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ABSTRACT
We address a mechanism design problem where the goal of the
designer is to maximize the entropy of a player’s mixed strategy at
a Nash equilibrium. This objective is of special relevance to video
games where game designers wish to diversify the players’ inter-
action with the game. To solve this design problem, we propose a
bi-level alternating optimization technique that (1) approximates
the mixed strategy Nash equilibrium using a Nash Monte-Carlo
reinforcement learning approach and (2) applies a gradient-free op-
timization technique (Covariance-Matrix Adaptation Evolutionary
Strategy) to maximize the entropy of the mixed strategy obtained in
level (1). The experimental results show that our approach achieves
comparable results to the state-of-the-art approach on three bench-
mark domains “Rock-Paper-Scissors-Fire-Water”, “Workshop War-
fare” and “Pokemon Video Game Championship”. Next, we show
that, unlike previous state-of-the-art approaches, the computational
complexity of our proposed approach scales significantly better in
larger combinatorial strategy spaces.
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1 INTRODUCTION
We address a mechanism design problem in which a designer is
required to tune a set of parameters of a game (referred as the
game meta) such that the player’s mixed strategy at Nash equi-
librium (distribution over strategies) is of maximal entropy. The
main motivation behind this problem is video games design. Such
games commonly consist of an initial item selection phase where
the player attempts to select the best possible combination of game
items with respect to the game outcome. In some cases, video games
∗Significant portion of this research was performed during internship at Niantic Inc.
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suffer from having an imbalanced game meta leading to degenerate
item selection strategies. In such cases, players commonly select
an item set from a known subset of ‘good item sets’, irrespective
of their style and preference of play to stay competitively viable in
the game. This phenomenon commonly results in reduced players’
engagement with the game and renders content added by devel-
opers useless as it is sparingly used. As such, balancing the game
meta is an important problem for video game designers.

Although a significant amount of research devoted to learning
optimal game playing agents [8, 31, 33, 36] exists, there has been lit-
tle emphasis on balancing the game meta. Consequently, the game
meta is often tuned by the game designers manually. Following
the Hearthstone AI Competition [7], some works have attempted to
address the game meta balance problem using standard optimiza-
tion techniques that were specifically adapted to the Hearthstone
domain [5, 37]. However, these approaches are not generally appli-
cable since they are (1) specific for deck-building based games [22],
(2) assume players do not change strategies with the change in the
game meta, and (3) are computationally intractable for complex
games as they utilize win-rate as the evaluation metric and thus
have to average over numerous simulations to get a reasonable
estimate of win-rates in games with highly stochastic outcomes.

We propose to address these limitations by considering the en-
tropy of the player’s mixed strategy over strategy space at Nash
equilibrium as the objective function to be maximized as a proxy for
game meta balance. We provide a bi-level optimization method for
this objective which, unlike previous work, generalizes to games
that include a combinatorial item selection phase. We also dis-
cuss a degenerate solution to the proposed objective and present
a regularization based method to address it. Moreover, we discuss
how regularization allows for the incorporation of (human) game
designers’ preferences into the objective function. Finally, we em-
pirically show that, unlike existing methods, our approach scales
significantly better in larger combinatorial strategy spaces.1

2 PRELIMINARIES
We consider a Normal-Form Game with Parameterized Payoffs
denoted 𝑁𝐹𝐺2𝑃𝜃 where 𝜃 is the set of tunable parameters (game
meta) which influence the game’s outcome. These parameters are
assumed to be controlled by the game designer and not by the
players. 𝑁𝐹𝐺2𝑃𝜃 is composed of:
1See https://github.com/nianticlabs/metagame-balance for our code.
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• 𝑁 , a finite set of players.
• 𝑆𝑖 , a strategy space for each player, 𝑖 ∈ {1, ..., 𝑁 }.
• 𝑢𝑖 : 𝑆1 ×𝑆2 × ...×𝑆𝑁 ×R |𝜃 | → R, a payoff function mapping
strategy profiles (strategy per player). and the set of tunable
parameters 𝜃 to the expected payoff for player 𝑖 .

Definition 2.1 (Mixed Strategy). A mixed strategy for player 𝑖 ,
denoted by 𝜎𝑖 , is a probability distribution over the player’s strat-
egy space. That is, 𝜎𝑖 ∈ R |𝑆𝑖 | subject to: sum-of-elements(𝜎𝑖 ) =
1 , min-element(𝜎𝑖 ) ≥ 0. An agent following a mixed strategy, 𝜎𝑖 ,
is assumed to randomly sample a strategy 𝑠𝑖 ∼ 𝜎𝑖 at every game
instance.

Definition 2.2 (Mixed Strategy Nash Equilibrium). A mixed strat-
egy profile, 𝜎∗, is a mixed strategy Nash equilibrium (MSNE) if and
only if the following two conditions hold for every player 𝑖 ∈ 𝑁 :

(1) Every pure strategy, 𝑠𝑖 ∈ 𝑆𝑖 , that is assigned a non-zero
probability by 𝜎∗

𝑖
yields the same expected payoff. That

is, ∀𝑠𝑖 ∈ 𝑆𝑖 , 𝜎
∗
𝑖
(𝑠𝑖 ) > 0 =⇒ E𝑠−𝑖∼𝜎∗−𝑖 [𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ;𝜃 )] =

E𝑠∼𝜎∗ [𝑢𝑖 (𝑠;𝜃 )]. We use 𝜎𝑖 (𝑠) to represent the probability
assigned to strategy 𝑠𝑖 under distribution 𝜎𝑖 .

