy which was
used to collect the data.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1690

Decision Transformer

Causal
Multi-head
Attention

Feed
Forward
Network

Add & LN

s Ra s Ra

Linear + Positional Encoding

t-1 t-1 t-1 t t t

Linear Decoder Linear Decoder

a
t-1

a
t

Add & LN

Embedded
Input

Embedded
Output

A B

Logged Experience

Xf

Figure 2: (A) The transformer encoder (B) The decision transformer
architecture with an initial target token

3 PLANNING AND ONBOARD ROUTING
WITH TRANSFORMERS

Development and training of our planning algorithm involve the
following steps: (i) Obtaining the stochastic dynamic environment
flow forecast with an ensemble of form 𝑁𝑟 realizations of the flow
field; (ii) computation of the distribution of 𝑁𝑟 exact time-optimal
paths in this 𝑁𝑟 realizations; (iii) extracting the training sequences
for the decision transformer; (iv) training the decision transformer
with hyper-parameter tuning and (v) inference in new flow situ-
ations.

The sequence modeling nature of the decision transformer provi-
des a natural framework for onboard routing as the agent’s choice
of action is conditioned on all previous states and actions, where
the state consists of the trajectory so far. Since the agent knows its
speed, this information effectively encompasses the local velocity
field information as well. This allows the agent to infer the most
likely realization of the environment and act accordingly without
the need for expensive onboard computations of data assimilation
schemes.

3.1 Creating the database
To train the decision transformer, we first need to prepare appropri-
ate datasets. The dataset preparation involves the following phases:

3.1.1 Log data from a behavioral policy. To learn without exploring
the environment, offline RL algorithms need logged data of environ-
ment interactions previously collected by the agent (or other similar
agents) executing a behavior policy. If an environment model is
available, these interactions may also be logged from simulations.
We efficiently solve the exact time-optimal paths in the flow using
its forecast and the HJB level set PDEs discussed (Sec. 2.2) and
obtain a distribution of trajectories as shown in Fig. 3. Note that the
data can be logged from any other behavioral policy as well, and
the decision transformer can be trained. A novelty of the current
work is the use of a distribution of the exact time-optimal paths
obtained from the HJB equations for training.

We also note that the HJB time-optimal path is obtained for a
given realization of the stochastic velocity field. Hence, theoretically,
if the knowledge of the realization is available to the agent, then
it can simply follow the sequence of waypoints that constitute
the time-optimal path. However, in reality, the agent rarely has
prior knowledge of the true realization of the velocity field and
can only gather this knowledge through in-mission environment
observations. Hence, optimal onboard routing in such scenarios is
a complex, non-trivial task that requires efficient, intelligent, and
generalizable algorithms.

3.1.2 Extract experiences from the logged data. First, the time-
optimal trajectories from the HJB PDEs, which are in the form
of a sequence of waypoints, are converted to trajectories of ex-
periences in the MDP framework. The time-optimal PDE path for
realization 𝑗 is given by the sequence 𝜏 (𝑗)

𝐻 𝐽
= (xk (𝑗))𝑘=1:𝑛𝑑 , where

xk (𝑗) = (𝑥𝑘 , 𝑦𝑘) denotes the spatial coordinates in the defined
domain and 𝑛𝑑 is the number of waypoints that constitute the
path 𝜏 (𝑗) . For each 𝑗 ∈ {1, 2, .., 𝑁𝑟 }, we initialize the simulator en-
vironment with the agent at the start location in the field v(j)0 =
𝑉 (0, x0;𝜔 𝑗). Next we compute the action 𝑎0 that the agent must
perform at 𝑠0 such that it reaches the furthermost possible point
xk′ (𝑗) (𝑘′ > 𝑘) in the trajectory 𝜏 (𝑗)

𝐻 𝐽
. In doing so, the agent trans-

itions to the state 𝑠1 = (Δ𝑡, x1) and collects a one-step reward 𝑟0.
This process continues until the agent reaches a terminal state, and
the episode terminates. Consequently, for each 𝑗 , we obtain the
experience trajectory 𝜏 (𝑗) = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, ...𝑠𝑇).

