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ABSTRACT
We study algorithmic fairness in a budget-feasible resource alloca-

tion problem. In this problem, a set of items with varied sizes and

values are to be allocated to a group of agents, while each agent has

a budget constraint on the total size of items she can receive. An

envy-free (EF) allocation is defined in this context as one in which

no agent envies another for the items they get and, in addition,

no agent envies the charity, who is automatically endowed with

all the unallocated items. Since EF allocations barely exist even

without budget constraints, we are interested in the relaxed notion

of envy-freeness up to one item (EF1). In this paper, we further the

recent progress towards understanding the existence and approxi-

mations of EF1 (or EF2) allocations. We propose a polynomial-time

algorithm that computes a 1/2-approximate EF1 allocation for an

arbitrary number of agents with heterogeneous budgets. For the

uniform-budget and two-agent cases, we present a polynomial-time

algorithm that computes an exact EF1 allocation. We also consider

the large budget setting, where the item sizes are infinitesimal rela-

tive to the agents’ budgets. We show that both the allocations that

maximize the Nash social welfare and the allocations that our main

algorithm computes are EF1 in the limit.
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1 INTRODUCTION
The literature on fair division is so far predominantly focused on

problems without budget constraints (see, e.g., a recent survey [1]),

in which any partition of the item set is accepted as a feasible allo-

cation. In many real-world applications, this is insufficient. There

might be budget constraints that prevent agents from taking large

bundles that exceed their capacities. For example, when a contrac-

tor outsources some projects (i.e., items) to some subcontractors

(i.e., agents), the total workload of the projects assigned to a sub-

contractor cannot exceed the amount of time available to her. Since

each project comes with a profit for the subcontractors, to maintain

good long-term partnerships, the contractor does not want any

subcontractor to feel that they have not been treated equally. It

would hence be preferred that the assignment is envy-free.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

In this paper, we study a budget-feasible resource allocation

problem motivated by such applications. In this problem, a set 𝑀

of items are to be allocated to a set 𝑁 of agents. Each item 𝑗 ∈ 𝑀
has a size 𝑠 𝑗 and a value 𝑣 𝑗 , and each agent 𝑖 ∈ 𝑁 has a budget

𝐵𝑖 > 0, which imposes an upper bound on the total size of items

this agent can receive. The standard EF notion, defined solely based

on the agents’ values, is not suitable for this problem. Hence, we

propose a new EF notion that also considers the budgets. By our

EF notion, an agent 𝑖 does not envy an agent 𝑗 if and only if she

cannot find a subset 𝑆 of agent 𝑗 ’s bundle of items such that 𝑆 is

more valuable than 𝑖’s own bundle while its size does not exceed 𝑖’s

budget. Indeed, without considering the budgets, an agent may envy

another agent for a high-value item while herself is incapable of

taking the item even if allocated. It would be questionable whether

one should declare an allocation unfair because of such envies. By

our EF notion, an envy is legitimate only if a matching capacity is

provided.

The budget constraints may very often prevent complete allo-

cations, where every item is allocated to some agent, especially

when the agents have small budgets. Hence, unlike many other fair

allocation tasks, having all items allocated is not required in our

setting. Without this requirement, a trivial EF solution would be

allocating nothing to every agent, which however defeats the pur-

pose of allocating the items. For a meaningful objective, a dummy

agent whom we refer to as the charity is introduced. The charity

is assumed to have a budget sufficiently large for taking all the

items but attaches no value to any of them. With the the charity, a

complete allocation always exists. Since EF allocations seldom exist

in natural instances and are hard to approximate, we are interested

in the relaxed notion of envy-freeness up to one item (EF1) [24]. In

an EF1 allocation, every agent prefers her own bundle to that of

any other agent if the most valuable item is removed from the other

agent’s bundle.

Research on fairness in budegt-feasible resource allocation prob-

lems was initiated only recently by Wu et al. [29]. The budget

constraints appear to complicate the fair allocation task signifi-

cantly and the results that have been discovered in this area so

far are limited. Wu et al. [29] proved that allocations maximizing

the Nash social welfare (NSW) are 1/4-approximate EF1 (in a more

general setting with heterogeneous valuations of the agents), but

no algorithmic result is known about the efficient computation or

approximation of EF1 allocations. In a more recent work, Barman

et al. [3] provided an efficient algorithm that computes but allo-

cations that are envy-free up to two items (EF2). The algorithm

does not provide any guarantee for computing or approximating

EF1 allocations. In this paper, we further this line of work and pro-

pose polynomial-time algorithms for computing approximately EF1

allocations.
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1.1 Main Results and Techniques
We observe that with budget constraints, commonly used algo-

rithms for computing EF1 allocations may perform arbitrarily bad,

even with trivial modifications that take into account the values

or densities (the ratio between the value and size) of the items.

One difficulty is that the knapsack problem (i.e., maximizing total

value subject to budget constraint) does not have a succinct optimal

solution and a small difference in the budgets can make the opti-

mal solutions significantly different. We, therefore, introduce the

concepts of feasible configuration and virtual budget. Informally, a

feasible configuration is a collection of item bundles that fit agents’

budgets. Our algorithm greedily assigns items with the largest den-

sity while ensuring that the resulting allocation remains a feasible

configuration. In addition, we gradually increase the virtual budgets

and ensure that the virtual budget of an agent is at most her actual

budget. The virtual budgets enable us to exchange bundles between

agents even if their actual budgets are different. Our algorithm runs

in polynomial time and generates a 1/2-approximate EF1 allocation.

Besides the approximability, we show that two special, yet typi-

cal, settings of our problem admit polynomial-time algorithms for

computing exact EF1 allocations. In the setting where the agents

have the same budget, we show that our algorithm for computing a

1/2-approximate EF1 allocation in the general setting degenerates

to an algorithm with an early stop feature, and it computes an exact

EF1 allocation. In the setting with two agents, our algorithm is

based on the divide-and-choose approach, which is widely used in

the fair division literature. Finally, we consider the large budget

setting, in which the agents’ budgets are much larger than the sizes

of items [13, 16, 23, 26, 29]. We show that under this setting, our

polynomial-time algorithm computes an allocation whose approx-

imation ratio of EF1 is close to 1. We also investigate the extent

to which an NSW maximizing allocation approximates EF1 in the

large budget setting. It has been shown that (for non-identical val-

uation functions) such an allocation is 1/2-approximate EF1 [29].

We prove that when agents have identical valuations, this approxi-

mation ratio improves and approaches 1, which coincides with the

result of Caragiannis et al. [8] for the unconstrained setting. Details

of this part can be found in the full version of this paper.

1.2 Related Work
There is a growing research interest in fair division, especially

since the relaxed notion of EF1 was introduced [6, 24]. Our problem

falls into the category of constrained fair division of indivisible
items. Existing works have considered the problem under various

constraints, such asmatroid [4, 5, 14], cardinality [2, 18], and budget-

feasible [29].We refer the readers to a recent survey by Suksompong

[28] for more details. While an EF1 allocation can be found easily

in the unconstrained setting [8], the problem becomes much more

difficult when budget constraints are taken into consideration, in

particular when the charity is introduced to make the problem

meaningful. The concept of charity has been used in unconstrained

settings too to ensure the existence of fair allocations. For example,

Caragiannis et al. [7] showed that there is a partial allocation that

is EFX and achieves at least half of the maximum Nash welfare

for all items. (EFX is a notion stronger than EF1 whereby an agent

only removes the least valuable item from another agent’s bundle

when comparing the bundle values.) Similarly, Chaudhury et al.

[10] showed that by donating no more than 𝑛 items, there is an

EFX allocation and no agent envies the charity. Chaudhury et al.

[9] showed that there exists an almost EFX allocation with high

Nash welfare by donating a sublinear number of items.

The problem we consider in this paper can be viewed as a multi-

agent version of themultiple knapsack problem (MKP). The problem

is a natural generalization of the classic NP-complete problem,

the knapsack problem [21]. In the MKP, a set of of items with

varied sizes and values are to be packed in multiple knapsacks.

Each knapsack has a budget (or capacity) that limits the total size

of items it can take. The goal is to find a way to pack the items so

that the total value of packed items is maximized [11, 19, 20, 22, 25].

