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ABSTRACT
In this paper, we investigate the online parcel assignment (OPA)

problem, in which each stochastically generated parcel order needs

to be assigned to a candidate route for delivery with the objective to

minimize the total delivery cost under certain business constraints.

The OPA problem is challenging due to its stochastic nature: each

parcel’s candidate routes, which depend on the parcel’s attributes,

are unknown until its order is placed, and the total parcel volume

to be assigned is uncertain in advance. To tackle this problem, we

propose an algorithm based on deep reinforcement learning, namely

PPO-OPA, that shows competitive performance. More specifically,

we introduce a novel Markov Decision Process (MDP) to model

the decision-making process in the OPA problem, and develop a

policy gradient algorithm that adopts attention networks for policy

evaluation. By designing a dedicated reward function, our proposed

algorithm can achieve a lower total cost with a smaller violation of

constraints, compared to the traditional method used in the industry

that assigns parcels to candidate routes proportionally. In addition,

the performances of our proposed algorithm and the Primal-Dual

algorithm are comparable, while the later assumes a known total

parcel volume in advance, which is unrealistic in practice.
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1 INTRODUCTION
The online parcel assignment (OPA) problem naturally arises from

today’s e-commerce environment, where a logistics company needs

to assign each parcel to a candidate route for delivery after cus-

tomers make online purchases. As shown in Figure 1, a candidate

route consists of multiple logistics service providers and physical

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Incoming parcels and their candidate routes in on-
line parcel assignment.

nodes such as hubs. When a parcel is assigned to a candidate route,

it consumes resource of all providers and hubs within the route, and

raises a delivery cost to be paid by the logistics company. The set of

available candidate routes and their corresponding delivery costs

are determined by the parcel’s attributes such as origin, destination,

weight, parcel type, etc., which remain unknown until the parcel

order is made. As online shopping prevails and daily parcel volume

grows tremendously, it becomes crucial for the logistics company

to make parcel assignments wisely because it could save hundreds

of thousands of dollars per day on total delivery cost. Other than

delivery cost, business constraints due to resource capacities or

established contracts, need to be considered in this problem. A busi-

ness constraint can be interpreted as the lower and upper bounds of

the number of parcels that can be assigned to a provider or hub. The

OPA problem is to assign each stochastically generated parcel to a

candidate route with the objective as minimizing the total delivery

cost subject to given business constraints.

The OPA problem is closely related to several problems that have

been studied in the literature. By assuming all incoming parcels’

attributes and candidate routes are known, the offline version of

the parcel assignment problem can be formulated as a determin-

istic integer programming problem. If we assume the total parcel

volume to be assigned is given, which is not true in real practice,

our problem would be similar to the online allocation problem

[6, 31]. In the setting of the online allocation problem, the total
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number of requests is assumed to be given, but the arrival sequence

of requests is unknown. Such problem appears in many practices

such as adwords matching [11, 18], online routing [7] and online

combinatorial auction [9]. For the online allocation problem, there

exists a competitive ratio of (1 − 1/𝑒) with adversarial arrivals and

(1− 𝜀) with stochastic arrivals [8]. Dropping out of the assumption

of known total number of requests, the OPA online problem can be

viewed as a special kind of the online resource allocation problem

under horizon uncertainty [5], where the horizon tends to be large

(> 10
5
parcels to be assigned per day) but remains unknown un-

til the end of the decision-making process. Besides, the attributes

of future parcels (including origin, destination, and weight etc)

is unknown and irrelevant to assignment policy, which violates

the Markovian property. Therefore, there is no existing problem

formulation that is completely applicable to the OPA problem.

Several methods have been attempted for solving the OPA prob-

lem. For example, the greedy method, which always assigns the

parcel to the route with the lowest cost, can guarantee to minimize

the total cost. However, since this method does not take any con-

straint into account, the possibly severe violation of constraints

makes it inappropriate for real practice. Other typical algorithms

based on online primal-dual framework [8] has been used to solve

a variety of online optimization problem, such as online adwords

problem [11], online task assignment in crowd-sourcing markets

[15]. Nevertheless, the online primal-dual algorithm requires the

total number of parcels given, which is impractical for actual sce-

narios. Recently, deep reinforcement learning (DRL) approaches

have received great attention for their capacity to solve complex

decision-making problems efficiently. In this paper, we focus on

solving the OPA problem utilizing a specially designed DRLmethod.