3.1.3 Create a training dataset for the decision transformer. Next,
the experience trajectories are converted into a dataset of sequences
as expected by the decision transformer. First, for each 𝜏 (𝑗) , the
returns-to-go at each timestep are computed as𝑅𝑡 =

∑
𝑘=𝑡 :𝑇 𝑟𝑘 . This

associates states and actions with long-term returns instead of the
one-step reward. Then the states are normalized to have zero mean
and unit standard deviation. Additionally, the sequence length of the
data fed to the transformers, called the context length, must be fixed.
For our problem, we set the context length for the decision trans-
former to be greater than the longest trajectory in the dataset. Con-
sequently, the input sequence to the decision transformer is defined
as 𝜏 (𝑗)

𝐷𝑇,𝑖𝑝
= (xf , 𝑅0, 𝑠0, 𝑎0, 𝑅1, 𝑠1, 𝑎1, ..𝑅𝑇 , 𝑠𝑇 , 𝑡𝑜𝑘𝑝 , 𝑡𝑜𝑘𝑝 , ..𝑡𝑜𝑘𝑝), whe-

re 𝑡𝑜𝑘𝑝 are padding tokens, xf is the target location added as the first
token in the sequence. Since the decision transformer learns autore-
gressively, the target sequence for training is a masked version of
the input sequence 𝜏𝐷𝑇,𝑡𝑎𝑟𝑔 = (𝑚,𝑚, 𝑎0,𝑚,𝑚, 𝑎1,𝑚,𝑚, 𝑎2, ..𝑎𝑇−1 ...).
Hence, the agent learns to predict the action 𝑎𝑖 given all previous
returns, states, and actions in the sequence. Finally, the dataset
(𝜏 (𝑗)
𝐷𝑇,𝑖𝑝

, 𝜏
(𝑗)
𝐷𝑇,𝑡𝑎𝑟𝑔

) 𝑗=1:𝑁𝑟
is split into training and testing datasets.

3.2 Training and inference with the decision
transformer

The model is trained on the training dataset with the loss function
as the mean squared error between the predicted and target actions,

L(𝜃) = 1
𝑛𝑚

∑︁
𝑗=1:𝑛𝑚

∑︁
𝑖=0:𝑇−1

| |𝑎 (𝑗)
𝑖,𝑡𝑎𝑟𝑔

− 𝑎 (𝑗)
𝑖,𝑝𝑟𝑒𝑑

(𝜃) | |2, (2)

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1691

Figure 3: Distribution of time-optimal paths from Hamilton Jacobi
Bellman level set PDEs: The dataset contains trajectories correspond-
ing to 𝑁𝑟 = 5000 realization of the flow field, colored by its arrival
time. These trajectories are further processed to extract experience
sequences in the MDP framework. The background shows the flow
field (vector andmagnitude) of a typical realization as an illustration
of the flowfield encountered by the agent.

where 𝜃 denotes the network weights, 𝑛𝑚 is the batch size, 𝑎 (𝑗)
𝑖,𝑡𝑎𝑟𝑔

is the sequence of actions extracted from 𝜏
(𝑗)
𝐷𝑇,𝑡𝑎𝑟𝑔

and 𝑎 (𝑗)
𝑖,𝑝𝑟𝑒𝑑

is
the sequence of actions predicted by the model. Note that we are
using a continuous action space. During training, its performance
is evaluated by monitoring the average returns across the test set
at regular intervals. The model state is saved at the point where the
average return across the test set is maximum for future inference.
The model’s learnable weights (𝜃) are updated using the AdamW
optimizer [12]. Hyper-parameters like embedding dimension, num-
ber of blocks, number of attention heads etc., are tuned via a grid
search method. Once we have a trained model, the agent has effect-
ively learned a policy (or plan) 𝜋 , which can be readily executed
in new environment realizations, making the agent intelligent and
capable of navigating autonomously to the target location.

The agent performs inference when it is set into an environment
realization about which it has no prior knowledge. This may happen
either in simulation or during real-time missions. During inference,
the first action predicted by the model is conditioned on the target
state, target returns-to-go, and initial state 𝑠0. During the mission,
the agent may utilize onboard sensors like an Acoustic Doppler
Current Profiler (ADCP) or another sensor and a dead-reckoning
system to log its location. The agent uses this information and takes
action 𝑎0 predicted by running the sequence (xf , 𝑅0, 𝑠0) through a
forward pass of the trained model. Consequently, the agent trans-
itions to the next state, adds the information to the state definition
of 𝑠1, and notes the one-step reward based on Eq. 1. The target
return at the next time-step is simply obtained by subtracting the
one-step reward from the previous return, i.e. 𝑅1 = 𝑅0 − 𝑟0. The
action 𝑎0 is now appended to the input sequence and the model can
now predict 𝑎1 conditioned on the sequence (xf , 𝑅0, 𝑠0, 𝑎0, 𝑅1, 𝑠1).
This process allows the agent to perform actions based on prior
trajectory observations. Algorithm 1 summarizes the overall pro-
cedure discussed in this section.