In other words, existing works study the MKP with respect to

social welfare, while our work focuses on fairness. The notions

of fairness and budget/knapsack constraints also arise in voting

scenarios [12, 15, 17], where a set of voters vote for a set of costly

items and the goal is to select a set of items within a fixed budget.

Nevertheless, these problems are fundamentally different from ours

since there is only a single bundle to be selected and it is to be

accessed by all the agents. In our problem, we select a bundle for

each agent, who does not have access to the other agents’ bundles.

2 PRELIMINARIES
In the budget-feasible fair allocation problem, a set𝑀 of𝑚 goods

needs to be allocated to a set 𝑁 of 𝑛 agents. Every item 𝑗 ∈ 𝑀
has a value 𝑣 𝑗 and a size 𝑠 𝑗 , and each agent 𝑖 ∈ 𝑁 has a budget

𝐵𝑖 , which restricts the total size of items she can receive. We let

s = (𝑠1, . . . , 𝑠𝑚), v = (𝑣1, . . . , 𝑣𝑚), and B = (𝐵1, . . . , 𝐵𝑛) be the

size, value, and budget profiles, respectively; and we denote by

𝐼 = (s, v;B) an instance of the problem. For any subset 𝑋 ⊆ 𝑀 of

items, we let 𝑠 (𝑋 ) = ∑
𝑗 ∈𝑋 𝑠 𝑗 and 𝑣 (𝑋 ) =

∑
𝑗 ∈𝑋 𝑣 𝑗 be the total size

and value of items in 𝑋 , respectively. We also denote by 𝜌 𝑗 = 𝑣 𝑗/𝑠 𝑗
the density of item 𝑗 ∈ 𝑀 , and by 𝜌 (𝑋 ) = 𝑣 (𝑋 )/𝑠 (𝑋 ) the average
density of items in a set 𝑋 ⊆ 𝑀 . For notational simplicity, for any

𝑋 ⊆ 𝑀 and 𝑔 ∈ 𝑀 , we write 𝑋 ∪ {𝑔} as 𝑋 + 𝑔 and 𝑋 \ {𝑔} as 𝑋 − 𝑔.
An allocation is an ordered (𝑛 + 1)-partition of 𝑀 , and is de-

noted as X = (𝑋0, 𝑋1, · · · , 𝑋𝑛), where each 𝑋𝑖 is the bundle of

items allocated to agent 𝑖 ∈ 𝑁 and 𝑋0 contains the unallocated

items. The allocation must satisfy the budget constraints. An allo-

cation X is budget-feasible if 𝑠 (𝑋𝑖 ) ≤ 𝐵𝑖 for all 𝑖 ∈ 𝑁 . For example,

(𝑀, ∅, · · · , ∅) is trivially a feasible allocation, in which every agent

gets an empty bundle. Given an allocation X, we say that agent 𝑖

is tight if her remaining budget is insufficient for taking any unal-

located item, i.e., 𝑠 (𝑋𝑖 + 𝑔) > 𝐵𝑖 for all 𝑔 ∈ 𝑋0. We will also think

of the unallocated items 𝑋0 as endowment to a charity — a special

agent with an unlimited budget. We let 𝑁 + = 𝑁 ∪ {0} be the set of
agents including the charity. Introducing the charity is important

for our problem because the budget constraints disallow us to al-

ways allocate all the items to agents in 𝑁 . We adapt the EF and EF1

notions to the above budget-feasible setting as follows.

Definition 2.1 (𝛼-EF). Suppose 0 ≤ 𝛼 ≤ 1. An allocation X is

called 𝛼-approximate envy-free or 𝛼-EF if for every pair of agents

𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 + \ {𝑖} and every 𝑇 ⊆ 𝑋 𝑗 with 𝑠 (𝑇 ) ≤ 𝐵𝑖 , 𝑣 (𝑋𝑖 ) ≥
𝛼 · 𝑣 (𝑇 ). When 𝛼 = 1, the allocation is also said to be EF.
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In other words, in an EF allocation, no agent 𝑖 finds a subset of

another agent’s bundle more valuable than her own bundle while

this subset also fits her budget. The requirement that the agents do

not envy the charity also excludes the allocation (𝑀, ∅, · · · , ∅) from
our consideration. An 𝛼-EF allocation may not exist for any 𝛼 > 0

even in the standard setting without budget constraints (e.g., when

there are two agents but only one item to be allocated). So the next

hope is to find an EF1 allocation, which allows an agent to envy

another agent but for at most one item. We define 𝛼-approximate

EF1 as follows.

Definition 2.2 (𝛼-EF1). Suppose 0 ≤ 𝛼 ≤ 1. An allocation X is

called 𝛼-approximate envy-free up to one item or 𝛼-EF1, if for every
pair of agents 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 + \{𝑖}, and every𝑇 ⊆ 𝑋 𝑗 with 𝑠 (𝑇 ) ≤ 𝐵𝑖 ,
there exists 𝑒 ∈ 𝑇 such that 𝑣 (𝑋𝑖 ) ≥ 𝛼 · 𝑣 (𝑇 − 𝑒). When 𝛼 = 1, the

allocation is also said to be EF1.

3 WARM UP
When there are no budget constraints, it is well-known that round
robin is a simple and efficient procedure that always yields an EF1

allocation. In this procedure, the agents take turns to select a most

valuable item from the unallocated items, until all items are selected.

It would then be tempting to think that this simple procedure can

be easily adapted to our setting.

There are two immediate difficulties. First, the size of a selected

item may exceed an agent’s remaining budget, so this item cannot

be allocated to this agent. A straightforward workaround is to

restrict each agent’s selection to items smaller than their remaining

budget. However, consider the instance presented in Table 1. A

round-robin approach will first allocate items 1 and 2 to agents 1

and 2, respectively. After that, agent 1 becomes tight. If we stop

the allocation procedure at this point, both agents would envy

the charity for more than one item, whereas if we continue the

procedure with agent 2 (who is not yet tight), agent 2 would get

many more items than agent 1, resulting in agent 1 envying her

for more than one item. The failure of this attempt is mainly due

to the inappropriate allocation of item 1, which has a big value

but a small density. This leads us to a more sophisticated greedy

algorithm which also considers the densities of the items.

item 1 2 . . . 100

value 1 0.5 . . . 0.5

size 1 0.1 . . . 0.1

Table 1: There are two agentswith budgets 𝐵1 = 𝐵2 = 1. Items
2 to 100 are identical.

Considering Densities. We repeat the following steps until all the

agents’ bundles are finalized: (a) Pick an agent 𝑖 whose bundle has

the lowest value among bundles that are not yet finalized. (b) Pick

the densest unallocated item that does not exceed the remaining

budget of agent 𝑖 and allocate this item to 𝑖 (if no such item exists,

we finalize the bundle of agent 𝑖 and continue with the remaining

agents). The algorithm attempts to balance the values and densities.

Unfortunately, it does not lead us anywhere closer to EF1. On the

instance presented in Table 2, it fails to generate an 𝛼-EF1 allocation

for any 𝛼 > 0. Indeed, it generates an allocation with 𝑋1 = {1, 3}
and 𝑋2 = {2}, whereby we have 𝑣 (𝑋2) = 2𝜖 ≤ 2𝜖

1−𝜖 · 𝑣 (𝑋1 − 𝑒) for
any 𝑒 ∈ 𝑋1. The coefficient 2𝜖/(1−𝜖) can be made arbitrarily small

by choosing an 𝜖 sufficiently close to 0.

item 1 2 3

value 1 2𝜖 1 − 𝜖
size 𝜖 2𝜖 1 − 𝜖

Table 2: There are two agents with budgets 𝐵1 = 𝐵2 = 1.

Early Termination. An easy fix to the above issue is to terminate

the algorithm once agent 2 becomes tight, and output 𝑋1 = {1}
and 𝑋2 = {2}. As we will show in Section 5.1, for agents with

identical budgets, this algorithm (which terminates once the agent

with lowest value becomes tight) always outputs an EF1 allocation.

