
Cost Sharing under Private Valuation and Connection Control
Tianyi Zhang

∗

ShanghaiTech University, Shanghai, China

Shanghai Institute of Microsystem and Information

Technology, Chinese Academy of Sciences, China

University of Chinese Academy of Sciences, Beijing, China

zhangty@shanghaitech.edu.cn

Junyu Zhang
∗

ShanghaiTech University, Shanghai, China

zhangjy22022@shanghaitech.edu.cn

Sizhe Gu

ShanghaiTech University, Shanghai, China

guszh@shanghaitech.edu.cn

Dengji Zhao

ShanghaiTech University, Shanghai, China

zhaodj@shanghaitech.edu.cn

ABSTRACT
We consider a cost sharing problem on a weighted undirected graph,

where all the nodes want to connect to a special node called source,

and they need to share the total cost (weights) of the used edges.

Each node except for the source has a private valuation of the

connection, and it may block others’ connections by strategically

cutting its adjacent edges to reduce its cost share, which may in-

crease the total cost. We aim to design mechanisms to prevent the

nodes from misreporting their valuations and cutting their adjacent

edges. We first show that it is impossible for such a mechanism to

further satisfy budget balance (cover the total cost) and efficiency

(maximize social welfare). Then, we design two feasible cost shar-

ing mechanisms that incentivize each node to offer all its adjacent

edges and truthfully report its valuation, and also satisfy either

budget balance or efficiency.
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1 INTRODUCTION
In the classic cost sharing problem, there are a group of agents at

different locations and a source. All the agents want to connect

to the source via the connections (edges) between the locations,

but each connection has a cost [10, 14, 18]. The goal is to allocate

the total connection cost among the agents. This problem exists

in many real-world applications such as cable TV, electricity, and

water supply networks [1, 12, 28]. It has beenwell-studied andmany

solutions have been proposed to achieve different properties [6, 17,

27] (we survey them in Section 2).

However, these solutions do not consider two natural strategic

behaviors of the agents. First, to connect to the source, an agent
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may need to go through some intermediate agents. These agents

may block the connection by strategically cutting their adjacent

edges if their cost share is reduced by doing so [30] (see an example

in Section 2), which will potentially increase the total cost of con-

necting the agents. Second, each agent has a private valuation for

connecting to the source (i.e., the maximum cost that it is willing

to share). To maximize social welfare (i.e., the difference between

the agents’ valuations and the total connection cost), the agents

need to report their valuations, but they may misreport for their

own interest.

To minimize the total connection cost and maximize social wel-

fare, we design cost sharing mechanisms on general networks that

can prevent the two strategic behaviors. One difficulty lies in the

conflict that the mechanism designer wants to use all the edges

to minimize the total connection cost, but agents have the moti-

vation to cut their adjacent edges to reduce their cost share. This

essentially reflects the conflict between the system’s optimality

and the agents’ self-interests. Another difficulty lies in the conflict

that the mechanism designer wants to use truthful valuations to

select agents with maximum social welfare, while agents have the

motivation to misreport their valuations to reduce their cost share.

To combat the challenges, we first show that if we further require

efficiency (the set of selected agents has the maximal social welfare)

and budget balance (the sum of all agents’ cost share equals the

total cost), then it is impossible to prevent the above manipula-

tions. However, we could achieve efficiency and budget balance

separately.

Therefore, we propose two mechanisms to prevent new manip-

ulations and to achieve either efficiency or budget balance. The

first mechanism selects the agents based on their social welfare

inspired by the Vickrey-Clarke-Groves (VCG) mechanism [9, 15, 29]

and each agent pays the minimum reported valuation that en-

ables it to be selected. The second selects the agents iteratively

and the total connection cost in each iteration is shared equally

among the agents selected in this iteration. We also show that

these mechanisms satisfy other desirable properties studied in the

literature [4, 8, 13, 20, 26].

2 RELATEDWORK
There is rich literature on the classic cost sharing problem, which

did not consider private valuation and connection control. Some

studies treated the problem from the perspective of a non-cooperative
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game. Bergantiños and Lorenzo [2] studied the Nash equilibrium of

the problem and further they [3] studied the Nash equilibrium with

budget restriction. Tijs and Driessen [25] proposed the cost gap

allocation (CGA) method, but it only applies to complete graphs.

Bird [7], Dutta and Kar [11], Norde et al. [21], Tijs et al. [24] and
Hougaard et al. [16] provided cost sharing mechanisms based on

the minimum spanning tree of a graph.