Algorithm 1: Onboard routing algorithm

Input: 𝑒𝑛𝑣_𝑑𝑎𝑡𝑎, 𝑝𝑟𝑜𝑏_𝑝𝑎𝑟𝑎𝑚𝑠
Output: 𝜋

/* Create dataset */

1: {V(𝑡, x;𝜔 𝑗)} 𝑗=1:𝑁𝑟
← DO_SPDE_solve();

2: for 𝑗 in range(0, 𝑁𝑟) do
3: 𝜏

(𝑗)
𝐻 𝐽
← HJ_level_set_solve(V(𝑡, x;𝜔 𝑗), x0, xf);

4: env← initialize_MDP_env(V(𝑡, x;𝜔 𝑗), x0, xf);
5: 𝜏 (𝑗) ← env.extract_experience(𝜏 (𝑗)

𝐻 𝐽
);

6: (𝜏 (𝑗)
𝐷𝑇,𝑖𝑝

, 𝜏
(𝑗)
𝐷𝑇,𝑡𝑎𝑟𝑔

) ← create_DT_dataset(𝜏 (𝑗));
7: end for
/* Train model */

8: for (𝜏𝐷𝑇,𝑖𝑝 , 𝜏𝐷𝑇,𝑡𝑎𝑟𝑔) in dataloader do
9: 𝑎𝑝𝑟𝑒𝑑𝑠 ← decision_transformer(𝜏𝐷𝑇,𝑖𝑝);
10: 𝑎𝑡𝑎𝑟𝑔 ← extract_actions(𝜏𝐷𝑇,𝑡𝑎𝑟𝑔) ;
11: L ←MSE(𝑎𝑝𝑟𝑒𝑑𝑠 , 𝑎𝑡𝑎𝑟𝑔);
12: optimizer.update_weights(L);
13: end for

/* Inference or model evaluation */

14: 𝑅 ← 𝑅0;
15: done← False
16: 𝜏𝐷𝑇,𝑖𝑛 ← (𝑅, 𝑠0) ;
17: while not done do
18: 𝑎 ← decision_transformer(𝜏𝐷𝑇,𝑖𝑛);
19: 𝑠′, 𝑟 , done← step(𝑎);
20: 𝑅 ← 𝑅 − 𝑟 ;
21: 𝜏𝐷𝑇,𝑖𝑛 .append(𝑎, 𝑅, 𝑠′);
22: end while

4 APPLICATIONS
We demonstrate our path planning and onboard routing algorithm
with various flow scenarios derived from a canonical flow called the
highway (HW), and an idealized ocean flow called the double gyre
(DG) flow field. The spatial extent is considered on a square-shaped
domain of size 100x100 non-dimensional units. The highway is
confined to exist between 40 and 60 in the y-direction. The HW
flow field is a stochastic static flow field consisting of a band or
highway of ocean current flowing left (LHW; east to west) or right
(RHW; west to east). The double-gyre (DG) flow field is a stochastic
dynamic flow field obtained by solving the DO quasi-geostrophic
equations [23]. Such wind-driven double-gyre flows are frequently
observed in mid-latitude oceanic regions such as the Northwest
Atlantic Ocean (Gulf Stream and eddies) [8, 11]. These flow fields
are typically used to demonstrate path planning algorithms [17].
See Fig. 4 to visualize the flow field.

The planning is performed on a spatio-temporal grid which is
continuous in space and discrete in time. The spatial domain is
bounded within the space 𝑥 ∈ [0, 100], 𝑦 ∈ [0, 100]. Based on the
MDP formulation of the problem (see Sec. 2.3), the temporal coordin-
ate 𝑡 ∈ {0, 1, 2..., 120}, with Δ𝑡 = 1, 𝑟𝑡𝑒𝑟𝑚 = 100, 𝑟𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 = −100,
and 𝜖 = 2. Here, the ranges of 𝑡, 𝑥,𝑦 and Δ𝑡 are in non-dimensional
units. The decision transformer is trained on the training set de-
scribed in Sec. 3.2. The model is evaluated at regular intervals of

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1692

training iterations by performing inference with it on the 500 un-
seen realizations of the validation set while monitoring the average
return obtained by the agent across the validation set.