(2) Every pure strategy 𝑠𝑖 ∈ 𝑆𝑖 that is assigned a zero probability
by 𝜎∗

𝑖
yields an expected payoff that is no better than that

yielded by strategies assigned with non-zero probability.
That is, ∀𝑠𝑖 ∈ 𝑆𝑖 , 𝜎∗𝑖 (𝑠𝑖 ) = 0 =⇒ E𝑠−𝑖∼𝜎∗−𝑖 [𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ;𝜃 )] ≤
E𝑠∼𝜎∗ [𝑢𝑖 (𝑠;𝜃 )].

2.1 Problem Definition
We consider the following game meta balance mechanism design
problem.
Input: (1) an 𝑁𝐹𝐺2𝑃𝜃 , (2) a player index, 𝑖 .
Output: the tunable parameters, 𝜃 , that maximize the entropy of
the player’s 𝑖 strategy (over strategy space) at the expected MSNE.
Formally, the optimization objective is given by

argmax
𝜃

E𝜎∗
𝑖
∼𝑁𝐹𝐺2𝑃𝜃 [H (𝜎

∗
𝑖 )] (1)

WhereH(𝜎𝑖 ) = −
∑
𝑠∈𝑆𝑖 𝜎𝑖 (𝑠) log𝜎𝑖 (𝑠) is the entropy function.

We assume that all players sample a strategy from their MSNE.
This can be viewed as all players playing to achieve high payoffs,
and maximizing entropy over such strategies at MSNE would in-
crease the “uniformity” or diversity of selected strategies [4]. As a
result, this paper considers Equation 1 to be a parameters assign-
ment resulting in a balanced game meta.

Definition 2.3 (Combinatorial Strategy Space). The strategy space
for a given player, 𝑖 , is denoted 𝑘-order combinatorial if it is defined
by 𝑘 items selected from a set,𝑀 = {𝑚1,𝑚2, . . . }, of available items.

Note, the sampling can be done with or without replacement
resulting in |𝑆𝑖 | = |𝑀𝑘 | or

( |𝑀 |
𝑘

)
respectively. We refer to 𝑘 as the

number of item selections.

2.2 Related Work
The work presented in this paper is related to two well studied
disciplines, namely, mechanism design from game theory, and game

meta balance from the video games literature. In this section, we
provide the relevant context leading to our contribution.

2.2.1 Mechanism Design. Mechanism design is a sub-field of game
theory, where the game designer chooses the game structure in
terms of the payoff functions. Mechanism design is commonly pro-
posed for optimizing social interactions, e.g., for auctions [21, 26],
traffic routing [27–29], load balancing [10] or elections [23]. While
our game meta balance problem, as defined above, is a mechanism
design problem, it is unique in the sense that it does not allow the
game designer to arbitrarily define the payoff functions. Instead, we
assume that the game designer can impact some parameters of the
payoff functions which might have a limited or noisy impact on the
perceived payoffs. Moreover, our game meta balance problem de-
fines a unique objective function that aims to maximize the entropy
of the player’s mixed strategy over strategy space at MSNE. This
contrasts with common mechanism design solutions [16, 19, 35]
which aim to maximize social welfare, fairness, and/or incentive
compatibility in various contexts.

2.2.2 Game Meta Balance. Initial works [6] on game meta bal-
ance relied on insights derived manually from data collected by a
heuristic based AI player. They manually tuned the parameters of
the game based on statistics like win-rates, objectives completed
etc. de Mesentier Silva et al. [5] proposed using an evolutionary
algorithm to balance the game meta specifically for deck balancing
games [22]. Their evaluation objective is centered around having a
50% win-rate on each of the decks in the game. Further, Fontaine
et al. [9] proposed to generate quality diverse decks by using an
algorithm termed MAP-Elites [20]. These methods make a limiting
assumption that the player’s strategy does not change with the
change in the payoff matrix. That is, they use a fixed playing agent
to evaluate the game meta balance while changing the game meta.
This solution is of limited applicability as players often re-evaluate
and tune their strategy following changes in the game’s meta. Her-
nandez et al. [14] proposed to solve the problem with a two stage
solution: (1) optimize the game meta 𝜃 (2) apply Monte Carlo Tree
Search (MCTS) [2] to approximate optimal strategies for players
under 𝜃 . They propose to minimize the mean squared error (MSE)
of the Empirical Response Graph (ERG) between a target payoff
matrix and the payoff matrix under the current 𝜃 . The ERG of a
payoff matrix is a matrix where all of the negative values in the
payoff matrix are substituted with zero [14]. They assume a payoff
matrix when the game meta is balanced is known beforehand and
is referred as the target payoff matrix. The payoff matrix under 𝜃
is obtained by averaging the game outcome over numerous runs
for every possible pure strategy profile. Their approach (referred
as ERG) was shown to achieve state-of-the-art results on a toy
rock-paper-scissor domain and the workshop warfare domain.

2.2.3 Problems with ERG. Nonetheless, ERG suffers from three
major shortcomings (1) ERG assumes a known target payoff that
might not hold true in complex video games; (2) ERG uses a sample-
based approach for estimating the payoff matrix at each iteration.
The computational complexity for doing so scales exponentially
with the number of items in a combinatorial strategy space. This
is also identified by the authors [14] under Section 7 as an “issue,
especially for more computationally intensive games”; (3) minimum
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Figure 1: Motivating example: Rock (R) - Paper (P) - Scissor (S)
game where argmax𝜃 Empirical Response Graph (ERG) does
not imply a balanced game meta. 𝜃 consists of two elements
highlighted by a red square in the image which is the payoff
between the two pure strategy profiles 1) paper-scissor 2)
paper-rock.