However, they do not satisfy truthfulness since the agents can

change the minimum spanning tree by cutting their adjacent edges

to reduce their cost share. We take the Bird rule [7] for an example

to show the problem. Under the Bird rule, the cost share of an agent

is the cost of the edge that connects it to the (growing) spanning

tree by Prim’s algorithm [22] starting from the source. Consider

Figure 1, when the agent 𝑏 does not cut the edge (𝑎, 𝑏), its cost
share is 3. When it cuts the edge, its cost share is 2 < 3.

Figure 1: The 𝑠 represents the source, 𝑎, 𝑏, 𝑐 represent the
agents, and the numbers on the edges represent the cost for
the connectivity.

Other solutions treated the problem from the cooperative game

perspective. They are all based on the Shapley value [23] and differ

in the definition of the value of each coalition. We briefly describe

them in the following.

Kar [17] proposed the Kar solution and defined the value of a

coalition 𝑆 as the minimal cost of connecting all agents of 𝑆 to the

source without going through the agents outside of 𝑆 . However,

the Kar solution does not satisfy core selection.

To satisfy core selection, Bergantiños and Vidal-Puga [5] pro-

posed the folk solution. They first compute the irreducible cost

matrix, and then define the value of a coalition 𝑆 in the same way

as the Kar solution. However, the folk solution throws away most

information of the original graph.

To obtain a core allocation without throwing away as much

information as the folk solution, Trudeau [27] proposed the cycle-

complete solution. They made a less extreme transformation of the

cost matrix.

Bergantiños and Vidal-Puga [6] proposed the optimistic game-

based solution, where the value of a coalition 𝑆 is defined as the

minimal cost of connecting all agents of 𝑆 to the source given that

agents outside of 𝑆 are already connected to the source and the

agents in 𝑆 can connect to the source through them.

In summary, the existing solutions for the classic cost sharing

problem on complete graphs do not consider the situation where

agents need to report their valuations and adjacent edges, as is

shown before, they do not guarantee to satisfy feasibility and truth-

fulness.

3 THE MODEL
We consider a cost sharing problem to connect the nodes in a

weighted undirected graph 𝐺 = ⟨𝑉 ∪ {𝑠}, 𝐸⟩. The weight of the

edge (𝑖, 𝑗) ∈ 𝐸 denoted by 𝑐 (𝑖, 𝑗 ) ≥ 0 represents the cost to use the

edge to connect 𝑖 and 𝑗 . All the nodes in set 𝑉 want to connect

to the source node 𝑠 . The total cost of the connectivity has to be

shared among all connected nodes except for 𝑠 . Each node 𝑖 ∈ 𝑉

has a private valuation 𝑣𝑖 ≥ 0, which is the maximum cost that it is

willing to share.

Given the graph, the minimum cost of connecting the nodes is

the weight of the minimum Steiner tree [19] (we assume that the

graph is connected). The minimum Steiner tree of a set of nodes

is a tree with the minimum weight that contains these nodes (it

may include the nodes outside the set). The question here is how

the nodes share this cost. We also consider two natural strategic

behaviors of each node except for the source, i.e., cutting its adja-

cent edges and misreporting its valuation. An edge (𝑖, 𝑗) cannot
be used for connectivity if 𝑖 or 𝑗 cuts it. Our goal is to design cost

sharing mechanisms to incentivize nodes to report their valuations

truthfully and also offer all their adjacent edges so that we can use

all the edges to minimize the total cost of the connectivity.

Formally, let 𝑒𝑖 (𝑖 ∈ 𝑉 ∪ {𝑠}) be the set of 𝑖’s adjacent edges and
𝜃𝑖 = (𝑒𝑖 , 𝑣𝑖 ) be the type of 𝑖 . Let 𝜃 = (𝜃1, · · · , 𝜃 |𝑉 |+1) be the type pro-
file of all nodes including the source 𝑠 (the valuation of 𝑠 is 𝑛𝑢𝑙𝑙 ). We

alsowrite𝜃 = (𝜃𝑖 , 𝜃−𝑖 ), where𝜃−𝑖 = (𝜃1, · · · , 𝜃𝑖−1, 𝜃𝑖+1, · · · , 𝜃 |𝑉 |+1)
is the type profile of all nodes except for 𝑖 . Let Θ𝑖 be the type space

of 𝑖 and Θ be the type profile space of all nodes (which generates

all possible graphs containing 𝑉 ∪ {𝑠}).
We design a cost sharing mechanism that asks each node to