We performed multiple experiments with results shown in Fig. 4
and summarized in Table 1. For each scenario, the flow is visual-
ized in the background with blue colour and grey streamlines. The
starting location is marked with a black circular marker and the
target locations are marked with a star marker within a red circle.
Each scenario shows two panels, the left panel shows the traject-
ories from the test set and the right panel shows the trajectories
predicted on this test set by our trained model. Table 1 provides
numerical details for the experiments conducted in each scenario.
It also provides information on the training and testing scenarios
and the expected arrival times (EAT) with 1 standard deviation for
the validations trajectories and our models.

In scenario S1, the agent was trained and tested on a double
gyre (DG) flow scenario. Although small errors in predicted actions
can significantly affect arrival times due to the strong flow field,
the trained model performs nearly as well as the ground truth
trajectories.

In scenario S2, we have a mixed highway (mixed HW) flow field.
Half the realizations of this flow is LHW, and the other half is RHW.
Consequently, the trajectories also initially lean towards the left or
right depending on the particular realization. The agent has been
trained and tested on mixed HW flow distribution samples in this
scenario. Here we see that our model achieves the same EAT (up to
round-off errors) as the ground truth.

It is clear from scenarios S1 and S2 that the transformer mod-
els have learned good policies and can predict impressive action
sequences across different flow realizations. We believe this per-
formance is because the model infers the correct flow realization
from the history of states and action sequences. In other words, if an
agent performs an action a in a state s and reaches the state s′, then
it is straightforward to compute the local flow velocity v that led
to the transition, assuming the agent’s state estimation is accurate.
Since the transformer models learn to predict actions conditioned
on the trajectory history, they are essentially learning how to be-
have in a given realization. Consequently, our transformer-based
agent has performed well in these scenarios.

In scenarios S3, we introduce 2 target locations, xfl and xfr. The
agent is put in a mixed HW flow such that it must reach xfl in RHW
realizations and xfr in LHW realizations. For each realization, the
agent has a-priori knowledge of its specific target location, given
to it as the target token. The agent is trained and tested on samples
from the same distribution. We observe that the agent does just as
well as the ground truth on the test set.

In scenario S4, we have 2 target locations corresponding to two
identical sets of RHW flows. Each flow realization leads to two
different trajectories, one for each target. Hence, the agent’s ability
to infer the flow realization is insufficient to reach the desired
target unless it is explicitly provided to the agent. We observe that
a trained agent can navigate correctly and optimally to the desired
target location when given a target token (the first token in our
input sequence). In the ablation study, we used a sequence without
the target token, and found that model did not do well in this task.

For both scenarios S3 and S4, we have conducted experiments
using a model without a target token and observed that the agent

learns to proceed to the closest target, i.e., the one which minimizes
the travel time. The corresponding plots for an agent without the
target token are not shown here for brevity.

In scenario S5, we have a mixed HW flow with one target loca-
tion. However, here the agent starts its mission outside the highway
region. This makes an interesting case because HJB-level solutions
that constitute the dataset were computed assuming full know-
ledge of the flow field. Hence, these trajectories either move left
or right from the initial timestep itself to reach the target in min-
imum time. However, our transformer-based agent relies on the
executed trajectory to infer the realization of the flow field, which is
initially unavailable in this scenario. Moreover, it has been trained
on roughly an equal number of RHW and LHW realizations. As a
result, the agent takes an average action and goes straight up and
reaches the highway. Another interesting point is that by the time
the agent reaches the target, its actions are now conditioned on a
trajectory it has never seen in the training dataset. Despite this, the
agent manages to predict an impressive sequence of actions and
reaches the target. It becomes visually evident when we compare
the predicted trajectories post-highway impact with trajectories in
scenario S2.

In scenario S6, we present a mixed flow condition containing
an equal number of realizations from DG and LHW. Moreover, to
demonstrate that our transformer-based agent can learn from vari-
ous kinds of expert datasets, the trajectories for the DG realizations
have been computed by solving the formulated MDP through dy-
namic programming (DP) with an off-the-shelf end-to-end GPU
accelerated solver [6]. The trajectories for the LHW realizations
were derived from the HJB level set solver. We observe that our
transformer model outperforms the expert trajectories. A possible
reason for the same in this scenario is that DP for DG realizations
are optimal only in expectation and not for each realization exclus-
ively. Hence, there is potential for the transformer-based model to
better than the DP paths.