ERG does not always represent a balanced game meta. To illustrate
this, consider the rock-paper-scissor game shown in Figure 1 where
the designer can only change the payoff between two pure strategy
profiles 1) paper-scissor 2) paper-rock. Given 𝑁𝐹𝐺2𝑃𝑖

𝜃0
with initial

𝜃0 (as shown in Figure 1) the task of their method is to tune the
parameters such that the MSE between the ERG of payoff matrix
associated with 𝑁𝐹𝐺2𝑃𝑖

𝜃0
and ERG of payoff matrix associated with

target 𝑁𝐹𝐺2𝑃𝑡
𝜃
(as shown in Figure 1) is minimized. It is easy to

see the 𝑁𝐹𝐺2𝑃𝑖
𝜃0

and 𝑁𝐹𝐺2𝑃𝑡
𝜃
have balanced game meta as all the

player pure strategies are equally viable. However, the resulting
𝑁𝐹𝐺2𝑃𝑖

𝜃 ∗
after minimizing 𝜃 over ERG (minimum possible ERG of

1) is imbalanced as selecting rock results in the highest expected
payoff regardless. This issue can often be observed in cases where
some entries in payoff matrix (outcomes) cannot be influenced by
the tunable parameters, that is, the target payoff matrix cannot be
achieved under a given 𝑁𝐹𝑃2𝐺𝜃 . This leads to partial matching
between the game’s payoff matrix and the target one which can be
detrimental in many cases as shown in the above example.

Our approach does not suffer from these disadvantages as our
approach (1) does not assume a known target payoff matrix. Instead,
it targets any max-entropy solution, (2) is scalable in combinatorial
strategy spaces, and (3) sets an optimization objective function that
directly correlates to the game meta balance.

3 BI-LEVEL GAME META BALANCE
To solve the optimization objective in Equation 1, we propose to use
a bi-level optimization approach: (1) compute an expected MSNE
for a given 𝜃 and player 𝑖 , referred to as inner level optimization
and (2) apply a black-box optimization method to find argmax𝜃 ,
referred to as outer level optimization. We refer to our method as
Bi-level Game Meta Balance (BiGMB).

In this section, we first introduce a method to approximate the
MSNE for combinatorial strategy spaces (to solve the inner level
optimization), followed by the definition of the outer level objective
for combinatorial strategy spaces as well as an approximation of
the objective. Further, we demonstrate a problem that can lead
to degenerate solutions and consequently present a modification

to the optimization objective. Lastly, we describe our choice of
black-box optimizer for the outer level optimization.

3.1 Approximate Nash Equilibrium
In order to approximate MSNE for a given 𝑁𝐹𝐺2𝑃𝜃 with a com-
binatorial strategy space, we propose to use a Monte Carlo (MC)
variant of Nash Q learning [15] referred as Nash MC learning. We
propose to use the following Markov Decision Process formulation
for player 𝑖 ,𝑀𝐷𝑃𝑖 < 𝑋𝑖 , 𝐴, 𝑅𝑖 ,𝑇𝑖 >.
• State Space 𝑋𝑖 : a subset of selected items 𝑥 ⊆ 𝑀 for player 𝑖
such that 0 ≤ |𝑥 | ≤ 𝑘 .
• Initial State 𝑥0

𝑖
= ∅,

• Terminal States 𝑋𝑇
𝑖
⊂ 𝑋𝑖 = {𝑥 : |𝑥 | = 𝑘}.

• Action Space 𝐴: select one item from the available set of
items𝑀 .2
• Reward Function 𝑅𝑖 (𝑥) : 𝑋𝑖 → R: Reward function for
player 𝑖 . The reward is 0 for 𝑥 ∉ 𝑋𝑇

𝑖
. For 𝑥 ∈ 𝑋𝑇

𝑖
, that is, 𝑥 is a

valid combinatorial strategy, 𝑠𝑖 , we set 𝑅𝑖 (𝑥𝑖 ) = 𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 , 𝜃 ).
• Transition Function 𝑇𝑖 (𝑥, 𝑎) : 𝑋𝑖 × 𝐴 → 𝑋𝑖 : The transition
function is deterministic 𝑥 ′ ← 𝑥 ∪ 𝑎 where 𝑥 ′ is the next
state and 𝑎 is the item selected at the current step.

A value function𝑉 𝜋𝑖
𝑖

: 𝑋𝑖 → R is defined by𝑉 𝜋𝑖
𝑖
(𝑥) = 𝐸𝑥𝑡∼𝜋𝑖 |𝑥 [𝑅𝑖 (𝑥𝑡 )]

which gives the expected returns when policy 𝜋𝑖 is followed. We
parameterize the policy as softmax distribution given by

𝜋𝑖 (𝑎 |𝑥) =
𝑒𝑥𝑝 (𝑉𝑖 ( [𝑥, 𝑎]))∑
𝑎′ 𝑒𝑥𝑝 (𝑉𝑖 ( [𝑥, 𝑎′]))

(2)

We use a specific MC-based learning method denoted TD(1) [32],

Algorithm 1 Nash Monte Carlo (MC) learning
1: Input: 𝑁𝐹𝐺2𝑃𝜃 ,𝑀𝐷𝑃𝑖 for player index 𝑖
2: Initialize: value function 𝑉𝑖 arbitrarily e.g., 𝑉 0