However, in the presence of agents with different budgets, there

are some issues.

item 1 2 3 4 . . . 10

value 𝜖 1/𝜖 2 1/𝜖 . . . 1/𝜖
size 𝜖3 𝜖 𝜖 1 − 𝜖 . . . 1 − 𝜖

Table 3: There are two agents with 𝐵1 = 1 and 𝐵2 = 3. The
items are ordered in a non-increasing order of densities.

Consider the instance presented in Table 3. There are two agents

with budgets 𝐵1 = 1 and 𝐵2 = 3, where 𝜖 > 0 is arbitrarily small.

Note that the items are indexed in a non-increasing order of their

densities (items 4 to 10 are identical). Following steps (a) and (b) of

the above greedy algorithm, we allocate item 1 to agent 1, item 2 to

agent 2 and then item 3 to agent 1. After that, we have 𝑋1 = {1, 3},
𝑋2 = {2} and hence agent 1 is tight, i.e., its remaining budget

1 − 𝜖 − 𝜖3 is insufficient for packing any more items. Hence we

finalize 𝑋1. However, unlike the identical budget case, since 𝐵2 = 3,

we cannot finalize bundle 𝑋2 at this moment, as otherwise agent 2

will envy the charity. On the other hand, if we keep assigning items

4, 5, 6 to agent 2, then agent 1 will be severely envious of agent

2 because the subset {2, 4} ⊆ 𝑋2 has size 1 and its value is much

larger than 𝑣 (𝑋1) = 2 + 𝜖 even after removing any item.

Swapping Bundles. To fix this issue, we can swap bundles 𝑋1
and 𝑋2 when agent 1 (whose budget is smaller) becomes tight.

Observe that after the swap, we have 𝑋1 = {2} and 𝑋2 = {1, 3}, and
thus running the greedy algorithm results in the final allocation

𝑋1 = {2, 5}, 𝑋2 = {1, 3, 4, 6, 7}, which is EF1. Whereas it works in

this instance, two other obstacles come into view.

First, we need to maintain budget-feasibility when swapping

bundles. For example, when agent 1 is tight, if 𝑠 (𝑋2) > 𝐵1, then

we cannot swap 𝑋1 and 𝑋2. To resolve this issue, we introduce the

concept of virtual budget, which enables the algorithm to swap

bundles of agents with different budgets as long as their virtual

budgets are the same.
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Second, we need to be very careful when we decide which item

to allocate before an agent becomes tight. For example, consider

adding item 11with value 𝜖 and size 0.9 (see Table 4) to the instance

in Table 3. When 𝑋1 = {1, 3} and 𝑋2 = {2}, the algorithm will

next try to allocate an item to agent 1. However, the only item

that is compatible with the remaining budget of agent 1 is item 11,

which has a significantly lower density compared with items 4 to

10. In this case, allocating item 11 to 𝑋1 may cause issues because

in the future we might want to swap this bundle with that of agent

2. This would lead to agent 2 receiving items with strictly lower

densities compared with items in the charity. Agent 2 would be

severely envious of the charity as a result. To resolve this issue, we

introduce the concept of feasible configuration, which allows the

size of a bundle to exceed the corresponding budget temporarily, as

long as there exists a sequence of swaps to resolve this infeasibility.

In particular, we propose the TryFit subroutine to implement the

allocations and swaps. This subroutine will function as one of the

core parts of our algorithms presented in the next sections.

item 1 2 3 4 . . . 10 11

value 𝜖 1/𝜖 2 1/𝜖 . . . 1/𝜖 𝜖

size 𝜖3 𝜖 𝜖 1 − 𝜖 . . . 1 − 𝜖 0.9

Table 4: There are two agents with 𝐵1 = 1 and 𝐵2 = 3. The
items are ordered in non-increasing order of densities.

4 COMPUTING A 1/2-EF1 ALLOCATION
In this section, we present an efficient algorithm for computing

a 1/2-EF1 allocation. Without loss of generality, we assume that

the agents are indexed in ascending order of their budgets, i.e.,

𝐵1 ≤ 𝐵2 ≤ . . . ≤ 𝐵𝑛 . We also assume that there is always a dummy

item of value 0 and size larger than 𝐵𝑛 in𝑀 , so that there is always

at least one unallocated item in 𝑋0.

4.1 Virtual budget and TryFit Subroutine
At a high level, our algorithm uses a greedy approach: it repeatedly

picks an agent with the least valuable bundle among all bundles

not yet finalized (i.e., among active agents in A), and attempts to

allocate a densest item to this agent. The algorithm uses a virtual
budget for each agent, which is maintained through a level value

𝑙 (𝑖) for each 𝑖; the virtual budget of agent 𝑖 is 𝐵𝑙 (𝑖) ; Initially, the
virtual budget is 𝐵1 for all the agents. In each round of the algorithm,

an agent 𝑖 receiving the minimum value will be selected and the

algorithm tries to allocate one more item to this agent. During this

allocation process, the algorithm may swap bundles between the

agents and increase the virtual budgets of agents. If no more items

can be allocated, then the algorithm inactivates some agents and

terminate the round. Throughout the whole process, the algorithm

maintains the following two invariants.

Invariant 1 (Level invariant). For all 𝑖, 𝑗 ∈ 𝑁 , if 𝑖 < 𝑗 , then
𝑙 (𝑖) ≤ 𝑙 ( 𝑗) ≤ 𝑗 .

Invariant 2 (Size invariant). For all 𝑖 ∈ 𝑁 , we have 𝑠 (𝑋𝑖 ) ∈(
𝐵𝑙 (𝑖)−1, 𝐵𝑙 (𝑖)

]
(suppose 𝐵0 = −∞).

Algorithm 1 presents a pseudo-code of the main algorithm. A

key novelty of the algorithm is the TryFit subroutine (invoked at

Line 9 of Algorithm 1). As described above, the algorithm tries

to allocate an item 𝑔 to an active agent 𝑖 with the lowest value

so far. The subroutine TryFit is designed to identify the densest

item 𝑔 such that after adding 𝑔 into 𝑋𝑖 , either 𝑠 (𝑋𝑖 + 𝑔) ≤ 𝐵𝑙 (𝑖) ,
or there exists a sequence of swaps and virtual budget updates by

which the budget-feasibility is maintained. As we will demonstrate

in Lemma 4.3, TryFit(X, 𝑖, 𝑔) is successful if and only if adding 𝑔

into 𝑋𝑖 results in a feasible configuration. In other words, a feasible

configuration guarantees that for all 𝑖 ∈ 𝑁 , the 𝑖-th largest (in size)

bundle fits into 𝐵𝑛−𝑖+1.

Algorithm 1: Compute a 1/2-EF1 allocation.
1 Input: An instance 𝐼 = (s, v;B)
2 Initialize 𝑋𝑖 ← ∅ and level 𝑙 (𝑖) ← 1 for each 𝑖 ∈ 𝑁 ;

3 Initialize active agents: A ← 𝑁 and let 𝑋0 ← 𝑀 ;

4 while A ≠ ∅ do
5 Pick an arbitrary agent 𝑖 ∈ A with the minimum 𝑣 (𝑋𝑖 );
6 𝑈 ← 𝑋0;

7 while𝑈 ≠ ∅ do
8 Pick an arbitrary item 𝑔 ∈ 𝑈 with the maximum

density;

9 if TryFit(X, 𝑖, 𝑔) is successuful then
10 Commit the operations in TryFit(X, 𝑖, 𝑔) and

break out of this while loop;

11 else
// Revoke all operations in TryFit(X, 𝑖, 𝑔)

12 𝑈 ← 𝑈 − 𝑔;

13 if 𝑈 = ∅ then
// TryFit failed for all items in 𝑋0

14 Let 𝑗 be the largest index such that 𝑙 ( 𝑗) = 𝑙 (𝑖);
15 Swap items in 𝑋𝑖 and 𝑋 𝑗 ;

16 A ← { 𝑗 + 1, 𝑗 + 2, . . . , 𝑛};

17 Output: allocation X = (𝑋1, . . . , 𝑋𝑛).

Algorithm 2: TryFit(X, 𝑖, 𝑔)
1 𝑡 ← 𝑖;

2 while 𝑠 (𝑋𝑡 + 𝑔) > 𝐵𝑙 (𝑡 ) do
3 Let 𝑗 be the largest index such that 𝑙 ( 𝑗) = 𝑙 (𝑡);
4 if 𝑗 ≠ 𝑡 then
5 Swap items in 𝑋𝑡 and 𝑋 𝑗 ;

6 𝑡 ← 𝑗 ;

7 else if 𝑙 (𝑡) < 𝑡 then
8 𝑙 (𝑡) ← 𝑙 (𝑡) + 1;
9 else
10 Output: unsuccessful (and terminate the

subroutine).