More specifically, by using a modified MDP to formulate the OPA

problem, we propose a proximal policy optimization (PPO) algo-

rithm, in which assignment decisions are made based on current

observation and past information, to optimize the objective while

keeping the violation of constraints as small as possible. Through

experiments, we show that our DRL approach can be powerful for

solving the OPA problem.

The main contributions of this paper are summarized as follows:

• WeproposeOnlineAssignmentMDP formodeling the decision-

making process in the OPA problem, which can also be ap-

plied to a variety of online assignment problems.

• Based on the PPO framework, we propose a DRLmethod that

uses attention networks to learn the feature combination

of incoming parcel’s information and constraints’ status for

improving the assignment policy.

• In the experiments, we test proposed PPO-OPA algorithm

in real datasets from Cainiao Network. The results show

that our approach outperforms the traditional assignment

method used in the logistics industry. In addition, we show

that the performances of our proposed algorithm and the

Primal-Dual algorithm are comparable.

2 RELATEDWORK
Our algorithm and analysis build on the Markov Decision Process

(MDP) framework, which provides a widely applicable mathemat-

ical formulation for sequential decision-making problems. In the

MDP framework, the agent observes a state 𝑠𝑡 from the environ-

ment at each time step 𝑡 , and then makes an action 𝑎𝑡 according

to its policy 𝜋 (𝑠𝑡 ). After an action is taken, the state transits to the

next state 𝑠𝑡+1 and a reward 𝑟𝑡 is sent back from the environment to

the agent. The goal of such process is to maximize the accumulated

discounted reward 𝑅 =
∑𝑇
𝑡=1 𝛾

𝑡−1𝑟𝑡 where 𝛾 ∈ (0, 1]. One general
algorithm for solving MDP problems is reinforcement learning [25],

in which a well-trained agent can learn an optimal policy 𝜋 to

maximize the accumulated discounted reward 𝑅 through past ex-

perience knowledge. Recently, deep reinforcement learning (DRL)

methods that employ neural networks for function approxima-

tions [19] to handle high-dimensional state and action space show

promising results in solving MDP problems. The most successful

implementations include AlphaGo [24] and AlphaZero [23], which

convincingly defeated the world champion programs in chess, Go

and Shogi without any domain knowledge other than underlying

rules as inputs during training.

There have been an increasing number of studies on employing

DRL methods for industrial decision-making problems. Zhang and

Diettterich [32] utilizes the temporal difference learning to learn a

heuristic evaluation function over states to develop domain-specific

heuristics for job-shop scheduling. Tesauro et al. [26, 27] shows

the feasibility of online RL to learn resource valuation estimates

that can be used to make high-quality server allocation decisions

in multi-application prototype data center scenarios. To minimize

power consumption while meeting demands of wireless users over

a long operational period, Xu et al. [29] presents a novel DRL-based

framework for power-efficient resource allocation in cloud RANs.

Du et al. [12] learns a policy that maximizes the profit of the cloud

provider through trial and error, where they integrate long short-

term memory (LSTM) neural networks into improved DDPG to

deal with online user arrivals, to address both resource allocation

and pricing problems. Recently, Ye Li and Juang [30] develops a

novel decentralized resource allocation mechanism for vehicle-to-

vehicle (V2V) communications based on DRL. In summary, most of

these studies assume that the decision process is Markovian, and

therefore, their methods can not be directly used to solve the OPA

problem.

Most useful DRL methods can be categorized into two classes:

value learning and policy gradient. Value learning are aimed at

explicit learning of value functions from which the optimal pol-

icy can be obtained. A commonly used branch of value learning

includes Deep Q-Network (DQN) [19] and its variants (e.g., Rain-

bow [14]). These methods are mainly suitable for discrete action

spaces and are successful in mastering a range of Atari 2600 games.