𝑖
(𝑥) ← 0 ∀𝑥 ∈

𝑋𝑖 , 𝑡 ← 0
3: Output: policy 𝜋𝑖
4: do
5: 𝑥 ← ∅
6: while |𝑥 | ≤ 𝑘 do
7: 𝑎 ∼ 𝜋𝑖 (·|𝑥)
8: add 𝑇 (𝑥, 𝑎) to 𝑥 ⊲ Add item 𝑎 to 𝑥
9: end while
10: 𝑁𝐹𝐺2𝑃𝜃 .playeri.item_set← 𝑥

11: observe 𝑟𝑒𝑤𝑎𝑟𝑑 ∼ 𝑁𝐹𝐺2𝑃𝜃
12: while 𝑥 ≠ {} do
13: 𝑉 𝑡+1

𝑖
(𝑥) ← 𝛼 ·𝑉 𝑡

𝑖
(𝑥) + (1 − 𝛼) · 𝑟𝑒𝑤𝑎𝑟𝑑

14: pop item from 𝑥 ⊲ most recent added item to 𝑥
15: end while
16: 𝑡 ← 𝑡 + 1
17: while |𝑉 𝑡

𝑖
−𝑉 𝑡−1

𝑖
| ≤ 𝜖

18: return 𝜋𝑖 following Equation 2 over 𝑉 𝑡
𝑖

instead of the 1 step, TD(0), based approach in the original Nash
Q learning. This is motivated by the fact that MC based meth-
ods usually have less bias compared to bootstrapping-based ap-
proaches [32]. Note that, on the other side of this coin, MC methods
2An item might not be available for selection if sampling is done without replacement.
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generally have higher variance compared to bootstrapping meth-
ods, which results from stochasticity in the environment. However,
as the transition function in our case is deterministic, we believe
that the sample variance of MC based methods is minimal.

Algorithm 1 refers to the Nash MC learning given the MDP for
player 𝑖 . In order to achieve MSNE, MC Nash learning requires to
learn policy for every player 𝑖 ∈ {1, ..., 𝑁 } and each player’s 𝑉𝑖 is
updated after every outcome of 𝑁𝐹𝐺2𝑃𝜃 . The policy for the player
(required for Equation 1) returned by Algorithm 1 is further used
to calculate the entropy required for outer level optimization.

3.2 Entropy in Combinatorial Strategy Space
In this section, we discuss the objective function used for the outer
level optimization specifically for combinatorial strategy spaces.
According to Equation 1 and Definition 2.3, given a player 𝑖 , 𝜃 is
optimal if the entropy of the player’s strategy over combinatorial
strategy space at MSNE is maximized. However, in some cases with
combinatorial strategy spaces, video game designers do not want
every single possible pure strategy profile to be viable. Instead, they
prefer to maximize the entropy of the resulting player’s distribu-
tion of an item being selected when the player follows the strategy
sampled from MSNE. For example, consider a shooting based game
where the task of the players is to select 𝑘 = 2 guns for the combat,
and the task of the designer is to tune the parameters of the guns
which denote how powerful it is, and until what range. Game de-
signers do not usually want to make combinatorial strategies like
picking two distinct shot guns (good at only close-range combat)
viable in the game. Instead, game designers tend to set the param-
eters such that each gun in the game is viable and is selected by
players in some or other combination. Formally, let 𝑌 be a random
variable that models an item being selected by the player i’s policy
at MSNE (𝜋𝑖 ). Thus, our objective for combinatorial strategy spaces
can be given by:

H(𝑌 ) = −
𝑗= |𝑀 |∑︁
𝑗=1

𝑃 (𝑌 =𝑚 𝑗 ) log 𝑃 (𝑌 =𝑚 𝑗 ) (3)

To calculate P(Y) given 𝜋𝑖 we introduce some additional terms for
simplicity. Let 𝑌 𝑡 be a random variable over the items that are
picked at 𝑡𝑡ℎ time instance by the 𝜋𝑖 . 𝑃 (𝑌 ) can be represented by

𝑃 (𝑌 ) = 1
𝑘

𝑘∑︁
𝑡=1

𝑃 (𝑌 𝑡 ) (4)

Note, the normalization term (1/𝑘) is required as the item is
equally likely to be picked at each time instance. This results from
the Definition 2.3 that item ordering does not matter. Each 𝑃 (𝑌 𝑡 )
can be given by

𝑃 (𝑌 𝑡 ) =
𝑏𝑙= |𝑀 |∑︁
𝑏𝑙=1

𝑃

(
𝑌 𝑡

𝑡−1⋂
𝑙=1
(𝑌 𝑙 =𝑚𝑏𝑙 )

)
(5)

=

𝑏 𝑗 ,𝑏𝑙= |𝑀 |∑︁
𝑏 𝑗 ,𝑏𝑙=1

𝑃

(
𝑌 𝑖 |

𝑡−1⋂
𝑙=1

𝑌 𝑙 =𝑚𝑏𝑙

)
𝑡−1∏
𝑗=1

𝑃

(
𝑌 𝑗 =𝑚𝑏 𝑗

|
𝑗−1⋂
𝑙=1

𝑌 𝑙 =𝑚𝑏𝑙

)
(6)

We use the law of total probability in Equation 5 where we
sum over all possible combinations of selections of size 𝑡 − 1. Each

individual term 𝑃 (𝑌 𝑡 |⋂𝑡−1
𝑙=1 𝑌

𝑙 ) in Equation 6 is the policy 𝜋𝑖 as it
models distribution over the next item given previous selections.