11 𝑋𝑡 ← 𝑋𝑡 + 𝑔;
12 Output: successful.
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Definition 4.1 (Feasible configuration). A collection of bundles

Y = {𝑌1, . . . , 𝑌𝑛} is called a feasible configuration if there exists

a permutation 𝜎 : 𝑁 → 𝑁 , such that

(
𝑌0, 𝑌𝜎 (1) , . . . , 𝑌𝜎 (𝑛)

)
is a

feasible allocation, where 𝑌0 = 𝑀 \
⋃𝑛

𝑖=1 𝑌𝑖 .

In more details, TryFit swaps the bundles and increases the vir-

tual budgets in the following way. The subroutine TryFit(X, 𝑖, 𝑔)
compares the size of the new bundle 𝑋𝑖 + 𝑔 with the virtual budget

of agent 𝑖 . If the virtual budget is insufficient for packing 𝑋𝑖 +𝑔, the
subroutine tries to increase the agent’s virtual budget to the next

level. However, in order to maintain the level invariant (Invariant 1),

we increase 𝑙 (𝑖) only if 𝑙 (𝑖 + 1) > 𝑙 (𝑖). In other words, 𝑖 is expected

to be the highest-indexed agent in that virtual budget level. If 𝑖

is not, we swap items in bundle 𝑋𝑖 and 𝑋 𝑗 , where 𝑗 is the largest

index with 𝑙 ( 𝑗) = 𝑙 (𝑖). The subroutine subsequently increase the

virtual budget of 𝑗 to the level at which the budget-feasibility is

satisfied. As we will demonstrate in Lemma 4.2, the level and size

invariants are maintained by the TryFit subroutine. If TryFit(X, 𝑖, 𝑔)
is unsuccessful for all unallocated items 𝑔 ∈ 𝑋0, we finalize bundle
𝑋𝑖 and mark agent 𝑖 as inactive. Moreover, as discussed in Section 3,

we should also inactivate agents with virtual budgets equal to or

smaller than that of agent 𝑖 . Particularly, let 𝑗 is the largest index

such that 𝑙 ( 𝑗) = 𝑙 (𝑖). We swap items in 𝑋𝑖 and 𝑋 𝑗 , and inactivate

all agents with index at most 𝑗 (Line 13-15 of Algorithm 1). We

say that agent 𝑗 is actively finalized, and say that the other agents

finalized in this round are passively finalized.

Lemma 4.2. The level and size invariants are maintained after the
operations in TryFit are committed (Line 10, Algorithm 1).

Proof. First, the level invariant holds before TryFit is called the
first time, when we have 𝑙 ( 𝑗) = 1 ≤ 𝑗 for all 𝑗 ∈ 𝑁 . Since we only

increase the level of the agent with largest index in this level and

𝑙 ( 𝑗) ≤ 𝑗 due to the condition at Line 7 of Algorithm 2, the level

invariant is maintained throughout.

The size invariant holds before TryFit is called the first time,

when 𝑋𝑖 = ∅ for all 𝑖 ∈ 𝑁 . Suppose that the size invariant is main-

tained at some point before we execute the operations of TryFit;
we argue that it is also maintained afterwards. Indeed, throughout

the while loops in TryFit, 𝑋𝑡 is the only bundle that may violate

the size invariant. Since 𝑙 (𝑡) increases by at most 1 in each itera-

tion of the while loop, when the while loop breaks out, we have

𝐵𝑙 (𝑡 )−1 < 𝑠 (𝑋𝑡 + 𝑔) ≤ 𝐵𝑙 (𝑡 ) . The addition of 𝑔 into 𝑋𝑖 at Line 11

of Algorithm 2 then gives 𝐵𝑙 (𝑡 )−1 < 𝑠 (𝑋𝑡 ) ≤ 𝐵𝑙 (𝑡 ) , so the size

invariant is also maintained for bundle 𝑋𝑡 . □

Lemma 4.3. TryFit(X, 𝑖, 𝑔) is successful if and only if
{𝑋1, . . . , 𝑋𝑖−1, 𝑋𝑖 + 𝑔,𝑋𝑖+1, . . . , 𝑋𝑛} is a feasible configuration.

Proof. Suppose that TryFit(X, 𝑖, 𝑔) is successful. In the follow-

ing, we use 𝑋 𝑗 and 𝑋
′
𝑗
to denote the 𝑗-th bundle before and after

the execution of operations in TryFit, respectively, for all 𝑗 ∈ 𝑁 . By

Lemma 4.2, 𝑠 (𝑋 ′
𝑗
) ≤ 𝐵𝑙 ( 𝑗) ≤ 𝐵 𝑗 for each 𝑗 ∈ 𝑁 , so (𝑋 ′

1
, . . . , 𝑋 ′𝑛) is a

feasible allocation. Indeed, TryFit only permutes the order of the

bundles 𝑋1, . . . , 𝑋𝑖 + 𝑔, . . . , 𝑋𝑛 , so the collection of these bundles is

a feasible configuration. In the following we show that if the config-

uration {𝑋1, . . . , 𝑋𝑖 +𝑔, . . . , 𝑋𝑛} is feasible, then TryFit(X, 𝑖, 𝑔) must

be successful. Note that TryFit(X, 𝑖, 𝑔) is unsuccessful only if the

following conditions hold at some iteration of the while loop:

• 𝑠 (𝑋𝑡 + 𝑔) > 𝐵𝑙 (𝑡 ) ;
• 𝑡 is the agent with the largest index at level 𝑡 ; and

• 𝑙 (𝑡) = 𝑡 .
Given the above conditions, we have 𝑙 ( 𝑗) ≥ 𝑙 (𝑡) + 1 = 𝑡 + 1 for

all 𝑗 > 𝑡 , by the level invariant. Furthermore, we have 𝑠 (𝑋 𝑗 ) > 𝐵𝑡
for all 𝑗 > 𝑡 by the size invariant. Therefore, if the above three con-

ditions hold, then the number of bundles in {𝑋1, . . . , 𝑋𝑖 +𝑔, . . . , 𝑋𝑛}
of sizes larger than 𝐵𝑡 is at least 𝑛− 𝑡 + 1. In other words, it requires

𝑛 − 𝑡 + 1 agents with budget at least 𝐵𝑡 to pack these bundles while

we only have 𝑛−𝑡 such agents, so the configuration is not a feasible

one, which contradicts the assumption. □

4.2 Approximation Ratio Analysis
Now we are ready to prove the following key theorem for the

approximation guarantee.

Theorem 4.4. Algorithm 1 computes a 1/2-EF1 allocation in poly-
nomial time.

Note that TryFit (refer to Algorithm 2) runs in polynomial time

because in each while loop, if the algorithm does not terminate

(in Line 10), then the value of 𝑡 increases by at least one (in Line 6

or Line 8). Thus Algorithm 1 finishes in polynomial time as every

iteration of the while loop (in Line 6-17 of Algorithm 1) finishes in

polynomial time, after which either one item is removed from 𝑋0
or at least one agent is removed from the active set A. By the level

and size invariants, we have 𝑠 (𝑋 𝑗 ) ≤ 𝐵𝑙 ( 𝑗) ≤ 𝐵 𝑗 , so Algorithm 1

always computes a feasible allocation. We present the following

two parts to complete the proof of Theorem 4.4:

• 1/2-EF1 is guaranteed between the agents (Lemma 4.6).

• No agent envies the charity by more than one item

(Lemma 4.8).