The policy gradient methods, on the other hand, attempt to learn

optimal policies directly. The policy gradient methods with the

assistance of baselines (e.g., value functions) are also referred to

as Actor-Critic methods, which are suitable for both discrete and

continuous action space. Some representative Actor-Critic methods

are DDPG [17], TRPO [21] and PPO [22]. TRPO develops a series

of approximations and the original objective of policy gradient

is converted to minimization of a surrogate loss function under

constraint on the KL divergence between old and new policies, and

uses the trust-region method to guarantee policy improvement

with non-trivial step sizes. PPO [22] is a substitute of TRPO that is
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more applicable to large-scale decision problems. The algorithms

mentioned above rely on a common assumption that the problem

can be modeled as an MDP problem, which makes them not appli-

cable to some online decision-making problems. To bridge between

reinforcement learning and online learning, Even-Dar et al. [13]

proposes an online MDP that relaxes the Markovian assumption

of the MDP by setting the reward function to be time dependent.

Similarly, our work extends the traditional MDP to adapt the OPA

problem by introducing an uncertain observation at each step. This

method can efficiently enjoy the exploration-exploitation benefits

of RL algorithms to acquire an effective policy.

Another class of algorithms that builds on the primal-dual frame-

work has also been applied in a variety of online optimization

problems [4, 8]. For example, in the online adwords problem with

stochastic assumption that keywords arrive in an online manner,

advertisers must be assigned to keywords so that the revenue is

maximized without exceeding any advertiser’s budget. The online

primal-dual algorithm can achieve a near-optimal performance

under the case where the total budget is sufficiently large [3]. In

addition, Ho and Vaughan [15] introduces the online task assign-

ment problem in crowd sourcing markets, in which workers arrive

one by one, and must be assigned to a task. By designing the Dual

Task Assigner (DTA) based on the primal-dual framework, this

work proves that DTA outperforms other algorithms empirically.

However, the DTA algorithm requires the total number of workers

to be given in advance. Recently, Balseiro et al. [5] combines dual

descent with a carefully-chosen target consumption sequence to

solve online resource allocation under horizon uncertainty, which

do not require knowing the number of requests, and proves that

it achieves a bounded competitive ratio when the horizon grows

large.

3 PROBLEM FORMULATION
In this section, we formulate the OPA problem explicitly. For a

period of time, we define the total parcel volume as𝑚. In the OPA

problem, the decision-making agent needs to assign each incoming

parcel to one of its available candidate routes in order to minimize

the total delivery cost subject to given business constraints. We

use J (𝑖) to define the set of all candidate routes of the parcel 𝑖 .

Let K be the set of all constraints. C(𝑖, 𝑘) denotes the set of routes
corresponding to parcel 𝑖 and constraint 𝑘 . In addition, we define

the binary decision variables 𝑥𝑖, 𝑗 that is 1 if parcel 𝑖 is assigned to

route 𝑗 and 0 otherwise. The corresponding cost of parcel 𝑖 assigned

to route 𝑗 is denoted as 𝑐𝑖, 𝑗 . Therefore, the offline version of the

parcel assignment problem can be formulated to the following linear

programming:

min

𝑥

𝑚∑︁
𝑖=0

∑︁
𝑗∈J(𝑖 )

𝑐𝑖 𝑗𝑥𝑖 𝑗

s.t.

∑︁
𝑗∈J(𝑖 )

𝑥𝑖 𝑗 = 1, ∀𝑖

𝐿𝑘 ≤
∑︁

𝑗∈C(𝑖,𝑘 )

𝑚∑︁
𝑖=0

𝑥𝑖 𝑗 ≤ 𝑈𝑘 , ∀𝑘 ∈ K

𝑥𝑖 𝑗 ∈ {0, 1}, ∀𝑗 ∈ J (𝑖),∀𝑖

(1)

In this paper, we consider two types of business constraints:

• Capacity Constraints: the upper and lower bounds of par-

cel volume that can be assigned to a provider’s hub.

