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ABSTRACT
A central design problem in game theoretic analysis is the estima-

tion of the players’ utilities. In many real-world interactive situ-

ations of human decision making, including human driving, the

utilities are multi-objective in nature; therefore, estimating the pa-

rameters of aggregation, i.e., mapping of multi-objective utilities

to a scalar value, becomes an essential part of game construction.

However, estimating this parameter from observational data in-

troduces several challenges due to a host of unobservable factors,

including the underlying modality of aggregation and the possibly

boundedly rational behaviour model that generated the observation.

Based on the concept of rationalisability, we develop algorithms

for estimating multi-objective aggregation parameters for two com-

mon aggregation methods, weighted and satisficing aggregation,

and for both strategic and non-strategic reasoning models. Based

on three different datasets, we provide insights into how human

drivers aggregate the utilities of safety and progress, as well as the

situational dependence of the aggregation process. Additionally,

we show that irrespective of the specific solution concept used for

solving the games, a data-driven estimation of utility aggregation

significantly improves the predictive accuracy of behaviour models

with respect to observed human behaviour.
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1 INTRODUCTION
In part due to interest in autonomous vehicle (AV) research, re-

cent years have seen a rise in the use of game-theoretic models for

modelling human driving behaviour. In this context, the estima-

tion of the utilities of the agents is one of the main steps involved

in the design of game-theoretic models based on observational

data. However, estimating utilities of players, in this case, human

drivers, from purely observational data raises several challenges.

First, the problem involves multi-objective utilities; during driving,

humans balance different potentially conflicting objectives, such

as safety, progress, and comfort, in the process of selecting their

desired action. The process of aggregation, defined as the mapping

of multi-objective utilities into a scalar value [28], is often context

dependent and individual specific. Second, the underlying human
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reasoning model is often diverse and cannot be modelled through a

specific notion of an equilibrium behaviour in all situations [31, 34].

Additionally, there may also be aspects of bounded rationality in

play [32]. One way to estimate utilities from observational data

is by using the concept of rationalisability, that is, identifying the
aggregation parameters that would make the observed agent de-

cision optimal with respect to a reasoning model. However, this

is still challenging since not only are there different modalities

of aggregation, but also the definition of optimality depends on

the various strategic and non-strategic reasoning models involved.

When there are so many unobservable factors, the problem is inher-

ently under-specified, meaning that the same observation can be

explained by different combinations of reasoning model and utility

aggregation. In this paper, we address the problem of estimating

the parameters of multi-objective utility aggregation from obser-

vational data by developing different methods for popular classes

of utility aggregation, namely weighted and satisficing aggrega-

tion, and different underlying reasoning models that include both

strategic and non-strategic reasoning.

Analysing the aggregation process helps us gain a basic under-

standing of drivers’ preferences under different driving situations,

and answering questions such as observed association between the

situational state and the utility aggregation. For example, if a driver

is observed to have a higher than expected speed close to an inter-

section, can we infer something about their aggregation parameter

based on that observation — maybe that a driver in that context

may weigh progress more than safety? From a modelling point of

view, we obtain a more accurate identification of agent utilities,

which is especially relevant for behavioural models, since in the

absence of such an analysis, any behavioural model, no matter how

incorrect the utilities are, can explain away deviations of observed

behaviour under boundedly rational behaviour. The line of inquiry

of estimating some aspect of agent utilities from observations is

related to the problem of inverse reinforcement learning [20, 29],

inverse game theory [21], theory of revealed preference [10], and

multi-criteria decision making in operations research [13, 19].

In the context of estimating utilities, it is important to note that

there are two separate questions. First, the question of form, i.e.,

estimating the form and parameters of the utility function, say

𝑢
safety

(𝛿) : R+ → [−1, 1] that maps the choices (e.g., the distance

gap 𝛿) into a utility interval [-1,1]. This has been well studied within

the literature of revealed preference with specific behavioural theo-

ries such as time discounting of utilities [14], risk aversion [15], and

prospect theory of loss aversion [37], some of which have been ap-

plied to driving [32] and robotics [22]. However, a second question

around multi-objective utilities, i.e. how to estimate aggregation

parameters of multi-objective utilities based on consistency of ob-

servations and reasoning model, has received comparatively less
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attention in the context of AV or human driving— and that is the

focus of this work. Specifically, we address the following questions.

• Aggregation: Given a multi-objective utility𝑈 and a para-

metric scalarization function 𝑆 (𝑈 , 𝜃 ), how do we estimate

𝜃 that is rationalisable with a set of observed choices of all

agents conditioned on a model of reasoning?

• Bounded rationality: How can the estimation of 𝜃 accom-

modate nonstrategic reasoning models such as maxmax or

maxmin?
• State association: Is there an observed association between

state factors such as velocity, traffic situation, etc., and 𝜃? In

other words, are the parameter values stable across different

traffic situations?

• Model performance: How does the performance of dif-

ferent behaviour models change when utilities 𝑈 are con-

structed based on a learning-based technique that infers the

aggregation parameter 𝜃 from the data?

The question of aggregation is addressed by constructing axiomatic

conditions under which a set of observations is rationalisable using
a given parameterized aggregation method, namely weighted aggre-

gation and satisficing aggregation. As a part of the second question,

we show that such a construction is different for strategic and non-

strategic models, where the former can be formulated by a set of

linear constraints and the latter as a set of nonlinear constraints.

For the third question, we estimate the rationalisable parameters

for different traffic situations and evaluate whether there are signif-

icant situational differences in how drivers aggregate the utilities,

namely safety and progress. Finally, by treating the state factors as

independent variables and the aggregation parameter as dependent,

we use the data to learn a regression model (CART) that can predict

the aggregation parameter in new situations, and use that method

to evaluate the performance of the popular classes of behaviour

models proposed in the literature for driving.

2 RELATEDWORK
This section spans three different fields of research that deal with

similar problems in their own right. Namely, literature on the the-

ory and applications of reveled preference from economics, mul-

ticriteria decision making from operations research, and inverse

reinforcement learning from robotics and computer science.