In scenario S7, we present a mixed HW flow scenario with 1
target. To analyze the agent’s performance in significantly different
unseen environments, the agent has been trained only on expert
trajectories corresponding to the LHW realizations and is tested
exclusively on RHW realizations. Since the test dataset only con-
tains RHW realizations, Fig. 4-S7 may appear like an RHW flow
scenario but is indeed a mixed HW flow. We observe that our
transformer-based agent successfully reaches the target location
for all realizations, albeit with a larger EAT, even though it was
never trained on such realizations. Our observations in scenarios
S2 and S7 imply that transformer-based agent has the potential to
extrapolate reasonably well to unseen environments.

Finally, in scenario S8, we analyze the robustness of the trans-
former’s learned representation by adding noise to the state trans-
itions during testing. This is equivalent to having a noisy flow field
that deviates from the modeled flow field during the mission. We
simulate the noisy flow field by adding Gaussian noise with mean=0
and variance=0.2 in the state transition. The flow used for the sim-
ulation is a mixed HW flow with one target. The agent is trained
on non-noisy expert trajectories for the mixed flow and tested on a
noisy mixed flow. Consequently, the agent is conditioned on relat-
ively new trajectories during testing and is still capable of reaching
the target with a slightly higher EAT. Multiple experiments were

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1693

Figure 4: Inference on the test set for eight different scenarios summarized in Table. 1. The ground truth paths are on the left and the predicted
paths are on the right. Each path is colored by its arrival time and the background shows a typical test flow field as an illustration.

done in this scenario with varying amounts of noise. As expec-
ted, with increasing noise, the EAT increases, and the success ratio
(percentage of target hits) decreases.

We also note that our proposedmethod is computationally cheap-
er during inference compared to solving a HJ level-set PDE. A for-
ward pass on our trained transformer takes just 1 ms, whereas
solving the HJ level-set PDE for a given environment realization
takes 4s. The final transformer architecture after hyper-parameter
tuning has one encoder block, context length = 70, number of atten-
tion heads = 4, embedding dimension = 8, with the transformer’s
feedforward block defined as a sequence of ⟨Linear(𝐶, 4𝐶), GELU(),
Linear(4𝐶,𝐶), Dropout(𝑝)⟩ layers, where 𝐶 = 32, projection dro-
pout, 𝑝 = 0.1 and GELU stands for Gaussian Error Linear Unit. The
learning rate is 10−4 and batch size is 64.

4.1 Visualizing attention weights
To explain why our algorithm performs well, we analyzed the
attention weights of a trained decision transformer model. We
investigate which prior actions (𝑎𝑖)𝑖=0:𝑡−1 and states (𝑠𝑖)𝑖=0:𝑡−1
in the sequence receive relatively higher attention scores when
predicting action 𝑎𝑡 . We do so by visualizing the attention scores in
two ways: first, through a heatmap of the attention matrix; second,
by projecting these attention weights as colors on the predicted
trajectories at different times as shown in Fig. 5 for Scenario 1.

Fig. 5 left panel shows the attention scores that constitute the
attention matrix of the top-most encoder block of a trained decision
transformer when used for inference on a given test realization.
Since we have set the context length to 60 and there are 3 tokens
(𝑅𝑡 , 𝑠𝑡 , 𝑎𝑡) per timestep in addition to the target token, the matrix
size is (181 × 181). Hence, rows and columns with index of the
form 3𝑡 + 1, 3𝑡 + 2 and 3𝑡 + 3, correspond to 𝑅𝑡 , 𝑠𝑡 , 𝑎𝑡 , respectively,

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1694

Table 1: Summary of experiments

Scenario
Flow Locations EAT

Train Test x0 xf 𝜋𝑒𝑥𝑝𝑒𝑟𝑡 DT

S1 DG DG (20,20) (40,80) 43.7 ± 1.5 44.4 ± 1.7
S2 mixed HW mixed HW (50,41) (50,70) 30.2 ± 2.3 30.1 ± 2.1
S3 mixed HW mixed HW (50,41) [(40,70),(60,70)] 34.1 ± 3.4 34.1 ± 3.4
S4 RHW RHW (50,41) [(40,70),(60,70)] 32.0 ± 4.6 32.1 ± 4.7
S5 mixed HW mixed HW (50,20) (50,80) 59.0 ± 0.4 61.0 ± 2.0
S6 DG(DP)+ LHW DG(DP) + LHW (50,41) (40,80) 28.5 ± 3.7 28.4 ± 3.7
S7 LHW RHW (50,41) (50,70) 29.3 ± 1.3 31.5 ± 0.5
S8 mixed HW mixed HW + noise (50,41) (50,70) 29.6 ± 1.6 30.0 ± 1.9