• Proportion Constraints: for each pair of origin and desti-

nation, the upper and lower bounds of percentage of parcels

assigned to a provider.

For Capacity Constraints, 𝐿𝑘 is usually 0 and𝑈𝑘 is the capacity of

hub 𝑘 . For Proportion Constraints, 𝐿𝑘 = 𝑝𝐿
𝑘
· 𝑛𝑘 and𝑈𝑘 = 𝑝𝑈

𝑘
· 𝑛𝑘 ,

where 𝑝𝐿
𝑘
and 𝑝𝑈

𝑘
is given by the business team and 𝑛𝑘 denote

the number of parcels corresponding to constraint 𝑘 . It should be

noted that 𝑛𝑘 is known under the offline setting but unknown in

the online setting due to uncertain upcoming parcels.

In the online setting, the parcel assignment problem has an

unknown total parcel volume𝑚 and unpredictable future parcel

information, which is non-Markovian. The agent needs to make an

assignment decision for any incoming parcel based on the currently

observed parcel’s attributes and constraints’ states. However, only

the constraints’ states satisfy the Markov property. One should note

that the decision-making process in the OPA problem is different

from Partially Observable MDP whose observation depends on

the new state or action. Therefore, it is necessary to modify the

original MDP for reinforcement learning algorithms to be used

for the OPA problem. Here, we present the following definition of

Online Assignment MDP that introduces observations O:

Definition 1 (Online AssignmentMDP). An online assignment
MDP is a 5-tuple (O,S,A,P,R), where

• O is the set of observations from an unknown distribution,
• S is the set of states,
• A is the set of actions,
• P is the state transition probability defined as

P𝑡
𝑜,𝑠,𝑠′ = Pr(𝑆𝑡+1 = 𝑠′ |𝑂𝑡 = 𝑜, 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎),

• R is the reward function defined as

R𝑎
𝑜,𝑠 = E(𝑅𝑡+1 |𝑂𝑡 = 𝑜, 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) .

It is worth to note that Definition 1 can also be applied to model

a variety of online allocation problems with unknown upcoming

requests. For example, 𝑂𝑡 can denote the online arrival keyword at

time 𝑡 for the online adwords problem, and online arrival worker at

time 𝑡 for the online task assignment problem. We now formulate

the specific components for the OPA problem at time 𝑡 :

• Observation: incoming parcel information 𝑜𝑡 ,

• State: Current constraint status 𝑠𝑡 . For capacity constraints,

𝑠𝑡 = {ℎ𝑖 (𝑡)/ℎ𝑖 , 𝑖 ∈ H}, where H is the set of all hubs and

ℎ𝑖 is the upper bound of capacity for hub 𝑖 . For proportion

state, 𝑠𝑡 = {𝑝 𝑗 (𝑡), 𝑗 ∈ R}, where R is the set of all routes

and 𝑝 𝑗 (𝑡) is the current ratio for the providers in route 𝑗 .

• Action: action sample from a discrete distribution corre-

sponding each candidate routes of parcel 𝑜𝑡 .

• Reward: The Design of reward is the most challenging part

of the problem. At each time step, the immediate reward

should integrate both constraints’ states and parcel infor-

mation. Since the objective is to minimize the total cost, the

first part of the reward is the negative of cost of assigning to

route 𝑐𝑎𝑡 , which depends on action 𝑎𝑡 . For a capacity con-

straint, a smaller the remaining capacity leads to a greater
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penalty. For a proportion constraint, a proportion further

below the lower bound (or above the upper bound) should

have a greater penalty. Hence, the reward is designed as

follows:

𝑟𝑡 = −𝑐𝑎𝑡 + 𝜆𝑓𝑎𝑡 (𝑡), (2)

where 𝜆 is a hyperparameter to leverage the importance of

constraint state function 𝑓𝑎𝑡 (𝑡) and cost 𝑐𝑎𝑡 . For action 𝑎𝑡
corresponding to 𝑖-th capacity constraint, the penalty can

be written as

𝑓𝑖 (𝑡) = 𝑒−ℎ𝑖 (𝑡 )/ℎ𝑖 ; (3)