The elements over which the sum is performed in Equation 6,
grows combinatorially with increasing 𝑘 and becomes computa-
tionally intractable. To address this issue, we propose a tractable ap-
proximation for 𝑃 (𝑌 ) given by 𝑃 (𝑌 ) := 𝑃 (𝑌 1). This approximation
results from the assumption that 𝑃 (𝑌 𝑖 ) = 𝑃 (𝑌 𝑗 ) for 0 ≤ 𝑖, 𝑗 ≤ |𝑀 |.
Note, Algorithm 1 approximates a policy that maximizes the ex-
pected payoff [15, 32]. There can be multiple policies that are op-
timal with respect to the expected payoff in combinatorial action
spaces, biased towards selecting specific order. Thus, the assump-
tion, 𝑃 (𝑌 ) := 𝑃 (𝑌 1) does not hold true in general.

3.3 Regularization
In some cases, the tunable parameters, 𝜃 , include a set of item
attributes that define the item’s impact on the game’s outcome.
Such cases are prone to degenerate solutions where assigning all
items the exact same attribute values leads to a max-entropy MSNE.
For example, this might happen when assigning all Pokemon in the
VGC domain the exact same strength, health, and special abilities.
Such an outcome is, obviously, not desirable. Moreover, most items
in video games have special traits and game designers do not want
to deviate away from these original traits. To address this, we add
a regularization term to the entropy-based objective (Equation 3).
Our regularized objective is defined by:

max
𝜃
H(𝑌 ) − ||r ⊙ 𝜃 − r ⊙ 𝜃0 | |2 (7)

where 𝜃0 is the initial game parameters, commonly provided by
the game designer, and r ∈ R |𝜃 | is a regularization vector, which
denotes how far can the deviation be for each of the tunable param-
eters, and ⊙ is element-wise multiplication. Note, we use a vector
r so that it gives the game designer an option to weigh the re-
strictions over the various parameters in 𝜃 , based on game specific
requirements.

3.4 Algorithms for Outer Level Optimization
To optimize over 𝜃 (Equation 7) we use a black-box optimizer,
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [11].
CMA-ES is a gradient free optimization technique that also mod-
els the pairwise correlations between the parameters. We suspect
such pairwise correlation exists between the tunable parameters
𝜃 for the domains presented in the experimental section. Further,
CMA-ES was shown to perform well on non-convex functions and
‘difficult functions’ in large dimensional spaces [13]. Considering
high dimensional spaces |𝜃 |, especially in more complex games, we
believe CMA-ES would be most effective for our problem.

4 EXPERIMENTS
The experimental section is designed to answer the following ques-
tions:

(1) How does BiGMB compare against the current state-of-the-
art baseline in cases where the strategy space is low dimen-
sional?

(2) Howwell does the computational complexity of BiGMB scale
with the dimensionality of the strategy space? specifically:

(a) increase in item selections, 𝑘 .
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(a) Rock-Paper-Scissors-Fire-Water (RPSFW) (b) Workshop Warfare (WW) (c) Pokemon VGC (VGC)

Figure 2: Domains used for experimentation.

(b) increase in the size of the item set, |𝑀 |.
(3) How does a change in the regularization parameter r affect

the solution quality?
(4) Howdoes the approximation of outer level objective ( 𝑃 (𝑌 ) :=

𝑃 (𝑌 1)) affect the performance of BiGMB?

4.1 Domains
For our experimental section, we consider three zero-sum symmet-
ric, two-player benchmark domains, (1) Rock-Paper-Scissors-Fire-
Water (RPSFW), (2) Workshop Warfare (WW), and (3) Pokemon
Video-Game-Championship (VGC). Our choice of RPSFW and WW
follows the domains used in the previous state-of-the-art publi-
cation [14]. RPSFW is a minor variation of rock paper scissors
considered by Hernandez et al. [14] where the game meta is known
to be not balanced. That is, the entropy of the player’s strategy at
MSNE is not uniform. Our choice of VCG follows Reis et al. [25]
who proposed the benchmark domain (VGC) specifically for game
meta balance.

4.1.1 Rock Paper Scissors Fire Water (RPSFW). (a) Description:
RPSFW is an extension of the rock paper scissors game with the
addition of two items namely fire and water [34]. (b) Strategy Space:
The task of the players is to select 𝑘 = 1 item from an item set𝑀 =

{rock, paper, scissors, fire, water}. (c) Payoff Function: Fig 2a shows
the win-loss relationship graph between the items, along with the
payoff matrix. (d) Parameters 𝜃 : The set of tunable parameters 𝜃 are
set as the values above the diagonal of the payoff matrix. Thus |𝜃 |
= 10.

4.1.2 WorkshopWarfare (WW). (a)Description:WorkshopWarfare
is a 5x5 grid game [14] where the task of the player is to deplete the
health of the opponent bot to 0. At each timestep, the player can
either stand still, move in any valid direction, or use a special attack
that is specific to each bot. We use MCTS policy for the gameplay
following [14]. Figure 2b shows a screenshot from the game. We
refer the reader to Hernandez et al. [14] for further details. (b)
Strategy Space: The task of each player is to select 𝑘 = 1 item or bot
from a set of three game items𝑀 = {Nail Bot, Saw bot, Torch Bot}.
(c) Payoff Function: A player receives a payoff of 1 if the health of the
opponent reaches 0, −1 otherwise. (d) Parameters 𝜃 : The parameters
𝜃 consist of some common parameters across bots/items namely
health, cooldown for the attack, damage (based on attack), and
cooldown betweenmoves. Some bot specific statistics, namely torch
range and duration (for torch bot), damage boost, and duration (for

saw bot) are also included in 𝜃 . The total number of parameters is
|𝜃 | = 16. Our choice follows [14].