Theory of revealed preferences: The main problem addressed in this

paper, i.e., estimation of agent preferences given a set of observa-

tions and a model, falls under the scope of the theory of revealed

preferences. The literature on connection between revealed pref-

erence and utilities has built upon Afriats’s approach [1], which

defines axioms of existence of a utility function𝑢 that can rationalise
a set of observed behaviours. Although most of the literature is

focused on aggregate consumer demand problems [12, 36], revealed

preference conditions can also be constructed for noncooperative

strategic models such as Nash equilibrium [8]; and Chambers et al.

[7] lay the universality and existence conditions of such a construc-

tion for any model beyond just equilibrium. Covering the extensive

literature on revealed preference in economics is outside of the

focus and scope of this work; therefore, we refer to [12] as a good

reference for that general literature.

Most economics models are based on rational choices, and given

that this work builds models that include non-strategic behaviour

(boundedly rational agents), it is relevant to include literature on

revealed preference that is based on behavioural economics. Craw-

ford [10] presents a review of the literature on revealed preference

that covers behavioural theories and links to empirical evidence.

Dziewulski [14] constructs the revealed preference conditions based

on a model in which a single agent uses time-based discounting

of their utilities with various discounting models such as quasi-

hyperbolic and exponential. In contrast, this paper uses a model

that is simpler in some way (one-shot game as opposed to dynamic

game) and more complex in other way (multi-agent behaviour).

Application of the construction from [14] for the case of driving in

dynamic semi-cooperative setting is an interesting future direction

of research, especially since discounted utilities are standard in

reinforcement learning (RL) based methods, and RL has received a

lot of attention from the AV community in recent years. Another

behavioural attribute, altruism, has been consistently observed in

an empirical setting, especially in the context of dictator games

[3]. Andreoni and Miller [2] set the construction of the revealed

preference with respect to altruistic behaviour in a dictator game

and find that only a quarter of the participants were selfish money

maximisers and the rest passed the test of altruistic behaviour. More

recently, Porter and Adams [26] study revealed preference with

respect to altruistic behaviour in the context of intergenerational

wealth transfer, that is, transfer of money from an adult child to

ageing parents. The study in [26] varies different models of util-

ity, from pure selfish behaviour to pure altruism, and finds that

although more than 90% of the participants pass the test of revealed

preference (i.e., behaviour consistent with the models and utilities),

there were differences observed based on whom they were playing

the game against, whether parents or strangers. Similarly to [26],

we vary the utility construction (different models of aggregation),

construct the revealed preference conditions, and test on empirical

data ([26] is based on a laboratory experiment) to evaluate what pro-

portion of behaviour passes those conditions. However, the models

and applications in this paper are, of course, quite different. Over-

all, although the above works have treated different behavioural

attributes with respect to theory of revealed preference well, to our

understanding there is no existing work on revealed preference that

is based on multi-objective utilities and non-strategic reasoning

models in the context of driving behaviour.

Multi-criteria decision analysis (MCDA) Another strand of literature
that is related to this paper is on multi-criteria decision making

from operations research [13]. Compared to the theory of revealed

preference, where the focus is more on the model of decision mak-

ing, in MCDA, the focus is on multiobjective nature of the utilities.

The process of estimating the parameters of the aggregation process

that an agent uses is called preference disaggregation (a terminol-

ogy we retain in the paper), and Jacquet-Lagreze and Siskos [19]

provide a review of the tools and techniques for that purpose until

the year 2000. From a set of datapoints of ranked choices made

by an individual, typical algorithms solve the general minimisa-

tion problem argmin

w
| |ℛ(𝑋 )𝑜 ,ℛ(𝑋,𝒜w) | |, where ℛ(𝑋 )𝑜 is the

observed ranking of the alternatives by the agent, ℛ(𝑋,𝒜w) is
the ranking based on the aggregation model 𝒜 parameterized on

Session 6B: Multi-objective Planning and Learning
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1980



w on the same set of alternatives 𝑆 . Standard algorithms, such as

UTA [18] formulate the solution as a mathematical programming

problem, and in recent years, statistical learning methods similar to

those we use (CART) have also been used [13]. There are few dif-

ferences between the MCDA methods and those in this paper. First,

in our case, the models we study are strategic (and non-strategic)

decisions, thereby adding another layer of complexity. Second, our

problem in this paper is also less well-defined, since we do not have

access to the drivers’ ranking of the preferences, but rather only a

singular choice of the observed action.

Inverse reinforcement learning (IRL): Although IRL [25] is conceptu-

ally different from the methods presented in this paper, it is relevant

to include some recent works in the literature due to the interest

and application of IRL for autonomous driving. IRL formulates the

problem of estimating agents’ behaviour as a single agent problem

as opposed to the game theoretic approach of treating the problem

as one of multi-agent behaviour with support for different reason-

ing processes. Another salient distinction in IRL is that it typically

retrieves the utility𝑈 that fits the observed behaviour best without

referencing utility to prespecified dimensions of safety, progress,

comfort, etc., but rather uses a single objective function that may or

may not have a semantic meaning. Sadigh et al. [29] use IRL to first

learn a policy of behaviour from demonstrations and subsequently

use that in a game theoretic based planning module using a level-k

(k = 2) [9] type solution concept, although the solution concept is

not explicitly stated as such in the paper. As a mathematical formu-

lation, such an approach works well in practise because IRL can

provide a best-response type behaviour to the (other) agent action;

however, the implicit assumption that the agents adhere to a single

model of reasoning throughout every interaction might be a strong

one. Nevertheless, the authors show practical ways to integrate

single agent method like IRL into a game-theoretic setting.

A recent work on learning preference alongmultiple criteria with

a game theoretic view and also in the context of driving is by Bhatia

et al. [4], where agent utilities are learnt with respect to a solution

concept developed based on the Blackwell approachability theorem

[5]. Compared to [4], in this work, we use non-zero sum games and

pure strategies in terms of the game constructs, as well as focus

on multiple solution concepts. Additionally, in this paper, we also

learn the preferences of drivers based on real-world observational

data.