If 𝑎𝑡 corresponds to proportion constraint 𝑖 , then

𝑓𝑖 (𝑡) = 𝐼 (𝑝𝑖 (𝑡) < 𝐿𝑖 ) (𝑝𝑖 (𝑡) − 𝐿𝑖 )
+ 𝐼 (𝑝𝑖 (𝑡) > 𝑈𝑖 ) (𝑈𝑖 − 𝑝𝑖 (𝑡)),

(4)

where 𝐼 (·) is the indicator function.
Another reward design is to use the negative of cost as reward

directly and use the constrainedMDP (CMDP)method [1, 10]. In the

experiments, we combine Lagrangian relaxation with our proposed

DRL algorithm to control constraint violation. However, it can

not achieve a better performance compared to methods that add a

penalty to reward for online parcel assignment problems.

4 PPO-OPA ALGORITHM
In this section, we present the DRL method based on Proximal

policy optimization (PPO) [22] for solving the OPA problem. As

mentioned before, PPO is a commonly used RL algorithm with

excellent performance for solving a variety of MDP problems. As an

Actor-Critic algorithm, the policy function and state value function

(often represented by actor network and critic network) need to be

estimated during training. PPO adopts the advantage function to

assist update gradient and reduce variance. One commonly useful

advantage function 𝐴𝑡 is based on the temporal-difference (TD)

error estimation:

𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 ) .
However, for the OPA problem, the value function also depends

on the incoming parcel information. In other words, 𝑉 (𝑜𝑡 , 𝑠𝑡 ) is a
function on both 𝑜𝑡 and 𝑠𝑡 . Since 𝑜𝑡 is non-Markovian and difficult

to predict, so does𝑉 (𝑜𝑡 , 𝑠𝑡 ). Therefore, replacing to estimate future

accumulated reward (by critic network), we use reward network

𝑅𝜙 (𝑠𝑡 , 𝑜𝑡 ) as the estimator of reward based on the current state and

parcel information. Then, we define the advantage 𝐴𝑡 as follows:

𝐴𝑡 = 𝑟𝑡 − 𝑅𝜙 (𝑠𝑡 , 𝑜𝑡 ), (5)

where 𝑅𝜙 (·, ·) is the reward function which is represented by the

reward network. The loss function for this reward network update

is

𝐸𝜙
[
(𝑅𝜙 (𝑠𝑡 , 𝑜𝑡 ) − 𝑟𝑡 )2

]
. (6)

Parcel information includes the parcel’s attributes and candidate

routes information, which are represented by parcel features and

candidate-route features, respectively. One parcel corresponds to

multiple candidate routes and different parcels may have different

numbers of candidate routes. Therefore, we propose to use an actor

network to capture the parcel features and candidate-route features

as shown in Figure 2. Parcel features and candidate-route features

are inputted to different embedding layers followed by separated

Figure 2: The actor network. Parameter sharing is applied to
route vectors in candidate-route features and probabilities
of assigning to each route are output from the softmax layer.

Multiple Layer Perceptrons (MLP). For the candidate-route features,

we use identical parameters for each route. We define 𝑁𝑅 as the

maximum number of possible candidate routes per parcel. If the

number of candidate routes is less than 𝑁𝑅 we will construct fic-

titious routes with default costs and default constraint states, of

which all the values are set to be 0. Then, a mask matrix is used to

convert the output of fictitious routes to 0.

The reward network in Figure 3 is similar to the actor network.