4.1.3 Pokemon VGC (VGC). (a) Description: Pokemon VGC is a
simulator that has been recently proposed by Reis et al. [25] for
three challenge tracks, with game meta balance being one of them.
Each Pokemon has 4 moves, health and a type (like water, electric,
etc). At each time instance, the player can either switch to another
valid Pokemon, do nothing, or select a move. There are known fixed
number of moves with certain parameters that are shared amongst
Pokemons. Further, each move can have some special effects which
can change the damage dealt with the move or reduce the damage
taken. We refer the reader to [25] for further details. All Pokemons
are generated following [25]. We use a heuristic based policy to
play the game which randomly switches the Pokemon (with a given
probability) else samples a move with probability move power ×
move accuracy + constant. Figure 2c shows a screenshot from the
simulator. (b) Strategy Space: The task of the players is to select
𝑘 Pokemons from a total of |𝑀 | Pokemons. The simulator allows
to change 𝑘 and𝑀 , thus these are set specific to each experiment.
When the number of selections was greater than 1 (𝑘 > 1) sampling
without replacement was considered. (c) Payoff Function: A player
receives a payoff of 1 if the health of all opponent’s Pokemons
reaches 0, a payoff of −1 if the health of all player’s Pokemons
reaches zero, else payoff of 0 (timeout). (d) Parameters 𝜃 : The set of
parameters 𝜃 for the game are set as three parameters of the every
move namely power, accuracy, and maximum number of times the
move can be used. Given that there are 69 moves, |𝜃 | = 207. Note
that, |𝜃 | does not change with 𝑘 and |𝑀 |.

4.2 Setup
4.2.1 Outer level Optimization: The population size was set to
4 + 3𝑙𝑜𝑔( |𝜃 |) following the literature [12]. All parameters in 𝜃 were
normalized by scaling to a range [0,1]. The initial variance was set
to 0.7, 0.3, 0.1 for RPSFW, WW, VGC respectively. The variance was
constant across all parameters in 𝜃 .

4.2.2 Value Function Representation: For RPSFW and WW the size
of 𝑀 is relatively small with sizes 5 and 3 respectively. Thus, we
use an array (or a table) as the value function. For VGC we use
neural networks as the value function. The items in VGC have
common attributes like (power, accuracy, health, etc.), which can
be exploited by neural networks as they are known to generalize
over the data [30]. The neural network was set to have two hidden
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(a) RPSFW (b) WW (c) VGC

Figure 3: Comparison of BiGMB with ERG on three domains, namely RPSFW, WW, VGC. On the x-axis we have the number of
total game iterations, on the y-axis we have the fraction of entropy values. For VGC |𝑀 | = 10 is considered with 𝑘 = 2. The plots
are smoothed over a window of 25, 100, 50 iterations for RPSFW, WW, and VGC respectively.

layers with sizes 128, 64. Mean Squared Error (MSE) was used as the
loss function. Adam [18] was used as the optimizer. As we observed
high variance when updates were performed on a single sample,
we sampled multiple outcomes of games until the number of states
to be updated exceeded 30 to reduce the variance. PyTorch [24] was
used to implement neural networks. Finally, distinct value functions
were used for each of the players.

4.2.3 Inner level Optimization: The maximum number of iterations
in inner level optimization was decided based on the convergence of
value function, averaging over running multiple runs. In the case of
games where function approximation was used (i.e., VGC), the num-
ber of inner level iterations was decided based on the convergence
of the payoffs obtained by the players against a set of pre defined
agents provided by Reis et al. [25]. We observed convergence to an
expected payoff ∼ 0.4 denoting that the learnt agent significantly
outperformed the baselines. The value function is not reinitialized
after updates to 𝜃 . This was done following our observation that
the policy converged faster than random initialization, especially
in later iterations where 𝜃 starts converging.

4.2.4 ERG Implementation: We are not aware of any generic al-
gorithms to solve game meta balance for our formulation. Thus,
we adapt the previous state-of-the-art ERG [14] as our baseline
by making a few changes required for a fair comparison. First, we
use CMA-ES instead of Bayesian optimization for ERG as well as
BiGMB. This is preferred when |𝜃 | is large, like in VGC. Second,
ERG assumes the target win rates (or payoffs) to be known. To over-
come that, we make a similar choice for the target payoff matrix
for RPSFW as ERG with an addition of two pure strategy profiles
(or items, fire, and water) and the same choice as ERG for WW.
For VGC we use a target payoff matrix with all 0’s. Further, to cal-
culate the current payoff matrix ERG suggests running numerous
simulations for every possible pure strategy profile. This number
was set to 50 for WW as suggested in [14] and lower (10) for VGC
due to computational constraints. All other hyperparameters like
policy used for gameplay (along with hyperparameters of policy),
the initial variance of CMA-ES, and population size, were assigned
the same value as BiGMB for a fair comparison.

4.2.5 Evaluation Methods: We use the fraction of maximum en-
tropy which is given as the ratio of the entropy of the player’s
strategy (over strategy profiles) at MSNE for the 𝜃 (Equation 3)
and entropy of the discrete uniform distribution of size |𝑀 | as the
performance metric. Note, we calculate the ratio with respect to
discrete uniform distribution as it is known that it has maximum
entropy [4]. We use the same metric to evaluate both BiGMB as
well as ERG. The target payoff matrix for all domains is a (specific)
optimal solution to Equation 3, thus ERG targets optimal solution
to Equation 3. For the study of convergence, we compare the num-
ber of times the game outcome was sampled also referred as game
iterations. Our choice is motivated by our observation that the time
required to complete a game iteration (sampling a game outcome)
dominates the time required for an optimization step in Algorithm 1
as well as calculating the L2 loss for the ERG approach. We say that
a method has converged to the best solution if the fraction of max
entropy exceeds 0.999 at any iteration.