3 AGGREGATION
The general problem of aggregation for an agent is the trans-

formation of a vector valued utility function 𝑈𝑖 to a scalar val-

ued function 𝑢𝑖 in order to solve the game in question. In other

words, this involves the construction of a scalarization function

𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝜃𝑖 ) that maps the multiobjective vector of utilities

for agent 𝑖 ,𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), to the real value utility 𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 ) based on

the parameter 𝜃𝑖 .

3.1 Weighted Aggregation
Weighted aggregation is a linear combination of individual utility

objectives as follows.

𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ),w𝑖 ) = w𝑖 ·𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ) (1)

The above equation is simply the dot product between the aggre-

gation parameter (w𝑖 ) and the vector valued utility function. The

disaggreagation process involves the estimation of the weight vec-

tor w𝑖 based on the observed actions of the agents in the game.

3.2 Satisficing Aggregation
A driver always operating at their own subjective tolerance level of

risk has been a well established model of behaviour in traffic psy-

chology [17, 38], and the model has also been empirically validated

[23]. Lexicographic thresholding is a method of aggregation that is

based on satisficing and encapsulates two concepts, namely, ordered

criteria of objectives and a thresholding effect [24]. In lexicographic

thresholding, an agent ranks the objective criteria based on a fixed

and strict total order, for example, safety > progress > comfort. In

this work, we focus on safety and progress with a lexicographic

ordering of safety > progress. The aggregation of the two utilities

into a scalar value is given by

𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾𝑖 ) =
{
𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎−𝑖 ), if 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎−𝑖 ) ≤ 𝛾𝑖
𝑢𝑝,𝑖 (𝑎𝑖 , 𝑎−), otherwise

(2)

where 𝛾𝑖 is the safety aspiration level of agent 𝑖; 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑖 ) is the
safety component of the vector valued function𝑈𝑖 ; and 𝑢𝑝,𝑖 (𝑎𝑖 , 𝑎𝑖 )
is the progress component. Based on the above formulation, an

agent evaluates an action of multivalued utility based on progress

rather than safety only when the safety utility of that action is

greater than 𝛾𝑖 . The disaggregation process for the lexicographic

thresholding method involves estimating the parameter 𝛾𝑖 based

on the observed action of the agent 𝑖 in the game.

4 MULTIOBJECTIVE DISAGGREGATION
We address the problem of estimating the aggregation parameters

for an agent given their observed action in a game. This involves

estimating the weight parameters w for the case of the weighted

aggregation method, and the safety aspiration level parameter 𝛾

for the case of the satisficing aggregation method. Additionally,

since the choice of reasoning model (strategic or non-strategic)

influences the behaviour of the agent in a game, we will develop

separate methods based on strategic and non-strategic reasoning

assumptions.

We start with the following definition of what rationalisability
means in the context of disaggregation of multiobjective utilities.

Definition 1. Given a normal form game 𝒢, a vector-valued util-
ity𝑈𝑖 , a solution concept ℬ, and a tuple of observed action (𝑎𝑜

𝑖
, 𝑎𝑜−𝑖 ),

an aggregation parameter 𝜃𝑖 is rationalisable iff (𝑎𝑜𝑖 , 𝑎
𝑜
−𝑖 ) is in the

solution set of 𝒢 solved with the solution concept ℬ with scalarized
utility 𝒮 (𝑈𝑖 , 𝜃𝑖 ).

Based on a dataset of observations (𝑎𝑜
𝑖
, 𝑎𝑜−𝑖 ) in various game

situations, the goal is to estimate the rationalisable 𝜃𝑖 for each

agent in each game situation. We first do this for the case where 𝒮
is the weighted aggregation function, followed by the case where

it is the satisficing aggregation function.

4.1 Weighted Aggregation
Since the observed actions depend on the underlying reasoning

models used by the player, we first present the methods for strategic
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Figure 1: An example scenario with actions Turn (T) and
Wait (W) (right-turn) and Speed up (U) or Slow Down (D)
(oncoming). Each ell has safety and progress utility indicated.

reasoningmodels (takingNash equilibrium as an example), followed

by non-strategic reasoning models of maxmax and maxmin [40].

4.1.1 Strategic models. For strategic models, for the observed ac-

tion, 𝑎𝑜
𝑖
, of a strategic agent 𝑖 to be in the solution set, the action

needs to be the best response to the action that 𝑖 believes −𝑖 will
play. We use the case of Nash equilibrium in this section, where

𝑎𝑜
𝑖
and 𝑎𝑜−𝑖 are best responses to each other. A running example of

a right-turning scenario (Fig. 1) elaborates the estimation process.

A prototypical game for the scenario is shown on the right. For

each combination of pure strategies, the top row utility values in

each cell represent the safety utility and the bottom row represent

the progress utility of the right turning vehicle (row player) and

straight through (column player) vehicle, respectively. Let’s say

the observed strategy in this game was (𝑊,𝑈 ). In that case, for the

right turning vehicle, for𝑊 to be the best response to the observed

action of −𝑖 , (i.e., 𝑈 ), the necessary and sufficiency conditions are

𝑤𝑖,𝑠 × 0.5 +𝑤𝑖,𝑝 × 0.1 ≥ 𝑤𝑖,𝑠 × −0.9 +𝑤𝑖,𝑝 × 1 and𝑤𝑖,𝑠 +𝑤𝑖,𝑝 = 1,

where 𝑤𝑖,𝑠 and 𝑤𝑖,𝑝 are agent 𝑖’s weights for safety and progress

utilities respectively. In the general case of arbitrary number of

finite discrete actions and |𝑂 | being the number of objectives, this

can be formulated as a linear program (LP) and the rationalisable

weights of agent 𝑖 can be estimated as the solution to the following

maxmize

|𝑂 |∑︁
𝑗=1

𝑤𝑖, 𝑗𝑢𝑖, 𝑗 (𝑎𝑜𝑖 , 𝑎
𝑜
−𝑖 )