report its valuation and the set of its adjacent edges that can be

used for the connectivity. Let 𝜃 ′
𝑖
= (𝑒′

𝑖
, 𝑣 ′
𝑖
) be the report of 𝑖 where

𝑒′
𝑖
⊆ 𝑒𝑖 and 𝑣

′
𝑖
≥ 0, and 𝜃 ′ = (𝜃 ′

1
, · · · , 𝜃 ′|𝑉 |+1) be the report profile

of all nodes. Given a report profile 𝜃 ′ ∈ Θ, the graph induced by

𝜃 ′ is denoted by 𝐺 (𝜃 ′) = ⟨𝑉 ∪ {𝑠}, 𝐸 (𝜃 ′)⟩ ⊆ ⟨𝑉 ∪ {𝑠}, 𝐸⟩, where
𝐸 (𝜃 ′) = {(𝑖, 𝑗) | (𝑖, 𝑗) ∈ (𝜃 ′

𝑖
∩ 𝜃 ′

𝑗
)}. Finally, let 𝑟𝑖 (𝜃 ′) ⊆ 𝑉 be the set

of 𝑖’s neighbour nodes.

Definition 3.1. A cost sharing mechanism consists of a node

selection policy 𝑔 : Θ → 2
𝑉
, an edge selection policy 𝑓 : Θ → 2

𝐸
,

and a cost sharing policy 𝑥 : Θ → R |𝑉 |
. Given a report profile

𝜃 ′ ∈ Θ, 𝑔(𝜃 ′) ⊆ 𝑉 selects the nodes to be connected, 𝑓 (𝜃 ′) ⊆ 𝐸 (𝜃 ′)
selects the edges to connect the selected nodes 𝑔(𝜃 ′), and 𝑥 (𝜃 ′) =
(𝑥𝑖 (𝜃 ′))𝑖∈𝑉 , where 𝑥𝑖 (𝜃 ′) is the cost share of 𝑖 , which is zero if

𝑖 ∉ 𝑔(𝜃 ′).

For simplicity, we use (𝑔, 𝑓 , 𝑥) to denote a cost sharing mech-

anism. Given a report profile 𝜃 ′ ∈ Θ, the utility of a node 𝑖 ∈ 𝑉

under (𝑔, 𝑓 , 𝑥) is defined as

𝑢𝑖 (𝜃 ′) =
{
𝑣𝑖 − 𝑥𝑖 (𝜃 ′) if 𝑖 ∈ 𝑔(𝜃 ′),
0 otherwise.

In the following, we introduce the desirable properties of a cost

sharing mechanism.

Feasibility requires that the cost share of each node is not over

its reported valuation.

Definition 3.2. A cost sharing mechanism (𝑔, 𝑓 , 𝑥) satisfies fea-
sibility if 𝑥𝑖 (𝜃 ′) ≤ 𝑣 ′

𝑖
for all 𝑖 ∈ 𝑉 , for all 𝜃 ′ ∈ Θ.

Truthfulness states that each node cannot increase its utility by

cutting its adjacent edges and misreporting its valuation. Note that

the source does not behave strategically in this setting.
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Definition 3.3. A cost sharing mechanism (𝑔, 𝑓 , 𝑥) satisfies truth-
fulness if 𝑢𝑖 ((𝜃𝑖 , 𝜃 ′−𝑖 )) ≥ 𝑢𝑖 ((𝜃 ′𝑖 , 𝜃

′
−𝑖 )), for all 𝑖 ∈ 𝑉 , for all 𝜃𝑖 , 𝜃

′
𝑖
∈

Θ𝑖 , and for all 𝜃 ′−𝑖 ∈ Θ−𝑖 = Θ \ Θ𝑖 .

Individual rationality requires that each node’s utility is non-

negative when it reports its type truthfully no matter what the

others do.

Definition 3.4. A cost sharing mechanism (𝑔, 𝑓 , 𝑥) satisfies in-
dividual rationality (IR) if 𝑢𝑖 (𝜃𝑖 , 𝜃 ′−𝑖 ) ≥ 0 for all 𝑖 ∈ 𝑉 , for all

𝜃𝑖 ∈ Θ𝑖 , and for all 𝜃 ′−𝑖 ∈ Θ−𝑖 = Θ \ Θ𝑖 .

Utility monotonicity states that for each selected node, its utility

will weakly decrease if the cost of one of its adjacent edges increases

under the same report profile.

Definition 3.5. A cost sharing mechanism (𝑔, 𝑓 , 𝑥) satisfies util-
ity monotonicity (UM) if 𝑢𝑖 (𝜃 ′) ≥ 𝑢+

𝑖
(𝜃 ′) for all 𝜃 ′ ∈ Θ and

for all 𝑖 ∈ 𝑉 , where 𝑢+
𝑖
(𝜃 ′) is 𝑖’s utility when the cost of the edge

(𝑖, 𝑗) ∈ 𝜃 ′
𝑖
increases.