Figure 5: Self-attention matrix and visualization of instantaneous attention on the trajectory at three snapshots for scenario S1.

for 𝑡 = [0, 1, ..59]. The element 𝛼𝑖 𝑗 for 𝑗 <= 𝑖 , is the attention
score between the token 𝑖 and some previous token 𝑗 . For example,
𝛼9,5 is the attention score between 𝑎2 and 𝑠1. A lower diagonal
matrix (with masked upper diagonal elements)is used to impose a
causal relationship in the attention mechanism, allowing the model
to only attend to past information in the sequence for predicting
the current action We observe that the heatmap appears to be
more structured till approximately the 126𝑡ℎ row and relatively
less structured below. This is because the corresponding predicted
trajectory reaches the target location at the 42𝑛𝑑 timestep. We also
observe dark vertical and horizontal bands in the top-middle and
middle-left regions of the matrix. This observation is better visu-
alized in the next three panels of Fig. 5. These panels show the
evolution of all the predicted trajectories from the test set with the
attention weights computed with 𝑎𝑡 and (𝑎𝑘)𝑘=0:𝑡 at three snap-
shots. Each state transition of a trajectory up to the given timestep,
(𝜏 (𝑗)
𝐷𝑇,𝑝𝑟𝑒𝑑

[0 : 3𝑡]), has been colored with a shade proportional to

the action-action ((𝛼3𝑡+3,3𝑘+3)
(𝑗)
𝑘=1:𝑡) attention weights of that tra-

jectory. In other words, for a trajectory 𝑗 at time 𝑡 , we are laying
down every (3𝑘 +3)𝑡ℎ element of the (3𝑡 +3)𝑡ℎ row of the attention
matrix 𝑗 along the 𝑡 transitions of the 𝑗𝑡ℎ trajectory. Simply put,
we visualize which prior states and actions were relatively more
important for the model to predict the current action.

We observe that the model attends more to states and actions
in regions with the strongest flow magnitude, as shown in Fig. 5,
where the darkest parts of the trajectories align with the darkest

(strongest flow) regions of the velocity field at times 𝑡 = 17, 31, 46.
This observation aligns with intuition, as the agent is advected
the most in these regions, and a small change in its heading or
action could significantly affect its travel time and returns. To aid
visualization, a row-wise scaled version of the attention matrix is
shown, where the lower diagonal part of each row is linearly scaled
independently to have a minimum and maximum element of 0 and
1, respectively.

5 CONCLUSION
We developed and trained a decision transformer-based deep learn-
ing model for the onboard routing of autonomous marine vehicles.
Notably, the use of the solution of exact time-optimal paths com-
puted as a solution of the stochastic Hamilton Jacobi Bellman level
set partial differential equations makes it a first-ever application of
the transformer architecture for optimal planning of autonomous
marine vehicles advected by the strong currents in the environment
they operate. We showed that the transformer could learn repres-
entations and reliably execute optimal paths in flow fields different
from the training set. Additionally, the model shows strong gen-
eralization capabilities even in the presence of noisy fields during
inference. Further, training on a few target locations enables it to
learn about navigating to other target locations also. In the next
steps, we plan to develop a large trajectory model using a single
trained model for various flow fields and start-target combinations
similar to large language models. We also plan to use multiple
agents and learn in a coordinated or adversarial fashion.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1695

ACKNOWLEDGMENTS
The authors would like to thank the Prime Minister’s Research
Fellowship (PMRF) for supporting the graduate studies of R.C. We
also acknowledge the partial support received through research
grant No. CRG/2021/004595 from SERB, DST, Govt. of India.

REFERENCES
[1] Enrico Anderlini, Gordon G. Parker, and Giles Thomas. 2019. Docking Control

of an Autonomous Underwater Vehicle Using Reinforcement Learning. Applied
Sciences 9, 17 (2019). https://doi.org/10.3390/app9173456

[2] Xavier Bresson and Thomas Laurent. 2021. The transformer network for the
traveling salesman problem. arXiv preprint arXiv:2103.03012 (2021).