subject to

|𝑂 |∑︁
𝑗=1

𝑤𝑖, 𝑗 (𝑢𝑖, 𝑗 (𝑎𝑜𝑖 , 𝑎
𝑜
−𝑖 ) − 𝑢𝑖, 𝑗 (𝑎

′
𝑖 , 𝑎

𝑜
−𝑖 )) ≥ 0, ∀𝑎′

𝑖
≠ 𝑎𝑜

𝑖

|𝑂 |∑︁
𝑗=1

𝑤𝑖, 𝑗 = 1

In the above LP, we select weights in the feasible set that max-

imise the utility of the chosen action; however, any combination

of weights that fall into the feasible set based on the constraints

would be consistent with the conditions of rationalisability.

4.1.2 Non-strategic models. In the case of a non-strategic model,

an agent is not other responsive but only dominant responsive [40].
In other words, since they do not reason about the actions of the

other agents, it is not possible to pin down a specific action of the

other agent (𝑎𝑜−𝑖 ) with respect to which agent 𝑖 calculates its best

response. In this model, the players do not best respond based on a

specific belief about other agents’ actions, but rather evaluate ac-

tions based only on their own utility values, and in our case, choose

an action based on an elementary maxmax or maxmin model. This

makes the process of estimating the weights slightly more compli-

cated (read nonlinear) compared to the strategic case. Following

from the example of Fig. 1, for action𝑊 to be the optimal action

for agent 𝑖 (based on the non-strategic model maxmax), the maxi-

mum utility for agent 𝑖 that can be realised by choosing𝑊 in the

aggregate form post scalarization should be greater or equal to the

maximum utility that can be realized by choosing 𝑇 . Therefore, the

necessary and sufficiency conditions for the non-strategic case in

this example are max{𝑤𝑖,𝑠 ×0.5+𝑤𝑖,𝑝 ×0.1,𝑤𝑖,𝑠 ×0.8+𝑤𝑖,𝑝 ×0.1} ≥
max{𝑤𝑖,𝑠 ×−0.9+𝑤𝑖,𝑝 ×1,𝑤𝑖,𝑠 ×0.2+𝑤𝑖,𝑝 ×−0.5} and𝑤𝑖,𝑠 +𝑤𝑖,𝑝 = 1.

The left term in the inequality gives the maximum realised util-

ity for the action𝑊 and the right term is the maximum realised

utility for the action 𝑇 . The process of estimating the weights in

the non-strategic case can therefore be formulated as a nonlinear

optimisation problem as follows.

maxmize

|𝑂 |∑︁
𝑗=1

𝑤𝑖, 𝑗𝑢𝑖, 𝑗 (𝑎𝑜𝑖 , argmax

𝑎−𝑖
𝑤𝑖, 𝑗𝑢𝑖, 𝑗 (𝑎𝑜𝑖 , 𝑎−𝑖 ))

subject to

|𝑂 |∑︁
𝑗=1

𝑤𝑖, 𝑗 (𝑢𝑖, 𝑗 (𝑎𝑜𝑖 , argmax

𝑎−𝑖
𝑤𝑖, 𝑗𝑢𝑖, 𝑗 (𝑎𝑜𝑖 , 𝑎−𝑖 ))

−𝑢𝑖, 𝑗 (𝑎
′
𝑖
, argmax

𝑎−𝑖
𝑤𝑖, 𝑗𝑢𝑖, 𝑗 (𝑎

′
𝑖
, 𝑎−𝑖 ))) ≥ 0, ∀𝑎′

𝑖
≠ 𝑎𝑜

𝑖

|𝑂 |∑︁
𝑗=1

𝑤𝑖, 𝑗 = 1

Due to the presence of the argmax operator, the above problem

changes to a nonlinear optimisation problem. Similarly, for maxmin
non-strategic models, the process of estimating the weights is iden-

tical except that the argmax operator is replaced by the argmin
operator. In the latter case, the argmin operator gives the minimum

realisable utility of the observed action. In our experiments, for

both maxmax and maxmin models, we solve the above optimisation

problem using a trust region based method [11].

4.2 Satisficing Disaggregation
The estimation process for the satisficing method involves estimat-

ing the parameter 𝛾𝑖 based on the observed action of the agent 𝑖 in

the game. Similar to the weighted aggregation case, the method of

estimation depends on the underlying model due to the assump-

tion an agent has over other agents’ behaviour and the subsequent

impact on the optimality calculations based on that agent’s per-

spective. However, unlike in the weighted aggregation case, due

to the thresholding effect, it is not straightforward to construct

a functional form of the scalar utility over which the optimality

conditions can be built. Instead, we develop an algorithmic estima-

tion process that helps estimate the complete set of rationalisable

aggregation parameter 𝛾 .

4.2.1 Strategic model. Based on Eqn. 2, the aggregation process

for lexicographic thresholding can be expressed in a paramet-

ric form as 𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 ) = 𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾𝑖 ) where 𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ) =

[𝑢𝑖,𝑠 (𝑎𝑖 , 𝑎−𝑖 ), 𝑢𝑖,𝑝 (𝑎𝑖 , 𝑎−𝑖 )] and 𝒮 is the scalarization function of

Eqn. 2. We present an adapted definition of rationalisability for

strategic models as follows:
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Algorithm 1: Estimation of Γ𝑖 based on consistency with

respect to satisficing aggregation

Input : (𝑎𝑜
𝑖
, 𝑎𝑜−𝑖 )

1 𝑃 ←partition([−1, 1], <);
2 Γ𝑖 ← {∅} ;
3 for 𝐼 ∈ 𝑃 do
4 𝛾 ←sample(𝐼 );