We also require that the sum of all nodes’ cost share equals the

total cost of the selected edges for any report profile. That is, the

mechanism has no profit or loss.

Definition 3.6. A cost sharing mechanism (𝑔, 𝑓 , 𝑥) satisfies bud-
get balance (BB) if

∑
𝑖∈𝑉 𝑥𝑖 (𝜃 ′) =

∑
(𝑖, 𝑗 ) ∈ 𝑓 (𝜃 ′ ) 𝑐 (𝑖, 𝑗 ) for all 𝜃

′ ∈ Θ.

The ranking property requires that for any nodes 𝑖 and 𝑗 that

have the same reported valuations and the same neighbour nodes

except for 𝑖 and 𝑗 , if the cost of the edge (𝑖, 𝑘) is less expensive than
the edge ( 𝑗, 𝑘) for any neighbour node 𝑘 , then the utility of 𝑖 should

be larger than 𝑗 .

Definition 3.7. A cost sharing mechanism (𝑔, 𝑓 , 𝑥) satisfies rank-
ing if for all 𝜃 ′ ∈ Θ, for all 𝑖, 𝑗 ∈ 𝑉 with 𝑟𝑖 (𝜃 ′) \ { 𝑗} = 𝑟 𝑗 (𝜃 ′) \ {𝑖}
and 𝑣 ′

𝑖
= 𝑣 ′

𝑗
(assume 𝑣 ′

𝑖
= 𝑣𝑖 and 𝑣 ′

𝑗
= 𝑣 𝑗 ), we have 𝑐 (𝑖,𝑘 ) ≤ 𝑐 ( 𝑗,𝑘 )

for all 𝑘 ∈ 𝑟𝑖 (𝜃 ′) \ { 𝑗} implies 𝑢𝑖 (𝜃 ′) ≥ 𝑢 𝑗 (𝜃 ′).

Symmetry says nodes that play the same role obtain the same

utility.

Definition 3.8. A cost sharing mechanism (𝑔, 𝑓 , 𝑥) satisfies sym-
metry if for all 𝜃 ′ ∈ Θ, for all 𝑖, 𝑗 ∈ 𝑉 with 𝑟𝑖 (𝜃 ′) \{ 𝑗} = 𝑟 𝑗 (𝜃 ′) \{𝑖}
and 𝑣 ′

𝑖
= 𝑣 ′

𝑗
(assume 𝑣 ′

𝑖
= 𝑣𝑖 and 𝑣

′
𝑗
= 𝑣 𝑗 ), we have 𝑐 (𝑖,𝑘 ) = 𝑐 ( 𝑗,𝑘 ) for

all 𝑘 ∈ 𝑟𝑖 (𝜃 ′) \ { 𝑗} implies 𝑢𝑖 (𝜃 ′) = 𝑢 𝑗 (𝜃 ′).

Finally, each node’s cost share should be non-negative.

Definition 3.9. A cost sharing mechanism (𝑔, 𝑓 , 𝑥) satisfies posi-
tiveness if 𝑥𝑖 (𝜃 ′) ≥ 0 for all 𝑖 ∈ 𝑉 and for all 𝜃 ′ ∈ Θ.

In the rest of the paper, we design cost sharing mechanisms to

satisfy the above properties.

4 IMPOSSIBILITY RESULTS
In this section, we establish some impossibility results. We first

introduce some extra notions.

Definition 4.1. For a given subset 𝑆 ⊆ 𝑉 , the social welfare (SW)

of 𝑆 is

𝑆𝑊 (𝑆) =
∑︁
𝑖∈𝑆

𝑣 ′𝑖 −𝐶 (𝑆),

where 𝑣 ′
𝑖
is the reported valuation of node 𝑖 and 𝐶 (𝑆) is the mini-

mum cost of connecting all the nodes in 𝑆 (i.e., the weight of the

minimum Steiner tree of 𝑆 ∪ {𝑠}).

Intuitively, social welfare represents the profit of the selected

nodes.

Definition 4.2. Given 𝜃 ′ ∈ Θ, a mechanism (𝑔, 𝑓 , 𝑥) satisfies
efficiency if it selects 𝑔(𝜃 ′) ⊆ 𝑉 such that its social welfare is

maximized, i.e.,

𝑆𝑊 (𝑔(𝜃 ′)) = max 𝑆𝑊 (𝑆)
∀𝑆⊆𝑉

.