Parameter sharing is also utilized to accommodate the candidate-

route features. Besides, the attention mechanism [28] is employed

to calculate the state value for each incoming parcel. An attention

function can be described as a mapping from a query and a set

of key-value pairs to an output. Here, we treat the parcel features

as a query, and candidate-route features are used to generate the

key-value pair:

𝑞 =𝑊 𝑞𝑜, 𝑘𝑖 =𝑊 𝑘ℎ𝑖 , and 𝑣𝑖 =𝑊 𝑣ℎ𝑖 , (7)

where 𝑖 ∈ [1, 2, ..., 𝑁𝑅]. Then, the output is computed as a weighted

sum 𝑣 :

𝑣 =

𝑛∑︁
𝑖=1

𝑞𝑇𝑘𝑖𝑣𝑖 . (8)

Finally, the reward value can be obtained by

𝑅𝜙 (𝑠𝑡 , 𝑜𝑡 ) = MLP(𝑣). (9)

Our network design is simple enough to guarantee fast inference

in industrial applications. The experimental results show the effec-

tiveness of this network structure.
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Figure 3: The reward network. Parameter sharing is ap-
plied to route vectors in candidate-route features. Masked-
Attention layers are used for calculating state value function
given a certain parcel and current constraint state.

Based on the PPO algorithm, the improved clipped optimization

objective for policy updating is

𝐿CLIP (𝜃 ;𝜋) =

𝐸𝜏∼𝜋

[ 𝑇∑︁
𝑡=0

min(𝑝𝑡 (𝜃 ;𝜋),CLIP(𝑝𝑡 (𝜃 ;𝜋), 1 − 𝜀, 1 + 𝜀))𝐴𝑡

]
,

(10)

where 𝑝𝑡 (𝜃 ;𝜋) = 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ,𝑜𝑡 )
𝜋 (𝑎𝑡 |𝑠𝑡 ,𝑜𝑡 ) . Our DRL algorithm is described in

Algorithm 1. The trajectories are collected in parallel through policy

𝜋𝜃𝑘 (line 2). Then, the network parameters 𝜃 and 𝜙 are updated by

using Adam [16].

5 PERFORMANCE EVALUATION
We implement and evaluate the PPO-OPA algorithm on a worksta-

tion computer (ubuntu 16.04), which has an Intel Xeon Platinum

8163 @ 2.50 GHz, 32 GB memory and an Nvidia Tesla V100 GPU

with 16 GB memory. We use PyTorch [20] for implementation. For

the neural network setting, we set the embedding dimensions as

64 in both the actor and reward networks. For the actor network,

the MLP part for parcel features has a single layer of 128 neurons,

while that for candidate-route features has two layers: one has 256

neurons and the other has 128 neurons. All layers are with ReLu

activation. For the reward network, the MLP parts have the same

settings as those in the actor network. After the masked-attention

layer, the last MLP part has a layer with 64 neurons with Sigmoid

activation followed by a linear layer with 1 neuron. The learning

rates for the actor and reward networks are both set to be 10
−3
.

The importance hyperparameters 𝜆’s are set to be 10 and 300 for

the capacity and proportion constraints, respectively.

Datasets: we use two datasets, denoted as dataset #1 and dataset
#2, both of which are real data provided by Cainiao Network. Each

Algorithm 1 Proximal policy optimization for online parcel assign-

ment (PPO-OPA)

Input: initial policy parameters 𝜃0 and initial value function

parameters 𝜙0.

1: for 𝑘 = 0, 1, 2, ... do
2: Collect set of trajectories 𝐷𝑘 = {𝜏𝑖 } by running policy 𝜋𝜃𝑘

in the environment.

3: Compute rewards 𝑟𝑡 for each trajectory.

4: Compute advantage estimates, 𝐴𝑡 = 𝑟𝑡 − 𝑅𝜙𝑘
(𝑠𝑡 , 𝑜𝑡 ).

5: Update policy by maximizing the PPO objective:

𝜋𝑘+1 = argmax

𝜃

1

|𝐷𝑘 |𝑇
∑︁
𝜏∈𝐷𝑘

𝐿CLIP (𝜃, 𝜋𝜃𝑘 ),

typically via stochastic gradient descent with Adam.

6: Fit reward function by regression on mean-squared error:

𝜙𝑘+1 = argmin

𝜙

1

|𝐷𝑘 |𝑇
∑︁
𝜏∈𝐷𝑘

𝑇∑︁
𝑡=0

(
𝑅𝜙 (𝑠𝑡 , 𝑜𝑡 ) − 𝑟𝑡

)
2

,

typically via stochastic gradient descent with Adam.