5 if is_rationalisable(𝛾 ) then
6 Γ𝑖 ← Γ𝑖 ∪ 𝐼
7 end
8 end

Definition 2. For any agent 𝑖 , a safety aspiration level 𝛾𝑖 ∈
[−1, 1] is equilibrium rationalisable with strategy profile (𝑎𝑜

𝑖
, 𝑎𝑜−𝑖 ) iff

𝒮 (𝑈𝑖 (𝑎𝑜𝑖 , 𝑎
𝑜
−𝑖 ), 𝛾𝑖 ) ⩾ 𝒮 (𝑈𝑖 (𝑎

′
𝑖
, 𝑎𝑜−𝑖 ), 𝛾𝑖 ) ∀𝑎

′
𝑖
≠ 𝑎𝑜

𝑖

The above definition follows from the definition 1 with an ex-

plicit reference to the condition of optimality of the equilibrium

solution, that is, for the safety aspiration level of the agent 𝑖 to be

rationalisable, their observed action 𝑎𝑜
𝑖
must be the best response

to the action of the other agents 𝑎𝑜−𝑖 . Algo. 1 presents the general
algorithm to estimate the rationalisable parameter. The intuition

behind the algorithm is as follows: the value of the parameter 𝛾𝑖
lies within the utility interval [-1,1]. Let 𝑃 = {𝐼1, 𝐼2, ..., 𝐼𝑃 } be an
ordered partition of the interval [-1,1]; the process of constructing

the partition depends on the underlying models of reasoning and is

explained later. We sample a single value of 𝛾 ∈ 𝐼 and check if the

scalarization 𝒮 based on that sampled value is rationalisable with

respect to the definition 2. If so, we include the partition 𝐼 from

which 𝛾 was sampled in the set of rationalisable parameter set Γ,
and the union of these sets is the set of rationalisable 𝛾 . Next, we

discuss the conditions for sound and completeness.

Proposition 1. Algorithm 1 is sound and complete based
on a partition 𝑃 iff ∀𝐼 ∈ 𝑃 , is_rationalisable(𝛾) ↔
is_rationalisable(𝛾 ′) ∀𝛾,𝛾 ′ ∈ 𝐼

Implementing the is_rationalisable method based on the defini-

tion 2 ensures soundness; this is because the utility maximizing

action (condition of definition 2) in response to an equilibrium

action means that the said action is in equilibrium, and therefore

(correctly) rationalisable. The bidirectional implication condition

of proposition 1 ensures that if we sample only a single value 𝛾

from an interval 𝐼 ∈ 𝑃 and check for rationalisability, then any 𝛾 ′

in that interval that was not sampled is also rationalisable. Next, we

construct a partition for which the double-implication condition of

proposition 1 holds. Given a game, let the partition 𝑃eq consist of

the ordered safety utility of the agent 𝑖’s action as follows

𝑃eq = {[−1, 𝑢𝑖,𝑠 (𝑎𝑖,1, 𝑎𝑜−𝑖 )), [𝑢𝑖,𝑠 (𝑎𝑖,1, 𝑎
𝑜
−𝑖 ), ...), [𝑢𝑖,𝑠 (𝑎𝑖, |𝐴𝑖 | , 𝑎

𝑜
−𝑖 ), 1]}

where 𝑢𝑖,𝑠 (𝑎𝑖,1, 𝑎𝑜−𝑖 ) ⩽ ... ⩽ 𝑢𝑖,𝑠 (𝑎𝑖, |𝐴𝑖 | , 𝑎
𝑜
−𝑖 ) is the ordered se-

quence of the safety utility values of agent 𝑖 . An example partition

for the game with respect to the row player (right turning vehicle)

in response to the action 𝑈 (the observed action) of the column

player of Fig. 1 is shown in Fig. 2.

Figure 2: The partition intervals 𝐼0, 𝐼1, .. of 𝑃 (game in Fig. 1).

Theorem 1. For any interval 𝐼 ∈ 𝑃eq, if 𝛾 ∈ 𝐼 is equilibrium ratio-
nalisable, then ∀𝛾 ′ ∈ 𝐼 , 𝛾 ′ is equilibrium rationalisable. Conversely,
if 𝛾 ∈ 𝐼 is not equilibrium rationalisable, then ∀𝛾 ′ ∈ 𝐼 , 𝛾 ′ is not
equilibrium rationalisable.

The proof is based on the intuition that if the partitions are

constructed using ordered safety values of different actions, then

any given threshold that falls between two such utilities imposes

the same ordering of actions after scalarization since the conditions

of Eqn. 2 remain unchanged.

Proof. Since the equilibrium rationalisability is based on the

condition 𝒮 (𝑈𝑖 (𝑎𝑜𝑖 , 𝑎
𝑜
−𝑖 ), 𝛾𝑖 ) ⩾ 𝒮 (𝑈𝑖 (𝑎

′
𝑖
, 𝑎𝑜−𝑖 ), 𝛾𝑖 ), we first show that

𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾𝑖 ) = 𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾 ′𝑖 ) ∀𝛾,𝛾
′ ∈ 𝐼 , i.e., the scalarized

value based on any two parameters that fall in the same interval is

equal.

Case 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ) ⩽ min 𝐼 : In this case, 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ) ⩽ 𝛾 , ∀𝛾 ∈ 𝐼 .
Therefore, 𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾𝑖 ) = 𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾 ′𝑖 ) since both evalu-

ate to 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ) based on Eqn. 2.

Case 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ) > min 𝐼 : In this case, 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ) ⩾ sup 𝐼 ,

since for any 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ) ≠ 1, 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ) = min 𝐼 when

𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ) ∈ 𝐼 based on the construction of 𝑃eq. Therefore, ∀𝛾 ∈ 𝐼 ,
𝛾 < 𝑢𝑠,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ), and 𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾𝑖 ) = 𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾 ′𝑖 ) since
both evaluates to 𝑢𝑝,𝑖 (𝑎𝑖 , 𝑎𝑜−𝑖 ) based on Eqn. 2

Therefore for any 𝐼 ∈ 𝑃eq, the condition 𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾𝑖 ) =

𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾 ′𝑖 ) holds true for all 𝛾,𝛾
′ ∈ 𝐼 .