[3] Devendra Singh Chaplot, Deepak Pathak, and Jitendra Malik. 2021. Differ-
entiable Spatial Planning using Transformers. In Proceedings of the 38th In-
ternational Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 1484–1495.
https://proceedings.mlr.press/v139/chaplot21a.html

[4] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. 2021. Decision
Transformer: Reinforcement Learning via Sequence Modeling. https://doi.org/
10.48550/ARXIV.2106.01345

[5] Rohit Chowdhury, Atharva Navsalkar, and Deepak Subramani. 2022. GPU-
Accelerated Multi-Objective Optimal Planning in Stochastic Dynamic Envir-
onments. Journal of Marine Science and Engineering 10, 4 (2022). https:
//doi.org/10.3390/jmse10040533

[6] Rohit Chowdhury and Deepak Subramani. 2022. Optimal Path Planning of
Autonomous Marine Vehicles in Stochastic Dynamic Ocean Flows Using a
GPU-Accelerated Algorithm. IEEE Journal of Oceanic Engineering (2022), 1–16.
https://doi.org/10.1109/JOE.2022.3152514

[7] Rohit Chowdhury and Deepak N Subramani. 2020. Physics-Driven Machine
Learning for Time-Optimal Path Planning in Stochastic Dynamic Flows. In In-
ternational Conference on Dynamic Data Driven Application Systems. Springer,
293–301.

[8] Benoit Cushman-Roisin and Jean-Marie Beckers. 2011. Introduction to geophysical
fluid dynamics: physical and numerical aspects. Academic press.

[9] Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese. 2019. SceneMemory
Transformer for Embodied Agents in Long-Horizon Tasks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10] D. Ferguson and A. Stentz. 2005. The Delayed D* Algorithm for Efficient Path
Replanning. In Proceedings of the 2005 IEEE International Conference on Robotics
and Automation. 2045–2050. https://doi.org/10.1109/ROBOT.2005.1570414

[11] Avijit Gangopadhyay. 2022. Introduction to Ocean Circulation and Modeling. CRC
Press.

[12] Loshchilov Ilya and Hutter Frank. 2019. Decoupled weight decay regularization.
In Proceedings of ICLR.

[13] Michael Janner, Qiyang Li, and Sergey Levine. 2021. Offline Reinforcement Learn-
ing as One Big Sequence Modeling Problem. https://doi.org/10.48550/ARXIV.
2106.02039

[14] Jacob J Johnson, Linjun Li, Ahmed H Qureshi, and Michael C Yip. 2021. Mo-
tion planning transformers: One model to plan them all. arXiv preprint
arXiv:2106.02791 (2021).

[15] Wouter Kool, Herke Van Hoof, and Max Welling. 2018. Attention, learn to solve
routing problems! arXiv preprint arXiv:1803.08475 (2018).

[16] Dhanushka Kularatne, Hadi Hajieghrary, and M Ani Hsieh. 2018. Optimal Path
Planning in Time-Varying Flows with Forecasting Uncertainties. In 2018 IEEE
ICRA. 1–8.

[17] T. Lolla, P. F. J. Lermusiaux, M. P. Ueckermann, and P. J. Haley, Jr. 2014. Time-
Optimal Path Planning in Dynamic Flows using Level Set Equations: Theory and
Schemes. Ocean Dynamics 64, 10 (2014), 1373–1397.

[18] Tapovan Lolla, Mattheus P. Ueckermann, Konur Yiğit, Patrick J. Haley, Jr., and
Pierre F. J. Lermusiaux. 2012. Path planning in time dependent flow fields using
level set methods. In IEEE International Conference on Robotics and Automation
(ICRA), 14-18 May 2012. 166–173. https://doi.org/10.1109/ICRA.2012.6225364

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Ant-
onoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[20] Arvind A. Pereira, Jonathan Binney, Geoffrey A. Hollinger, and Gaurav S.
Sukhatme. 2013. Risk-aware Path Planning for Autonomous Underwater Vehicles
using Predictive Ocean Models. Journal of Field Robotics 30, 5 (2013), 741–762.
https://doi.org/10.1002/rob.21472

[21] Mass Per Pettersson, Gianluca Iaccarino, and Jan Nordström. 2015. Polynomial
Chaos Methods. In Polynomial Chaos Methods for Hyperbolic Partial Differential
Equations. Springer, 23–29.

[22] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sut-
skever, et al. 2019. Language models are unsupervised multitask learners. OpenAI
blog 1, 8 (2019), 9.