For ease of description, in what follows we denote by

(𝑋 1, . . . , 𝑋𝑛) the output of Algorithm 1 (and 𝑋 0 = 𝑀 \ ⋃𝑛
𝑖=1 𝑋 𝑖 )

to distinguish it from the bundles 𝑋0, 𝑋1, . . . , 𝑋𝑛 not yet finalized

during the execution of the algorithm. Consider some iteration in

which a group of agents 𝐾 are finalized, among which agent 𝑗 is

actively finalized. We show that agent 𝑗 must have the largest bud-

get and the smallest value among agents in 𝐾 . This will be helpful

in the later analysis because as long as agent 𝑗 is 𝛼-EF1 towards

𝑗 ′ ∈ 𝑁 +, so are agents in 𝐾 .

Lemma 4.5. Suppose that agent 𝑘 is finalized in some iteration
where agent 𝑗 is actively finalized. Then 𝐵𝑘 ≤ 𝐵 𝑗 and 𝑣 (𝑋𝑘 ) ≥ 𝑣 (𝑋 𝑗 ).
Moreover, if agent 𝑗 is 𝛼-EF1 towards 𝑗 ′ ∈ 𝑁 +, so does agent 𝑘 .

Proof. Consider the iteration in which agents 𝑘 and 𝑗 are fi-

nalized. By Line 13-15 of Algorithm 1, the agent that is actively

finalized must have the largest index among agents that are final-

ized in this iteration. Thus we have 𝐵 𝑗 ≥ 𝐵𝑘 . Further more, before

𝑋 𝑗 is finalized, we swap the items in 𝑋 𝑖 and 𝑋 𝑗 , where (before

the swap) 𝑋𝑖 has the minimum value among all active bundles,

according to Line 5 of Algorithm 1. Thus we have 𝑣 (𝑋𝑘 ) ≥ 𝑣 (𝑋 𝑗 ).
Finally, suppose agent 𝑗 is 𝛼-EF1 towards 𝑗 ′ ∈ 𝑁 +, then for all

𝑇 ⊆ 𝑋 𝑗 ′ with 𝑠 (𝑇 ) ≤ 𝐵 𝑗 , there exists 𝑔 ∈ 𝑇 such that 𝑣 (𝑋 𝑗 ) ≥
𝛼 · 𝑣 (𝑇 − 𝑔). Consequently, for all 𝑇 ⊆ 𝑋 𝑗 ′ with 𝑠 (𝑇 ) ≤ 𝐵𝑘 ≤ 𝐵 𝑗 ,
there exists 𝑔 ∈ 𝑇 such that 𝑣 (𝑋𝑘 ) ≥ 𝑣 (𝑋 𝑗 ) ≥ 𝛼 · 𝑣 (𝑇 −𝑔). In other

words, agent 𝑘 is also 𝛼-EF1 towards 𝑗 ′. □

Session 1C: Fair Allocations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

174



Next we demonstrate that 1/2-EF1 is guaranteed between the

agents.

Lemma 4.6. For any pair of agents 𝑖, 𝑗 ∈ 𝑁 and any 𝑇 ⊆ 𝑋 𝑗 with
𝑠 (𝑇 ) ≤ 𝐵𝑖 , there exists an item 𝑔 ∈ 𝑇 such that 𝑣 (𝑋 𝑖 ) ≥ 1

2
· 𝑣 (𝑇 − 𝑔).

Proof. Wefirst show that throughout Algorithm 1, active agents

do not envy each other by more than one item.

Claim 1. ∀𝑖, 𝑗 ∈ A, ∃𝑔 ∈ 𝑋 𝑗 such that 𝑣 (𝑋𝑖 ) ≥ 𝑣 (𝑋 𝑗 − 𝑔).
For continuity of analysis we defer the proof of the claim to later

parts. The claim immediately implies that if bundle 𝑋 𝑗 is finalized

before or in the same iteration with bundle 𝑋 𝑖 , then agent 𝑖 is EF1

towards agent 𝑗 . Consider the moment right before 𝑋 𝑗 is finalized,

and let 𝑖 ′ be the index of bundle 𝑋 𝑖 in that iteration. It holds that

𝑣 (𝑋 𝑖 ) ≥ 𝑣 (𝑋𝑖′) ≥ 𝑣 (𝑋 𝑗 − 𝑔) = 𝑣 (𝑋 𝑗 − 𝑔)

for some 𝑔 ∈ 𝑋 𝑗 . Thus, for any 𝑇 ⊆ 𝑋 𝑗 , we have 𝑣 (𝑋 𝑖 ) ≥ 𝑣 (𝑋 𝑗 −
𝑔) ≥ 𝑣 (𝑇 − 𝑔). On the other hand, if 𝑋 𝑗 is finalized after 𝑋 𝑖 , we

consider the moment right before 𝑋 𝑖 is finalized. By Lemma 4.5, it

suffices to consider the situation when 𝑋 𝑖 is actively finalized. We

have

𝑣 (𝑋 𝑖 ) ≥ 𝑣 (𝑋 𝑗 ′ − 𝑔) (1)

for some 𝑔 ∈ 𝑋 𝑗 ′ ⊆ 𝑋 𝑗 , where 𝑗
′
is the index of bundle 𝑋 𝑗 at that

moment. Observe that the way Algorithm 1 proceeds means that:

• 𝑠 (𝑋 𝑗 ′) > 𝐵𝑖 , which is due to the size invariant and the fact

that 𝑙 ( 𝑗 ′) > 𝑙 (𝑖) (as 𝑗 ′ is not finalized in this iteration).

• For every item 𝑒 ∈ 𝑋 𝑗 \𝑋 𝑗 ′ , which is included into 𝑋 𝑗 in the

later iterations, we have 𝑠 (𝑋 𝑖 +𝑒) > 𝐵𝑖 . In fact, we show that

there exists a subset 𝑋 ′ ⊆ 𝑋 𝑖 of items with density at least

𝜌 (𝑒), such that 𝑠 (𝑋 ′ +𝑒) > 𝐵𝑖 : If 𝑋
′ = 𝑋 𝑖 then the statement

trivially holds; otherwise there exists an item with density

smaller than 𝜌 (𝑒) that is included in 𝑋 𝑖 , which can only

happen if TryFit(X′, 𝑖, 𝑔) is called and failed. Consequently

we have 𝑠 (𝑋 ′ + 𝑒) > 𝐵𝑖 .

Pick an arbitrary 𝑇 ⊆ 𝑋 𝑗 such that 𝑠 (𝑇 ) ≤ 𝐵𝑖 .
• If 𝑔 ∈ 𝑇 , then we immediately have 𝑣 (𝑋 𝑖 ) ≥ 𝑣 (𝑋 𝑗 ′ − 𝑔) ≥
𝑣 (𝑇 −𝑔) ≥ 1

2
· 𝑣 (𝑇 −𝑔), where we use the inequality 𝑣 (𝑇 ) ≤

𝑣 (𝑋 𝑗 ′) which is due to the fact that 𝑋 𝑗 ′ contains the densest

items in 𝑋 𝑗 and 𝑠 (𝑋 𝑗 ′) > 𝐵𝑖 ≥ 𝑠 (𝑇 ).
• If𝑔 ∉ 𝑇 , then let𝑇1 = 𝑇∩𝑋 𝑗 ′ and𝑇2 = 𝑇 \𝑇1 (so𝑇2 ⊆ 𝑋 𝑗 \𝑋 𝑗 ′ ).

Using (1), we have 𝑣 (𝑋 𝑖 ) ≥ 𝑣 (𝑋 𝑗 ′ −𝑔) ≥ 𝑣 (𝑇1). Let 𝑒 ∈ 𝑇2 be
the item with maximum density. As discussed above, there

exists a subset 𝑋 ′ ⊆ 𝑋 𝑖 of items with density 𝜌 (𝑒) such that

𝑠 (𝑋 ′ + 𝑒) > 𝐵𝑖 . Thus we have

𝑣 (𝑋 𝑖 ) ≥ 𝑣 (𝑋 ′) ≥ 𝑠 (𝑋 ′) · 𝜌 (𝑒) ≥ 𝑠 (𝑋 ′) · 𝜌 (𝑇2 − 𝑒)
> (𝐵𝑖 − 𝑠 (𝑒)) · 𝜌 (𝑇2 − 𝑒)
≥ 𝑠 (𝑇2 − 𝑒) · 𝜌 (𝑇2 − 𝑒) = 𝑣 (𝑇2 − 𝑒) .