7: end for

dataset contains two parts of data, namely parcel data and con-

straints configuration data.

• Parcel data: This data contains the records of historical parcels

created within a country and a time period, sorted by their

creation times. Each record shows one parcel’s information,

including its attributes, candidate routes and corresponding

costs.

• Constraints configuration data. This data contains the config-

uration of business constraints, such as capacity constraints

and proportion constraints, that should be considered while

making the assignment decisions.

Dataset #1 contains 625 hub capacity constraints and the daily

parcel volume varies from 567429 to 806824. On the other hand,

dataset #2 contains only 51 proportion constraints and the daily

parcel volume is smaller in general, ranging from 293208 to 326332.

In the training procedure, we select the parcel data of datasets

#1 and #2 created within a particular day𝑇 . That is, 684793 records

from dataset #1 and 308329 from dataset #2 are selected. The agent

uses this data for trajectory collection and trains neural networks

about 20 episodes for attaining convergence. In each episodes, we

first collect 50 trajectories in parallel and put all MDP tuples in the

trajectories into a buffer. Then, we shuffle the buffer and update the

parameters of the actor and reward networks using Adam. Themini-

batch size for gradient descent is 2048. In the validation procedure,

we use the parcel data of datasets #1 and #2 created within the next

three days (i.e., 𝑇 + 1, 𝑇 + 2, 𝑇 + 3).

We compare the results from PPO-OPA against those from three

other online algorithms and the integer programming (IP) method,

descriptions of which are as follows:

(1) IP: the OPA problem can be formulated as an IP problem (1),

if all parcels are known in advance. It is straightforward that

the solution to (1) is optimal for the OPA problem. Therefore,

we can use the IP gap, the difference between the optimal
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Dataset #1 Algorithm Average Cost IP Gap Violation Rate

PPO-OPA 100.73 0.0688% 2.53%

PPO-PD 102.05 1.3834% 4.20%

𝑇 + 1 Proportion 101.05 0.3874% 2.50%

PDO 100.67 0.0671% 2.50%

IP(offline) 100.66

PPO-OPA 99.782 0.0662% 6.32%

PPO-PD 101.24 1.5242% 8.95%

𝑇 + 2 Proportion 100.19 0.4723% 6.28%

PDO 99.719 0.0030% 6.26%

IP(offline) 99.716

PPO-OPA 98.479 0.0872% 5.44%

PPO-PD 100.47 2.1148% 9.33%

𝑇 + 3 Proportion 98.927 0.5457% 5.37%

PDO 98.390 -0.0027% 5.39%

IP(offline) 98.393

Table 1: The evaluation results in dataset #1 with capacity constraints. The agent is trained by using the parcel data from day 𝑇 .
The parcel volumes for 𝑇 + 1, 𝑇 + 2, 𝑇 + 3 are 567429, 756579 and 806824 respectively.

Dataset #2 Algorithm Average Cost IP Gap Violation Rate

PPO-OPA 81.193 -0.1276% 2.57%

PPO-PD 81.130 -0.2052% 5.54%

𝑇 + 1 Proportion 81.459 0.1993% 3.39%

PDO 81.139 -0.1946% 5.37%

IP(offline) 81.297

PPO-OPA 78.565 0.0495% 3.31%

PPO-PD 78.472 -0.0685% 8.00%

𝑇 + 2 Proportion 78.723 0.2509% 4.87%

PDO 78.493 -0.0419% 2.42%

IP(offline) 78,526

PPO-OPA 84.753 0.1213% 2.25%

PPO-PD 84.659 0.0105% 6.95%

𝑇 + 3 Proportion 84.930 0.3308% 3.31%

PDO 84.683 0.0392% 2.06%

IP(offline) 84.650

Table 2: The evaluation results for dataset #2 with proportion constraints. The agent is trained by using the parcel data from
day 𝑇 . The parcel volumes for 𝑇 + 1, 𝑇 + 2, 𝑇 + 3 are 293208, 322391 and 326332 respectively.

objective value and the objective value from certain algo-

rithm, as a measurement of performance. To solve (1), we

use SCIP [2], a commonly used solver for IP problems.