[23] Themistoklis P. Sapsis and Pierre F. J. Lermusiaux. 2009. Dynamically orthogonal
field equations for continuous stochastic dynamical systems. Physica D: Nonlinear
Phenomena 238, 23–24 (Dec. 2009), 2347–2360. https://doi.org/10.1016/j.physd.
2009.09.017

[24] Yogang Singh, Sanjay Sharma, Robert Sutton, Daniel Hatton, and Asiya Khan.
2018. A constrained A* approach towards optimal path planning for an unmanned
surface vehicle in a maritime environment containing dynamic obstacles and
ocean currents. Ocean Engineering 169 (2018), 187–201. https://doi.org/10.1016/
j.oceaneng.2018.09.016

[25] Yogang Singh, Sanjay Sharma, Robert Sutton, Daniel Hatton, and Asiya Khan.
2018. Feasibility study of a constrained Dijkstra approach for optimal path plan-
ning of an unmanned surface vehicle in a dynamic maritime environment. In 2018
IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC). 117–122. https://doi.org/10.1109/ICARSC.2018.8374170

[26] Deepak N. Subramani and Pierre F. J. Lermusiaux. 2019. Risk-Optimal Path
Planning in Stochastic Dynamic Environments. CMAME 353 (2019), 391–415.

[27] D. N. Subramani, Q. J. Wei, and P. F. J. Lermusiaux. 2018. Stochastic Time-Optimal
Path-Planning in Uncertain, Strong, and Dynamic Flows. CMAME 333 (2018),
218–237.

[28] M. P. Ueckermann, P. F. J. Lermusiaux, and T. P. Sapsis. 2013. Numerical schemes
for dynamically orthogonal equations of stochastic fluid and ocean flows. J.
Comput. Phys. 233 (Jan. 2013), 272–294. https://doi.org/10.1016/j.jcp.2012.08.041

[29] Anete Vagale, Rachid Oucheikh, Robin T Bye, Ottar L Osen, and Thor I Fossen.
2021. Path planning and collision avoidance for autonomous surface vehicles I: a
review. Journal of Marine Science and Technology (2021), 1–15.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[31] Zhao Wang and Xianbo Xiang. 2018. Improved Astar Algorithm for Path Plan-
ning of Marine Robot. In 2018 37th Chinese Control Conference (CCC). 5410–5414.
https://doi.org/10.23919/ChiCC.2018.8483946

[32] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. 2022. Learn-
ing Improvement Heuristics for Solving Routing Problems. IEEE Transactions
on Neural Networks and Learning Systems 33, 9 (2022), 5057–5069. https:
//doi.org/10.1109/TNNLS.2021.3068828

[33] Jing Xin, Huan Zhao, Ding Liu, and Minqi Li. 2017. Application of deep rein-
forcement learning in mobile robot path planning. In 2017 Chinese Automation
Congress (CAC). IEEE, 7112–7116.

[34] Byunghyun Yoo and Jinwhan Kim. 2016. Path optimization for marine vehicles
in ocean currents using reinforcement learning. JMST 21, 2 (2016), 334–343.

[35] Lin Zhang, Yingjie Zhang, and Yangfan Li. 2020. Path planning for indoor mobile
robot based on deep learning. Optik 219 (2020), 165096.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1696

https://doi.org/10.3390/app9173456
https://proceedings.mlr.press/v139/chaplot21a.html
https://doi.org/10.48550/ARXIV.2106.01345
https://doi.org/10.48550/ARXIV.2106.01345
https://doi.org/10.3390/jmse10040533
https://doi.org/10.3390/jmse10040533
https://doi.org/10.1109/JOE.2022.3152514
https://doi.org/10.1109/ROBOT.2005.1570414
https://doi.org/10.48550/ARXIV.2106.02039
https://doi.org/10.48550/ARXIV.2106.02039
https://doi.org/10.1109/ICRA.2012.6225364
https://doi.org/10.1002/rob.21472
https://doi.org/10.1016/j.physd.2009.09.017
https://doi.org/10.1016/j.physd.2009.09.017
https://doi.org/10.1016/j.oceaneng.2018.09.016
https://doi.org/10.1016/j.oceaneng.2018.09.016
https://doi.org/10.1109/ICARSC.2018.8374170
https://doi.org/10.1016/j.jcp.2012.08.041
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.23919/ChiCC.2018.8483946
https://doi.org/10.1109/TNNLS.2021.3068828
https://doi.org/10.1109/TNNLS.2021.3068828

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Previous Progress on Deep Learning-based Optimal Path Planning

	2 Modelling Framework and Background Theory
	2.1 Probabilistic Ocean Modeling and Simulation System
	2.2 Hamilton-Jacobi level set PDE
	2.3 Modelling the underlying MDP
	2.4 Transformers for offline Reinforcement Learning

	3 Planning and onboard routing with transformers
	3.1 Creating the database
	3.2 Training and inference with the decision transformer

	4 Applications
	4.1 Visualizing attention weights

	5 Conclusion
	Acknowledgments
	References