By the above equality condition, 𝒮 (𝑈𝑖 (𝑎𝑜𝑖 , 𝑎
𝑜
−𝑖 ), 𝛾𝑖 ) ⩾

𝒮 (𝑈𝑖 (𝑎
′
𝑖
, 𝑎𝑜−𝑖 ), 𝛾𝑖 ) ↔ 𝒮 (𝑈𝑖 (𝑎𝑜𝑖 , 𝑎

𝑜
−𝑖 ), 𝛾

′
𝑖
) ⩾ 𝒮 (𝑈𝑖 (𝑎

′
𝑖
, 𝑎𝑜−𝑖 ), 𝛾

′
𝑖
),

which establishes the biconditional relationship of the theorem

(Defn. 2). □

Theorem 1 helps significantly reduce the number of consistency

checks that we need to perform, since we need to check only one

value in each interval in 𝑃 to determine whether all the values

in that interval are rationalisable or not. This keeps the run-time

complexity of Algo. 1 linear in the number of actions of the agent

in the worst case (that is, 𝑂 ( |𝐴𝑖 |)), since the run time depends on

the size of the partition 𝑃eq, which in turn depends on the number

of unique safety utilities, i.e., |𝐴𝑖 | in the worst case.

4.2.2 Non-strategic models. Recall that for non-strategic models,

an agent 𝑖 does not hold a specific belief about the action another

agent might play, and therefore, similar to the weighted aggregation

case, we cannot pin down a specific action 𝑎𝑜−𝑖 in response to which

the parameters can be estimated. This leads to a revision of the

rationalisability definition of Def. 2 to make it independent of the

actions of other agents for the maxmax and maxmin models.

Definition 3. For any agent 𝑖 , a safety aspiration level
𝛾𝑖 ∈ [−1, 1] is maxmax rationalisable with action 𝑎𝑜

𝑖
iff

max

𝑎−𝑖
𝒮 (𝑈𝑖 (𝑎𝑜𝑖 , 𝑎−𝑖 ), 𝛾𝑖 ) ⩾ max

𝑎−𝑖
𝒮 (𝑈𝑖 (𝑎

′
𝑖
, 𝑎−𝑖 ), 𝛾𝑖 )∀𝑎

′
𝑖
≠ 𝑎𝑜

𝑖
.

Session 6B: Multi-objective Planning and Learning
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1983



Definition 4. For any agent 𝑖 , a safety aspiration level
𝛾𝑖 ∈ [−1, 1] is maxmin rationalisable with action 𝑎𝑜

𝑖
iff

min

𝑎−𝑖
𝒮 (𝑈𝑖 (𝑎𝑜𝑖 , 𝑎−𝑖 ), 𝛾𝑖 ) ⩾ min

𝑎−𝑖
𝒮 (𝑈𝑖 (𝑎

′
𝑖
, 𝑎−𝑖 ), 𝛾𝑖 )∀𝑎

′
𝑖
≠ 𝑎𝑜

𝑖
.

For the strategic case, we needed to check 𝑎𝑜
𝑖
for rationalisabil-

ity only as a response to a fixed action 𝑎𝑜−𝑖 , and therefore it was

sufficient to construct the partition 𝑃eq based only on the safety

utilities for all actions that were in response to 𝑎𝑜−𝑖 . However, for
non-strategic models, the rationalisability of 𝑎𝑜

𝑖
involves compar-

ison with all entries of the safety utilities of agent 𝑖 in the game

matrix. Therefore, to apply Prop. 1 for the non-strategic case, the

partition points of 𝑃 need to include all the entries of the table as

follows:

𝑃ns ={[−1, 𝑢𝑖,𝑠 (𝑎𝑖,1, 𝑎−𝑖 )), [𝑢𝑖,𝑠 (𝑎𝑖,2, 𝑎−𝑖 ), 𝑢𝑖,𝑠 (𝑎𝑖,𝑘 , 𝑎−𝑖 )),
..., [𝑢𝑖,𝑠 (𝑎𝑖, |𝐴𝑖 | , 𝑎−𝑖 ), 1]}

where 𝑢𝑖,𝑠 (𝑎𝑖,1, 𝑎−𝑖 ) ⩽ 𝑢𝑖,𝑠 (𝑎𝑖,2, 𝑎−𝑖 ) ⩽ ... ⩽ 𝑢𝑖,𝑠 (𝑎𝑖, |𝐴𝑖 | , 𝑎−𝑖 ) is the
ordered sequence of the safety utility values of agent 𝑖 , and (with

a minor abuse of notation) 𝑎−𝑖 steps through all the correspond-

ing actions of the other agents based on that ordering. The only

difference between 𝑃eq and 𝑃ns is that 𝑃ns is partitioned based on

the safety utilities of 𝑖 in the entire game matrix, whereas 𝑃eq was

based on the column corresponding to 𝑎𝑜−𝑖 . This also has an impact

on the runtime of the algorithm, which is 𝑂 ( |𝐴|𝑁 ), where 𝑁 is the

number of players in the game and |𝐴| is the number of actions

for a player. This value is the same as the size of the game matrix

since the partition is constructed from each safety utility value for

each agent. The corresponding corollaries of Theorem 1 for the

non-strategic case are as follows:

Corollary 1. For any interval 𝐼 ∈ 𝑃ns, if 𝛾 ∈ 𝐼 is maxmax
rationalisable, then ∀𝛾 ′ ∈ 𝐼 , 𝛾 ′ is maxmax rationalisable. Conversely,
if 𝛾 ∈ 𝐼 is not maxmax rationalisable, then ∀𝛾 ′ ∈ 𝐼 , 𝛾 ′ is not maxmax
rationalisable.