Combining the above two inequalities gives the desired in-

equality as well:

2𝑣 (𝑋 𝑖 ) ≥ 𝑣 (𝑇1) + 𝑣 (𝑇2 − 𝑒) = 𝑣 (𝑇 − 𝑒) .

This completes the proof. □

It remains to prove Claim 1.

Proof of Claim 1. Loosely speaking, the active bundles are EF1

among the active agents. Indeed, this claim holds trivially when

the while loop begins, where we have 𝑋𝑖 = ∅ for all 𝑖 ∈ A. It then

suffices to show that the claim holds at the end of an iteration as

long as it holds at the beginning of this iteration. Suppose that

Claim 1 holds at the beginning of an iteration. If 𝑈 = ∅ in this

iteration, then no item is allocated while A is updated to a subset

of itself at the end of this iteration, so Claim 1 holds.

If𝑈 ≠ ∅, then an item 𝑔 is allocated to bundle 𝑋𝑖 by the commit-

ted operations of TryFit. Suppose that the TryFit results in the index
of each bundle 𝑗 being changed to 𝜎 ( 𝑗). We denote the bundle right

after the execution of TryFit as 𝑋 ′
𝑗
. Namely, we have 𝑋 𝑗 = 𝑋

′
𝜎 ( 𝑗)

for all 𝑗 ≠ 𝑖 , and 𝑋𝑖 + 𝑔 = 𝑋 ′
𝜎 (𝑖) . For every 𝑗1, 𝑗2 ∈ A, 𝑗1 ≠ 𝑗2:

• If 𝑗2 ≠ 𝜎 (𝑖), we have
𝑣 (𝑋 ′𝑗1 ) ≥ 𝑣 (𝑋𝜎−1 ( 𝑗1) ) ≥ 𝑣 (𝑋𝜎−1 ( 𝑗2) − 𝑒) = 𝑣 (𝑋

′
𝑗2
− 𝑒)

for some 𝑒 ∈ 𝑋𝜎−1 ( 𝑗2) = 𝑋 𝑗2 , where the second transition

holds according to our assumption that Claim 1 holds when

this iteration begins.

• If 𝑗2 = 𝜎 (𝑖), then 𝑗1 ≠ 𝜎 (𝑖) and we have

𝑣 (𝑋 ′𝑗1 ) = 𝑣 (𝑋𝜎−1 ( 𝑗1) ) ≥ 𝑣 (𝑋𝑖 ) = 𝑣 (𝑋
′
𝑗2
− 𝑔),

where 𝑣 (𝑋𝜎−1 ( 𝑗) ) ≥ 𝑣 (𝑋𝑖 ) because 𝑋𝑖 has the minimum

value according to Line 5 of Algorithm 1.

Thus, Claim 1 holds for the new bundles 𝑋 ′
𝑗
at the end of the

iteration. □

To prove that no agent envies the charity by more than one item

(Lemma 4.8), we use the following useful result.

Lemma 4.7. Suppose 𝑋 and 𝑌 are two sets of items with 𝑠 (𝑋 ) ≤ 𝐵
and 𝑠 (𝑌 ) ≤ 𝐵. For every item 𝑔 ∈ 𝑌 , let𝑊𝑔 = { 𝑗 ∈ 𝑋 : 𝜌 𝑗 ≥ 𝜌𝑔} be
the set of items in 𝑋 that are at least as dense as 𝑔. If 𝑠 (𝑊𝑔 + 𝑔) > 𝐵

for all 𝑔 ∈ 𝑌 , there exists an item 𝑗 ∈ 𝑌 such that 𝑣 (𝑌 − 𝑗) ≤ 𝑣 (𝑋 ).

Proof. Let 𝑔∗ be the densest item in 𝑌 , i.e., ∀𝑔 ∈ 𝑌, 𝜌𝑔∗ ≥ 𝜌𝑔 . By
assumption of the lemma we have 𝑠 (𝑊𝑔∗ + 𝑔∗) > 𝐵, which implies

𝑠 (𝑌 − 𝑔∗) ≤ 𝐵 − 𝑠𝑔∗ < 𝑠 (𝑊𝑔∗ ) .
Note that𝑊𝑔∗ ≠ ∅ since otherwise 𝑠 (𝑊𝑔∗ +𝑔∗) = 𝑠𝑔∗ ≤ 𝑠 (𝑌 ) ≤ 𝐵,

which contradicts the assumption of this lemma. Since 𝑔∗ is the
densest item in 𝑌 , by definition any item in𝑊𝑔∗ is at least as dense

as 𝑔∗ and any other items in 𝑌 :

𝜌 (𝑊𝑔∗ ) =
𝑣 (𝑊𝑔∗ )
𝑠 (𝑊𝑔∗ )

≥ 𝑣 (𝑌 − 𝑔
∗)

𝑠 (𝑌 − 𝑔∗) = 𝜌 (𝑌 − 𝑔
∗).

It follows that

𝑣 (𝑋 ) ≥ 𝑣 (𝑊𝑔∗ ) ≥ 𝑠 (𝑊𝑔∗ ) ·
𝑣 (𝑌 − 𝑔∗)
𝑠 (𝑌 − 𝑔∗) > 𝑣 (𝑌 − 𝑔

∗) . □

Lemma 4.8. For all 𝑗 ∈ 𝑁 and𝑇 ⊆ 𝑋 0 with 𝑠 (𝑇 ) ≤ 𝐵 𝑗 , there exists
𝑔 ∈ 𝑇 such that 𝑣 (𝑋 𝑗 ) ≥ 𝑣 (𝑇 − 𝑔).
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Proof. Pick an arbitrary 𝑒 ∈ 𝑇 and let𝑊𝑒 = {𝑒 ′ ∈ 𝑋 𝑗 : 𝜌𝑒′ ≥
𝜌𝑒 } be the set of denser items in 𝑋 𝑗 . We show that 𝑠 (𝑊𝑒 + 𝑒) > 𝐵 𝑗 ,

so applying Lemma 4.7 concludes the proof.

Consider the first time TryFit(X, 𝑗 ′, 𝑔) is called for a subset𝑋 𝑗 ′ ⊆
𝑋 𝑗 and item 𝑒 , where 𝑗 ′ is the index of 𝑋 𝑗 in that iteration. Since 𝑒

is not added into 𝑋 𝑗 , TryFit(𝑋 𝑗 ′, 𝑒) is not successful. It must be that

𝑠 (𝑋 𝑗 ′ + 𝑒) > 𝐵 𝑗 : otherwise, (𝑋 1, . . . , 𝑋 𝑗−1, 𝑋 𝑗 ′ + 𝑒, 𝑋 𝑗+1, . . . , 𝑋𝑛) is
a feasible allocation as the 𝑖-th bundle in this allocation has size

at most 𝐵𝑖 for all 𝑖 ∈ 𝑁 , which means that {𝑋1, . . . , 𝑋 𝑗−1, 𝑋 𝑗 ′ +
𝑒, 𝑋 𝑗+1, . . . , 𝑋𝑛} is a feasible configuration, contradicting the fact

that TryFit(X, 𝑗 ′, 𝑔) is not successful according to Lemma 4.3. The

wayAlgorithm 1 proceeds ensures that an item added earlier into𝑋 𝑗

is at least as dense as the ones added later on. Hence, 𝜌 (𝑒 ′) ≥ 𝜌 (𝑒)
for all 𝑒 ′ ∈ 𝑋 𝑗 ′ , which means𝑋 𝑗 ′ ⊆𝑊𝑒 and 𝑠 (𝑊𝑒 +𝑒) ≥ 𝑠 (𝑋 𝑗 ′ +𝑒) >
𝐵 𝑗 . Thus, Lemma 4.7 implies that there exists 𝑔 ∈ 𝑇 such that

𝑣 (𝑋 𝑗 ) ≥ 𝑣 (𝑇 − 𝑔).
It remains to consider the case when TryFit(X, 𝑗 ′, 𝑔) is not called

throughout the algorithm. This happens only if 𝑋 𝑗 is passively
finalized. Consider the iteration where𝑋 𝑗 is finalized and according

to Lemma 4.5, it suffices to apply the above arguments to the bundle

that is actively finalized. This completes the proof. □

Tightness of the Analysis. Our analysis is tight due to the follow-

ing instance (in Table 5), for which Algorithm 1 computes an alloca-

tion which approximates EF1 up to a ratio of at most 1/2. When 𝜖

is sufficiently small, running Algorithm 1 on this instance results in

𝑋1 = {1, 3} and 𝑋2 = {2, 4, 5, 6}. However, 𝑠 ({2, 5, 6}) = 2 − 𝜖 ≤ 𝐵1
while even after removing the most valuable item, the remaining

value of the bundle approaches 2 · 𝑣 (𝑋1) when 𝜖 approaches 0.

items 1 2 3 4 5 6

values 𝜖 1 1 2 − 𝜖 1 − 3𝜖 1 − 3𝜖
sizes 𝜖3 𝜖 1 2 1 − 𝜖 1 − 𝜖

Table 5: There are two agents with 𝐵1 = 2 − 𝜖 and 𝐵2 = 100.
The items are ordered in descending order of densities.