4.2.6 Other Details: The strategy at MSNE is the same for all play-
ers in symmetric games, thus we simply use the policy of player 1
for evaluation of outer level objective. We set r as a scalar value 𝑟
times vector of ones [1, ..., 1]𝑇 of the dimension |𝜃 |. Unless stated
otherwise 𝑟 was set to 0.001.

4.3 Comparison on Problems with Low
Dimensional Strategy Spaces

Figure 3 shows the comparison of BiGMB against the baseline ERG
on problems with relatively low dimensional combinatorial strategy
spaces. For RPSFW, it can be seen that both of the approaches have
similar performance. Note that, as RPSFW allows tuning the payoff
matrix directly, ERG does not require any game iterations for esti-
mating the payoff matrix (win rates). Therefore, we consider both
of the methods require a single game iteration per outer level opti-
mization iteration to have a fair comparison. In practical scenarios
this can be easily achieved by replacing Algorithm 1 with a known
solver [1].3 Similar to RPSFW, BiGMB has competitive performance

3Wewere able to converge on the value function in 400 game iterations with a learning
rate of 0.01.
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for the WW domain. For VGC with |𝑀 | = 10 and 𝑘 = 2 we can
see that BiGMB clearly outperforms ERG as BiGMB requires fewer
game iterations to converge to a solution with maximal entropy.
Note that, we observed ERG also converges to a solution with max-
imal entropy, but it required 1.5 × 107 game iterations. Thus, from
these experiments, we can conclude that BiGMB is competitive
to ERG on problems with relatively small combinatorial strategy
spaces. Figure 3 also suggests that with the growing dimensionality
of strategy spaces (from RPSFW or WW to VGC) BiGMB outper-
forms ERG, which is further investigated in the following section.
This answers Question (1) stated at the beginning of Section 4.

4.4 Scalability Study
In this section, we study the scalability trends across increasing 𝑘
and |𝑀 | values in the VGC domain.

4.4.1 Scalability across 𝑘 . Table 1 shows the comparison of BiGMB
against ERG with an increasing number of selections 𝑘 and a con-
stant |𝑀 | = 10. We see that BiGMB requires fewer game iterations
with increasing selection size 𝑘 . ERG, on the other hand, requires
an exponentially growing number of game iterations for a single
evaluation of outer level optimization objective. This is evident
as they require a total of 0.5 ×

( |𝑀 |
𝑘

)
×

( |𝑀 |−1
𝑘

)
number of game

iterations for evaluation of their objective. For 𝑘 = 4 we can see
that BiGMB requires fewer game iterations for convergence than
required for a single evaluation of the ERG objective. Thus, the
quicker convergence, especially with the growing number of selec-
tions 𝑘 highlights the advantages of BiGMB as compared to ERG.
Figure 4 shows the fraction of maximum entropy achieved by

Table 1: Comparison against ERG with increasing 𝑘 and con-
stant |𝑀 | = 10 for VGC domain. The number of simulations
for ERG was set to 50 following [14] for calculations.

k Game Iterations Until Game Iterations for single
Convergence (BiGMB) evaluation of objective (ERG)

1 ≤ 3.0 × 106 ∼ 2.25 × 103
2 ≤ 1.5 × 106 ∼ 4.95 × 104
3 ≤ 5.0 × 105 ∼ 3.60 × 105
4 ≤ 5.0 × 105 ∼ 1.10 × 106

BiGMB against number of game iterations for different values of 𝑘
for VGC domain. We can infer that the optimization problem gets
easier with increasing values of 𝑘 . We suspect this occurs specif-
ically for VGC domain because of ‘type advantages’ in the game,
where certain types of Pokemons are inherently weak to other types
of Pokemons. For instance, a Pokemon with type water is powerful
in game against a Pokemonwith fire type. Thus, with smaller values
of 𝑘 it is difficult to find 𝜃 such that the game meta is balanced as
that might lead the player’s strategy at MSNE to exploit a single
type. On the contrary, with larger values of 𝑘 , diverse selections
across types are possible which can help to mitigate this problem
and make the objective easier to optimize.

4.4.2 Scalability across |𝑀 |. Table 2 shows a comparison of BiGMB
against ERG with increasing size of |𝑀 | while keeping the number

Figure 4: A study of scalability of BiGMB with increasing
value of 𝑘 on VGC domain and constant |𝑀 | = 10.