(2) Proportion: this is a traditional method used for online

parcel assignments. The proportion algorithm relies on the

IP solutions from historical parcel data. Here, we collect 30

days’ parcel data (total parcel volume > 10 million) before

and on day 𝑇 , and solve the offline IP problems. Then, we

summarize all the assignments and compute the proportion

of parcels assigned to each candidate route. For any incoming

parcel, the algorithm randomly assign it to one of the can-

didate routes with probabilities in proportion to the above

proportions computed beforehand.

(3) PDO: the primal dual optimization (PDO) [8] is a powerful

technique for a wide variety of online problems. In this ex-

periment, we run the PDO algorithm for solving (1), where

Lagrangian relaxation is used to control constraint and dual

variables would be updated at each iteration. For this algo-

rithm, we use the actual total daily parcel volume as input,

which is impossible to acquire in real practice.

(4) PPO-PD: For reinforcement learning, Lagrangian relaxation

is an effective technique to process soft constraints. Here,

we set the reward to be the negative of cost in the Online

Assignment MDP framework and use the primal-dual update

to control the violation of constraints, which is similar to

Chow et al. [10] and leads to the unconstrained problem,
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min

𝜆≥0
max

𝜃
𝐿CLIP (𝜃 ;𝜋) −

∑︁
𝑘∈K

𝜆𝑘 (𝐽𝑘 (𝜋) −𝑈𝑘 ),

where 𝐽𝑘 (𝜋) represents the capacity from policy 𝜋 for con-

straint 𝑘 .

Accordingly, the performance metrics are:

• Average cost: the total cost of assigned parcels divided by

the number of assigned parcels.

• IP gap: the difference between the average cost of the IP

solution and the average cost of the compared algorithm’s

solution, divided by the average cost of the IP solution.

• Violation rate: the number of parcels that violate constraints

divided by the total number of parcels. IP solution has zero

constraint violation rate for hub capacity constraints and

route proportion constraints since IP solution is the optimal

solution solved in an offline manner.

Table 1 and 2 show the average cost of parcels, IP gap and viola-

tion rate achieved by PPO-OPA, PPO-PD, Proportion, PDO and IP

using dataset #1 and dataset #2. PPO-OPA achieves about 0.2-0.3%

cost reduction and fewer constraint violation rates than the pro-

portion and PPO-PD algorithms. Moreover, PPO-OPA trained by

one-day data has almost the same performance as PDO with known

parcel volume. From this result, we claim that our method is more

suitable for real scenarios, because it does not require a known daily

parcel volume but still can achieve a competitive performance.

6 CONCLUSION
In this paper, we introduce the online parcel assignment (OPA)

problem, which is aimed at assigning each incoming parcel to a

candidate route for delivery in order to minimize the total cost un-

der consideration of given business constraints. Several challenges

exist in this problem, including the large but uncertain number (be-

yond 10
5
) of daily parcels to be assigned, the variability of parcels’

attributes and the non-Markovian characteristics of parcel arrival

dynamics. To tackle this problem, we propose the Online Assign-

ment MDP and present a DRL approach named PPO-OPA. In this

approach, Proximal Policy Optimization (PPO) is adopted with a

specifically designed MDP for conducting the online assignment.

The actor and reward networks adopt the attention mechanism

and parameter sharing to accommodate each incoming parcel with

varying numbers and identities of candidate routes. By running ex-

periments on real datasets, the proposed approach is validated and

compared against other commonly used assignment methods in the

logistics industry. The results are quite promising: in the majority

of the cases, PPO-OPA obtains similar performance to the primal

dual method, but with a weaker assumption that the total parcel

volume is not given. Finally, it is noteworthy that our approach

actually provides a general framework that can be applied to any

other similar online assignment/allocation problems by specifying

an appropriate Online Assignment MDP.
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