4.3 Computation of Almost EF1 Allocation in
Large Budget Setting

In this section we consider a large budget case, where the item

sizes are infinitesimal relative to the agents’ budgets [see, e.g., 13,

16, 23, 26, 29]. We show that under the large budget setting, our

polynomial-time algorithm (Algorithm 1) computes an allocation

that is almost EF1. Let 𝜅 = min𝑖∈𝑁,𝑗 ∈𝑀 (𝐵𝑖/𝑠 𝑗 ), so every item has

size at most 𝐵𝑖/𝜅, for any 𝑖 ∈ 𝑁 . We show that when 𝑠 𝑗 ≤ 𝐵𝑖/𝜅
for every item 𝑗 ∈ 𝑀 and agent 𝑖 ∈ 𝑁 , the same algorithm above

computes an allocation that is (1 − 1/𝜅)-EF1. Hence, when 𝜅 →∞,
the allocation computed approaches an EF1 allocation.

Theorem 4.9. If 𝑠 𝑗 ≤ 𝐵𝑖/𝜅 for every 𝑗 ∈ 𝑀 and 𝑖 ∈ 𝑁 , then
Algorithm 1 computes a (1 − 1/𝜅)-EF1 allocation in polynomial time.

Proof. By Lemma 4.8, no agent envies the charity for more than

one item. Thus it suffices to show that for any two agents 𝑖, 𝑗 ∈ 𝑁
and any 𝑇 ⊆ 𝑋 𝑗 with 𝑠 (𝑇 ) ≤ 𝐵𝑖 , there exists an item 𝑔 ∈ 𝑇 such

that 𝑣 (𝑋 𝑖 ) ≥ (1−1/𝜅) ·𝑣 (𝑇 −𝑔). Similarly to the proof of Lemma 4.6,

by Claim 1, if bundle 𝑋 𝑖 is finalized after bundle 𝑋 𝑗 , then agent 𝑖

does not envy agent 𝑗 , and thus bundle 𝑇 , for more than one item.

Otherwise, i.e., 𝑋 𝑗 is finalized after 𝑋 𝑖 , it suffices to consider the

situation when 𝑋 𝑖 is actively finalized, by Lemma 4.5. We show

that in this case we have 𝑣 (𝑋 𝑖 ) ≥ (1 − 1/𝜅) · 𝑣 (𝑇 ).
Consider the moment right before 𝑋 𝑖 is finalized, and let 𝑗 ′ be

the index of the bundle 𝑋 𝑗 at this moment. Let 𝑔 ∈ 𝑋 𝑗 ′ be the last

item that is included in 𝑋 𝑗 ′ . We have 𝑣 (𝑋 𝑖 ) ≥ 𝑣 (𝑋 𝑗 ′ − 𝑔). By the

size invariant (Invariant 2) we have 𝑠 (𝑋 𝑗 ′) > 𝐵𝑖 , which implies that

𝑣 (𝑋 𝑗 ′ −𝑔) ≥ (1− 1/𝜅) · 𝑣 (𝑋 𝑗 ′), because 𝑔 has the minimum density

among items in 𝑋 𝑗 ′ , and 𝑠𝑔 ≤ 𝐵𝑖/𝜅. Finally, since both 𝑋 𝑗 ′ and 𝑇

are subsets of 𝑋 𝑗 , 𝑠 (𝑋 𝑗 ′) > 𝐵𝑖 ≥ 𝑠 (𝑇 ) and 𝑋 𝑗 ′ contains the densest

items of 𝑋 𝑗 , we have 𝑣 (𝑋 𝑗 ′) > 𝑣 (𝑇 ). Putting everything together,

𝑣 (𝑋 𝑖 ) ≥ 𝑣 (𝑋 𝑗 ′ − 𝑔) ≥ (1 − 1/𝜅) · 𝑣 (𝑋 𝑗 ′) ≥ (1 − 1/𝜅) · 𝑣 (𝑇 ) . □

5 EF1 ALLOCATIONS IN SPECIAL CASES
In this section we present polynomial-time algorithms for comput-

ing EF1 allocations in two special settings.

5.1 Identical Budget
The windfall of Algorithm 1 is that it generates an exact EF1 alloca-

tion when the agents have the same budget. In fact, the algorithm

degenerates to a greedy algorithm with an early stop feature as

presented in Algorithm 3: it terminates immediately when an agent

with the least value gets tight.

Algorithm 3: Compute EF1 allocation for uniform-budget.

1 Input: An instance 𝐼 = (s, v;B) with 𝐵𝑖 = 𝐵 for all 𝑖 ∈ 𝑁 .

2 𝑋𝑖 ← ∅ for each 𝑖 ∈ 𝑁 , and 𝑋0 ← 𝑀 ;

3 while 𝑋0 ≠ ∅ do
4 Pick an (arbitrary) agent 𝑖 ∈ 𝑁 with the minimum 𝑣 (𝑋𝑖 );
5 𝑈 ← {𝑔 ∈ 𝑋0 : 𝑠 (𝑋𝑖 + 𝑔) ≤ 𝐵};
6 if 𝑈 ≠ ∅ then
7 Allocate a (arbitrary) densest item 𝑔∗ ∈ 𝑈 to 𝑖:

𝑋𝑖 ← 𝑋𝑖 + 𝑔∗ and 𝑋0 ← 𝑋0 − 𝑔∗
8 else go to output;

9 Output allocation X = (𝑋1, · · · , 𝑋𝑛).

Theorem 5.1. Algorithm 3 computes an EF1 allocation in polyno-
mial time when all agents have the same budget.

Proof. To see that the allocation X computed by the algorithm

is EF1, we first argue that it is EF1 among the agents. Clearly, the

agents do not envy each other at the beginning of the algorithm,

when everyone gets an empty bundle. As the algorithm proceeds, it

allocates an item 𝑔 to the agent 𝑖 with minimum value 𝑣 (𝑋𝑖 ), which
is obviously not envied by any other agent. Hence as long as the

EF1-ness holds in the previous iteration, it remains to hold after 𝑔

is allocated to 𝑖: removing 𝑔 from the 𝑋𝑖 will remove any possible

envy against 𝑖 . Thus, by induction, X is EF1 among the agents.