Table 2: Comparison against ERG with increasing |𝑀 | and
constant 𝑘 = 2 for VGC domain. Number of simulations for
ERG was set to 50 following [14] for calculations.

|𝑀 | Game Iterations Until Game Iterations for single
Convergence (BiGMB) evaluation of objective (ERG)

5 ≤ 2 × 105 ∼ 2.25 × 103
10 ≤ 3 × 105 ∼ 4.95 × 104
20 ≤ 3 × 105 ∼ 8.97 × 105
30 ≤ 5 × 105 ∼ 4.72 × 106
50 ≤ 5 × 105 ∼ 3.75 × 107

Figure 5: A study of scalability of BiGMB with increasing
value of |𝑀 | on VGC domain and constant 𝑘 = 2.

of selections as 𝑘 = 2. We observe that the number of game itera-
tions required for BiGMB does not grow exponentially as compared
to that required by ERG for a single evaluation with growing values
of |𝑀 |. Similar to the previous case, we see that with |𝑀 | ≥ 30
BiGMB requires fewer game iterations as compared to game iter-
ations required for a single evaluation for ERG. Further, Figure 5
shows the performance of BiGMB against number of game itera-
tions for increasing |𝑀 |. Table 2 and Figure 5 also show that with
increasing |𝑀 | BiGMB is (1) relatively slower to converge. (2) en-
tropy values decrease on average. We suspect this is because of the
growing complexity of the problem specifically for VGC domain. As
discussed in Section 4.1.3, the size of |𝜃 | is constant irrespective of
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changes in |𝑀 | and 𝑘 and consists of parameters of the moves which
are shared amongst Pokemons. Thus, with the growing number of
|𝑀 | the problem becomes more difficult as a change in parameters
of a move affects a greater number of Pokemons.

From these two studies we can conclude that unlike ERG, BiGMB
scales significantly better with increasing values of |𝑀 | and 𝑘 in
combinatorial action spaces. The experiments also suggest that
convergence of BiGMB (quality and time) is dependent on the
inherent ‘complexity’ of the game resulting from the choice of 𝜃
and not specifically on the dimensionality of combinatorial strategy
spaces. This answers Question (2a) and (2b) stated at the beginning
of Section 4.

4.5 Impact of Regularization
Figure 6 shows a plot of maximum entropy of the solution obtained
by optimizing Equation 7 with increasing value of 𝑟 on the VGC
domain. From the plot we can see that with 𝑟 ≤ 1 the entropy
value is fairly constant. We suspect the slight variations are due to
stochasticity of evaluations. Further, with 𝑟 > 1 we see a sharp de-
cline in the entropy of the solution. This suggests that there might
be multiple global optimal solutions to maximal entropy, and con-
vergence to them can be controlled with value of 𝑟 . However, after
a certain value of 𝑟 , the regularization term dominates the objective
and CMA-ES returns the initial solution as the optimal solution.
This answers Question (3) stated at the beginning of Section 4.

Figure 6: Impact of increasing value of regularization param-
eter r on the solution quality. The experiments are carried
out on VGC domain with |𝑀 | = 10 and 𝑘 = 2 with a maximum
of 106 game iterations.

4.6 Performance of 𝑃 (𝑌 )
Figure 7 shows the performance when entropy over 𝑃 (𝑌 ) is max-
imized while evaluating based on the original objective (entropy
over 𝑃 (𝑌 )) as discussed in Section 3.2. From the figure, we can see
that the orange and green line have similar shapes, with the green
light being slightly below orange line. That is, while optimizing
over entropy of 𝑃 (𝑌 ), values of entropy of 𝑃 (𝑌 ) and 𝑃 (𝑌 ) are simi-
lar at every single iteration. Further, both, optimizing over entropy
of 𝑃 (𝑌 ) and 𝑃 (𝑌 ) converge in a similar number of game iterations.
We see a dip when optimizing over entropy of 𝑃 (𝑌 ) around 6 × 105
iterations, which we suspect might be due to exploration. This
experiment suggests that the approximation of 𝑃 (𝑌 ) := 𝑃 (𝑌 ) can

Figure 7: Evaluation of entropy of 𝑃 (𝑌 ) as objective with
respect to the original objective on the VGC domain with |𝑀 |
= 10 and 𝑘 = 3. The blue line represents entropy values of
𝑃 (𝑌 ) when optimized on entropy over 𝑃 (𝑌 ). The orange and
green line represent entropy of 𝑃 (𝑌 ) and 𝑃 (𝑌 ) respectively
when optimized on 𝑃 (𝑌 ).

be viable, especially in domains with relatively larger values of
𝑘 where computational complexity can be dominated by the cal-
culation of 𝑃 (𝑌 ). This answers Question (4) of our experimental
section.

5 SUMMARY
In this paper, we formulate the game meta balance problem as
bi-level mechanism design problem where the objective of the
game designer is to maximize the entropy of the player’s mixed
strategy over strategy space at Nash equilibrium. We propose to use
a bi-level optimization method where we (1) use Nash Monte-Carlo
learning to approximate themixed strategy Nash equilibrium (2) use
Covariance Matrix Adaptation Evolutionary Strategy to maximize
the entropy of the player’s mixed strategy at Nash equilibrium that
is scalable by design as opposed to previous state-of-the-art. The
experimental results show that the performance of our approach
(BiGMB) is competitive with ERG, the state-of-the-art, on problems
with low dimensional strategy spaces. The results further show
that BiGMB scales to large combinatorial strategy spaces where
ERG fails to complete a single evaluation of their objective.

6 LIMITATIONS & FUTUREWORK
Sample Complexity: BiGMB solves the inner level optimization
until convergence for every evaluation of the outer level objec-
tive, which results in relatively poor sample complexity. Recent
approaches [3, 17] have tackled bi-level optimization in the context
of gradient based optimization, by obtaining unbiased estimates for
inner level solution by sampling, resulting in significantly better
sample complexity. In the future, we intend to explore such sto-
chastic methods for game meta balance problem.
Empirical evaluation on N-player games: The choice of do-
mains was limited by the availability of benchmark games that
allow a change in the game meta 𝜃 . We intend to develop bench-
mark domains with extensions to N-player non-symmetric games
and benchmark game meta balance algorithms.
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