Corollary 2. For any interval 𝐼 ∈ 𝑃ns, if 𝛾 ∈ 𝐼 is maxmin
rationalisable, then ∀𝛾 ′ ∈ 𝐼 , 𝛾 ′ is maxmin rationalisable. Conversely,
if 𝛾 ∈ 𝐼 is not maxmin rationalisable, then ∀𝛾 ′ ∈ 𝐼 , 𝛾 ′ is not maxmin
rationalisable.

Proof. The proof of the above corollaries is similar to the proof

of Theorem 1. Observe that for the partition set 𝑃ns, for any agent 𝑖 ,

the aggregation of the utilities of 𝑖 is the same for any pair of 𝛾,𝛾 ′ ∈
𝐼 . This follows from the equality condition 𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾𝑖 ) =

𝒮 (𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ), 𝛾 ′𝑖 ), which holds for the partition 𝑃ns in the same

way as was established for 𝑃eq earlier in Theorem 1. This means

that the pairwise comparison between the utilities of actions of 𝑖 is

invariant to the value of 𝛾 ∈ 𝐼 , thus establishing the conditions of
definitions 3 and 4. □

5 EXPERIMENTS AND EVALUATION
We evaluate the utility aggregation estimation methods using a

multi-agent traffic drone data set from [30], which includes several

real-world traffic interactions. From the dataset, we include interac-

tion scenarios of unprotected right-turn and left-turn across path at

a busy four way signalized intersection (1667 2-player games), deci-

sions about entering a roundabout (2441 N-player games), and de-

cisions about waiting for a pedestrian at a crosswalk (288 N-player

games). Each of these games are constructed from the perspective

of a focal agent about to enter the intersection, roundabout, and

crosswalk, respectively. The intersection and roundabout games

contain the interaction of the focal agent (a vehicle) with other

vehicles, and the crosswalk scenario include games in which the

other players are pedestrians. The relevant code is available at

git.uwaterloo.ca/a9sarkar/single-shot-hierarchical-games. As part

of our analysis, first, we evaluate the proportion of games in which

a rationalizable parameter was found for each aggregation and

reasoning model combination. Second, we evaluate the improve-

ment in accuracy of player’s predicted actions when the utilities

are constructed using the proposed estimation methods.

5.1 Agent Utility Aggregation Parameters
The first point of analysis is the pass rate for each model, that is,

the percentage of games in which a rationalisable parameter was

found for each model and aggregation method combination (Table

1). Based on the estimation procedure, we see that the chosen action

of drivers can be rationalised by a weighted aggregation parameter

in all cases for all models. For satisficing aggregation, the pass

rate is sensitive to the specific traffic situation and the choice of

the reasoning model. In the roundabout and crosswalk scenarios,

rationalisable parameters for strategic models could be estimated

for almost all games (96.9% and 100%, respectively), whereas for

non-strategic models it could only be found for 56.8% to 66.9%

of the games depending on the specific solution concept. There

are two possible reasons why weighted aggregation parameters

show higher rationalisability. First, at least for non-strategic models,

the optimisation method involves an approximate procedure (in

the form of the use of trust region based method of [11]), which

ends up finding a solution, albeit approximate, more easily than

the corresponding exact estimation procedure for satisficing based

methods. Second, it might be possible that a weighted aggregation

methodology as opposed to a satisficing based procedure makes

the chosen action more optimal with respect to rationalisability

constraints. The actual parameter values of the weights shed more

light on this aspect, which is discussed next.

5.1.1 Parameter values. Next, we study the values of the rational-

isable parameters that were estimated under each model. Figures

3 and 4 show the violin plots of the safety weight (safety weight

of w) and safety aspiration level (𝛾 ) for weighted and satisficing

aggregation methods, respectively, for the focal player in round-

about and crosswalk games, and both players in intersection games.

For cases where rationalisable parameters are an interval, for the

purpose of the figure we select the center of the interval as the

representative sample. To study the association between the state

factors, the figures are stratified based on the velocity of the agent

as well as the scenario. The first observation about the weighted

aggregation method is that irrespective of the reasoning model, the

distributions of the weight parameters are multimodal with the

modes being concentrated towards lower and higher values in most

cases. This means that in most cases, with safety and progress as

the two objectives, drivers tend to weigh heavily one or the other

rather than weighing both together in some mixed proportion at

the same time. Intuitively, this makes sense because what the re-

vealed preference estimation rationalises are the weights of the two
objectives that would make the chosen action of the driver optimal.

For example, in a given game, if the driver chose to proceed, then
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Intersection Roundabout Crosswalk

Weighted Satisficing Weighted Satisficing Weighted Satisficing

Strategic Nash 100% 68% 100% 96.9% 100% 100%

Non strategic

maxmax 100% 72.2% 100% 56.8% 100% 66.9%

maxmin 100% 72.28% 100% 56.87% 100% 64.3%

Table 1: Pass rate of estimated preferences for each model, aggregation method, and dataset.

Figure 3: Safety weight parameter distribution stratified by
vehicle speed, scenario, and task. Significance levels 𝑝 ⩽
0.05(∗), ⩽ 0.01(∗∗), ⩽ 0.001(∗ ∗ ∗), ⩽ 0.0001(∗ ∗ ∗∗), and ns.

what we find is that evaluating that action only with respect to

its, say, progress utility, makes it more optimal than if the driver

had evaluated that action based on both safety and progress utility.

On the other hand, for the satisficing method of aggregation, the

distribution of 𝛾 is not multimodal in most cases. Rather, the mean

values (shown in red) are concentrated near 0, thereby indicating

more stability across reasoning model or the game situation.