It remains to show that no agent envies the charity by more

than one item, which we prove using Lemma 4.7. Without loss of
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generality, suppose that when the algorithm terminates, agent 1 gets

the bundle with the smallest value. It suffices to argue that agent 1

does not envy the charity by more than one item, since any other

agent has the same budget as agent 1, and has a bundle at least as

valuable as𝑋1. Fix an arbitrary𝑇 ⊆ 𝑋0 with 𝑠 (𝑇 ) ≤ 𝐵. For any𝑔 ∈ 𝑇 ,
consider𝑊𝑔 = { 𝑗 ∈ 𝑋1 : 𝜌 𝑗 ≥ 𝜌𝑔}. If 𝑠 (𝑊𝑔 + 𝑔) ≤ 𝐵, then 𝑔 should
have been added into 𝑋1 before any item in 𝑋1 \𝑊𝑔 were added in,

by the greedy allocation of the algorithm. Since 𝑔 is not allocated

to 𝑋1, we have 𝑠 (𝑊𝑔 + 𝑔) > 𝐵. Thus, by Lemma 4.7, there exists an

item 𝑗 ∈ 𝑇 such that 𝑣 (𝑋1) ≥ 𝑣 (𝑇 − 𝑗). Consequently, agent 1 does
not envy the charity by more than one item. Since Algorithm 3

allocates one item in each iteration, and each iteration finishes in

polynomial time, the polynomial runtime is readily seen. □

5.2 Two Agents
The scenario with two agents is a typical special setting of interest

in the literature of fair division, where many fairness criteria can

often be guaranteed [6, 8, 27]. A common technique to compute

such fair allocations is known as “divide and choose”, which may

take exponential time to finish. In this section, we adopt a similar

idea to compute EF1 allocations with budget constraints. Informally,

Algorithm 4 first asks the agent with the smaller budget to find

two feasible bundles, using Algorithm 3, so that the allocation is

EF1 no matter which of these two bundles is allocated to her. We

then assign the worse bundle to this agent and ask the other agent

to find a feasible EF1 bundle among the remaining items by using

Algorithm 3, too. As demonstrated in Theorem 5.2, the resulting

allocation is EF1 and and the algorithm runs in polynomial time.

Algorithm 4: Compute EF1 allocation for two agents.

1 Input: An instance 𝐼 = (s, v;B) with 𝑛 = 2 and 𝐵1 ≤ 𝐵2.
2 B′ ← (𝐵1, 𝐵1);
3 (𝑋 ′

1
, 𝑋 ′

2
) ← output of Algorithm 3 on instance (s, v;B′);

4 𝑋1 ← argmax𝑋 ∈{𝑋 ′
1
,𝑋 ′

2
} 𝑣 (𝑋 ) (if there is a tie, let 𝑋1 be the

bundle with the smaller size);

5 𝑠 (𝑔) ← ∞ for all 𝑔 ∈ 𝑋1 and 𝑠 (𝑔) ← 𝑠 (𝑔) otherwise;
6 𝑋2 ← output of Algorithm 3 on single-agent instance (s̃, v;𝐵2);
7 Output allocation X = (𝑋1, 𝑋2).

Theorem 5.2. Algorithm 4 computes an EF1 allocation in polyno-
mial time when there are only 2 agents.

Proof. In what follows, we refer to Lines 2–4 of Alg. 4 as Phase-

(1) and Lines 5–7 of Alg. 4 as Phase-(2). We can assume w.l.o.g.

that 𝑋1 = 𝑋 ′
1
in Line 4 of Alg. 4. Let 𝑋0 = 𝑀 \ (𝑋1 ∪ 𝑋2) be

the unallocated items. We first show that agent 1 does not envy

agent 2 or the charity by more than one item. Indeed, we prove the

following stronger statement: For any 𝑇 ⊆ 𝑋2 ∪ 𝑋0 = 𝑀 \ 𝑋1 with
𝑠 (𝑇 ) ≤ 𝐵1, there exists an item 𝑗 ∈ 𝑇 such that 𝑣 (𝑋1) ≥ 𝑣 (𝑇 − 𝑗).

Clearly, if 𝑇 ⊆ 𝑋 ′
2
, then the statement is true because 𝑣 (𝑋1) =

𝑣 (𝑋 ′
1
) ≥ 𝑣 (𝑋 ′

2
) ≥ 𝑣 (𝑇 ). Otherwise, let 𝑗 be the item in𝑇 ∩𝑋 ′

0
(where

𝑋 ′
0
= 𝑀 \ (𝑋 ′

1
∪ 𝑋 ′

2
)) with the maximum density and consider the

moment in Phase-(1) when the algorithm is about to include item 𝑗

into 𝑋 ′
2
. Let 𝑋 ′′

2
⊆ 𝑋 ′

2
be the items that are already added into 𝑋 ′

2

at this moment. It is possible that 𝑋 ′′
2

≠ 𝑋 ′
2
because some smaller

items may get allocated to 𝑋 ′
2
after item 𝑗 . Since 𝑗 ∈ 𝑋 ′

0
at the end

of Phase-(1), item 𝑗 is not successfully included into bundle 𝑋 ′′
2
at

this moment, i.e., we have that 𝑠 (𝑋 ′′
2
+ 𝑗) > 𝐵1. Thus,

𝑠 (𝑇 − 𝑗) ≤ 𝐵1 − 𝑠 𝑗 ≤ 𝑠 (𝑋 ′′2 ) .
Moreover, each item in 𝑋 ′′

2
has density at least 𝜌 𝑗 ; each item in

(𝑇 − 𝑗) \ 𝑋 ′′
2
has density at most 𝜌 𝑗 . Hence,

𝑣 (𝑇 − 𝑗) ≤ 𝑣 (𝑋 ′′
2
) ≤ 𝑣 (𝑋 ′

2
) ≤ 𝑣 (𝑋1) .

Next we show that agent 2 does not envy agent 1 or the charity

by more than one item. It is easy to see that agent 2 does not EF1-

envy charity because the allocation 𝑋2 is returned by Alg. 3, which

guarantees EF1-ness between𝑋2 and𝑋0 (see Theorem 4.4). To show

that agent 2 does not EF1-envy agent 1, it suffices to prove that

𝑣 (𝑋2) ≥ 𝑣 (𝑋 ′
2
) because 𝑣 (𝑋 ′

2
) ≥ 𝑣 (𝑋1− 𝑗last), where 𝑗last ∈ 𝑋1 = 𝑋 ′1

is the last item assigned to bundle 𝑋 ′
1
by Alg. 3 in Phase-(1).

Observe that 𝑋 ′
2
can be produced by running Alg. 3 with a single

agent with budget 𝐵1 on items𝑀 \𝑋1. Let 𝑗∗ ∈ 𝑋2 \𝑋 ′
2
be the first

item that is included into 𝑋2 that is not from 𝑋 ′
2
. If no such item

exists then we have𝑋2 = 𝑋
′
2
(since 𝐵2 ≥ 𝐵1) and the 𝑣 (𝑋2) ≥ 𝑣 (𝑋 ′

2
)

trivially holds. Note that right before the algorithm tries to allocate

item 𝑗∗ to 𝑋2 and 𝑋 ′
2
, both bundles contain exactly the same set of

items𝑌 . Since 𝑗∗ is in𝑋2 but not in𝑋 ′
2
, we have 𝐵1 < 𝑠 (𝑌 + 𝑗∗) ≤ 𝐵2,

which implies that 𝑠 (𝑌 + 𝑗∗) > 𝑠 (𝑋 ′
2
). Moreover, since items in𝑋 ′

2
\𝑌

have density at most that of 𝑗∗, we have 𝑣 (𝑌 + 𝑗∗) > 𝑣 (𝑋 ′
2
), which

implies 𝑣 (𝑋2) ≥ 𝑣 (𝑌 + 𝑗∗) > 𝑣 (𝑋 ′
2
). □

6 CONCLUSION AND FUTURE DIRECTIONS
We studied the algorithmic aspects of fair division under budget

constraints. We designed a novel polynomial-time algorithm that

always computes a 1/2-EF1 allocation. When agents have an iden-

tical budget or when there are only two agents, we show that an

exact EF1 allocation can be computed in polynomial time. An imme-

diate open problem is the existence of exact EF1 allocations in the

case with non-identical budgets. This appears to be a non-trivial

problem as also noted by Barman et al. [3] and Wu et al. [29] . A

more intriguing open problem is the more general case where the

agents may have heterogeneous valuations. In the current work, we

require that the agents do not envy the charity to ensure efficiency.

It would be interesting to consider alternative efficiency criteria,

such as Pareto optimality (PO), and explore the compatibility of

1/2-EF1 and PO. It is shown in [29] that 𝛼-EF1 and PO are incom-

patible for every 𝛼 > 1/2, even for identical budgets and valuations.

Finally, we believe that it would also be interesting to investigate

the budget-feasible fair allocation problem under other fairness

notions, such as maximin share fairness.
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