5.1.2 Subgroup analysis. Next, we study the association between

the vehicle speed and the estimated parameters values. The me-

dian values of the parameters are shown in red within the vio-

lin plots. Within each dataset and scenario, we perform subgroup

analysis based on discretised velocity levels
1
, and significance

1
Some velocity levels were excluded due to not enough instances in the data

Figure 4: Safety aspiration level distribution stratified by vehi-
cle speed, scenario, and task. Significance levels 𝑝 ⩽ 0.05(∗), ⩽
0.01(∗∗), ⩽ 0.001(∗ ∗ ∗), ⩽ 0.0001(∗ ∗ ∗∗), and ns.

between groups is noted above the horizontal lines according to

Wilcoxon t-test at significance levels 𝑝 ⩽ 0.05(∗), 𝑝 ⩽ 0.01(∗∗), 𝑝 ⩽
0.001(∗ ∗ ∗), 𝑝 ⩽ 0.0001(∗ ∗ ∗∗) (null hypothesis of equal means

between groups). In general, significant differences in parameter

values with respect to velocity levels were found for 72% and 42% of

pairwise group comparisons for weighted and satisficing aggrega-

tion, respectively, where a group is a combination of scenario and

model. This shows that the safety aspiration levels of drivers show

more stability at different velocity levels compared to the weight pa-

rameters. Additionally, within each scenario and reasoning model,

for the cases where there is a significant difference, higher velocities

are associated with lower safety weights and lower safety aspiration

level for weighted and satisficing aggregation, respectively.

Session 6B: Multi-objective Planning and Learning
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1985



5.2 Predictive Accuracy Improvements
Since subgroup analysis shows an association is observed between

factors such as speed and task with the values of the aggregation

parameter, in this section, we evaluate whether the aggregation

methods in conjunction with a statistical learning method, such

as Classification and Regression Trees (CART) [6], can improve

the predictive accuracy of various behaviour models and solution

concepts with respect to naturalistic human behaviour. We first

split the dataset of games into training and testing set in 80:20

proportion with 𝐾 = 30 random subsampling, and use the train-

ing set to construct two separate regression trees, one each for

weighted and satisficing aggregation, respectively. The indepen-

dent variables in the models are driving task (left-turn, right-turn,

straight-through, etc.), scenario (intersection, crosswalk, round-

about), reasoning model, and velocity, whereas the aggregation

parameter estimated using the methods developed earlier is the

dependent variable. We use the CART model to predict the aggre-

gation parameters in the games in the testing set, and solve the

games using different solution concepts. We then evaluate the im-

provement in accuracy of prediction of each solution concept when

the games are constructed with multi-objective utilities aggregated

using a fixed weights of w = [0.5, 0.5] compared to our method.

We select solution concepts from existing literature that have been

proposed as a model for human driving or autonomous vehicle

behaviour. The selected solution concepts are as follows: Level-k

model [30, 35], where 𝑘 = {0, 1, 2} indexed as L0, L1, and L2, respec-
tively. L0 models are further separated based on the non-strategic

solution concept into maxmax (L0:MX) and maxmin models (L0:MM)

[39], pure strategy Nash equilibrium (PNE) with welfare maximiz-

ing solution selected in cases of multiple equilibria [27, 30, 33],

Stackelberg solution for 2-player scenarios (Stack.) [16, 34], Rule

based solution that says always wait for other vehicles or pedestri-

ans, and a level-k, 𝑘 = 1, model in which the level-0 behaviour is

the rule based behaviour (LkR).

In the Stackelberg model, the focal agent, on account of not

holding the right of way, is modelled as the follower. To match the

observed (ground truth) manoeuvre with one of the two manoeu-

vres in our games (wait or proceed), we first select the trajectory
generated in the game that is closest to the observed trajectory

based on the trajectory length. The manoeuvre corresponding to

that closest trajectory is selected to be the ground-truth manoeuvre.

Fig. 5 shows themean accuracy, i.e., proportion of match between

predicted and observed manoeuvre, across 30 runs. Compared to a

baseline (weighted aggregation w = [0.5, 0.5] indicated as dashed

line in figure Fig. 5), a prediction-based aggregation consistently

shows better accuracy regardless of the choice of the solution con-

cept. The performance of the models with respect to weighted

and satisficing aggregation show some dependency on the spe-

cific scenario. For intersection and roundabout scenarios, weighted

aggregation shows higher accuracy; whereas for crosswalk, sat-

isficing based aggregation shows higher accuracy. The crosswalk

scenario, which is vehicle-pedestrian interaction type, is quite dif-

ferent compared to the intersection or roundabout where there are

only vehicle-vehicle interaction games. Drivers are also much more

cautious when navigating a crosswalk, since there are pedestrians

involved. Combining the insights from the accuracy result along

Figure 5: Mean accuracy of all the models. Dashed line is the
accuracy of the models with baseline weights.

with the pass rate of Table 1, the data suggest that satisficing is

much more effective as an aggregation method in scenarios where

drivers exhibit higher levels of caution, such as crosswalk naviga-

tion. The final observation is the worse performance of pure rule

following indicating that a model of pure rule following might not

be best suited as a model of behaviour for the selected situations of

high strategic interactions.

6 CONCLUSION
In this paper, we address the problem of estimation of multi-

objective aggregation parameters of agents based on observed be-

haviour. The methods developed in the paper are based on the idea

of rationalisability, i.e., a value of the aggregation parameter that

makes the observed decision of a player optimal conditioned upon

a reasoning model. The paper covers two processes of aggregation,

namely weighted and satisficing aggregation, and the reasoning

models cover strategic as well as non-strategic models. We show

that the process of estimating aggregation parameters for weighted

aggregation can be formulated as a linear and non-linear program

for strategic and non-strategic models, respectively. Furthermore,

we develop a novel algorithm for estimation of aggregation pa-

rameters for satisficing aggregation that is linear time for strategic

models and polynomial time in the size of action space for non-

strategic models. Based on a naturalistic dataset of three different

traffic scenarios, rationalisable parameters for weighted aggrega-

tion were found for all games in the dataset, and for the majority

of the games for satisficing aggregation. The paper also includes

an extensive evaluation of several solution concepts and behaviour

models and shows that, compared to a weighted aggregation with

fixed set of weights, the proposed method of utility aggregation

improves predictive accuracy across all the chosen solution con-

cepts. In future, the hypotheses generated by the methods in the

paper using observational data can be followed up with a controlled

experiment to evaluate the aggregation process of human drivers

in different situations.
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