For simplicity, we use 𝛿 (𝑉 ) to denote a subset of 𝑉 that has the

maximal social welfare, i.e.,

𝛿 (𝑉 ) = argmax 𝑆𝑊 (𝑆)
∀𝑆⊆𝑉

.

The computation of 𝛿 (𝑉 ) is described as follows.

Algorithm 1: Compute 𝛿 (𝑉 )

Input: A report profile 𝜃 ′ and a set of nodes V

(1) Set: 𝛿 (∅) = ∅, 𝑆𝑊 (∅) = 0, and

Set: 𝑃 (𝑉 ) to be the power set of 𝑉 .

(2) Sort all the elements of 𝑃 (𝑉 ) in an ascending order by

their cardinalities.

(3) For 𝑆 ∈ 𝑃 (𝑉 ) \ {∅}:
• Get 𝑄 (𝑆) = {𝑆 ′ |𝑆 ′ ⊂ 𝑆, |𝑆 ′ | = |𝑆 | − 1}.
• Let 𝛿 (𝑆) = argmax

𝑆 ′∈𝑄 (𝑆 )
𝑆𝑊 (𝛿 (𝑆 ′)).

• If
∑
𝑖∈𝑆 𝑣

′
𝑖
−𝐶 (𝑆) ≥ 𝑆𝑊 (𝛿 (𝑆)), set 𝛿 (𝑆) = 𝑆 .

• Get 𝑆𝑊 (𝛿 (𝑆)) = ∑
𝑖∈𝛿 (𝑆 ) 𝑣

′
𝑖
−𝐶 (𝛿 (𝑆)).

Output: The subset 𝛿 (𝑉 ),
Output:: the maximum social welfare 𝑆𝑊 (𝛿 (𝑉 ))

Figure 2: The 𝑠 represents the source, 𝑎 and 𝑏 represent the
nodes, the numbers in the circles represent the reported val-
uations of nodes, and the numbers on the edges represent
the cost for the connectivity.

A running example of Algorithm 1 is given in Figure 2. Assume

𝑐 (𝑠,𝑎) = 2, 𝑐 (𝑠,𝑏 ) = 4, 𝑐 (𝑎,𝑏 ) = 3, 𝑣 ′𝑎 = 3, 𝑣 ′
𝑏
= 3. By Algorithm 1, we

have 𝛿 ({𝑎}) = {𝑎}, 𝛿 ({𝑏}) = ∅ and 𝛿 ({𝑎, 𝑏}) = {𝑎, 𝑏}.

Proposition 4.3. There exists no cost sharing mechanism which
satisfies truthfulness, feasibility, efficiency, and budget balance simul-
taneously.

Proof. We only need to consider a simple line graph in Figure 3.

We show that when feasibility, efficiency, and budget balance are

satisfied, truthfulness will be violated. Assume that 𝑣𝑎 > 𝑚 and
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Figure 3: The 𝑠 represents the source and 𝑎, 𝑏 are the nodes
with the valuations 𝑣𝑎, 𝑣𝑏 respectively. The cost of the edges
(𝑠, 𝑎) and (𝑎, 𝑏) are𝑚 and 𝑛 respectively.

𝑣𝑏 > 𝑚 + 𝑛. By efficiency, when 𝑎 and 𝑏 truthfully report 𝑣 ′𝑎 =

𝑣𝑎, 𝑣
′
𝑏

= 𝑣𝑏 , 𝑎 and 𝑏 are both selected by the mechanism since

(𝑣𝑎 + 𝑣𝑏 ) − (𝑚 + 𝑛) > 𝑣𝑎 −𝑚.

• When 𝑥𝑎 (𝜃 ′) > 0, if node 𝑎 reports 𝑣 ′′𝑎 = 0, by feasibility, we

have 𝑥𝑎 (𝜃 ′′) = 0 and the utility of 𝑎 increases. Hence, node

𝑎 has the motivation to misreport.

• When 𝑥𝑎 (𝜃 ′) = 0, by budget balance, we have 𝑥𝑏 (𝜃 ′) =𝑚+𝑛.
If node 𝑏 reports 𝑣 ′′

𝑏
= 𝑛, by feasibility and budget balance,

we have 𝑥𝑏 (𝜃 ′′) = 𝑛, and the utility of 𝑏 increases. Hence,

node 𝑏 has the motivation to misreport.

Therefore, node 𝑎 or node 𝑏 has the motivation to misreport its

valuation, i.e., truthfulness is violated. □

We further show that when truthfulness, feasibility, and budget

balance are satisfied, the maximal social welfare cannot be approxi-

mated.

Definition 4.4. A mechanism is 𝛼𝑙𝑏 -approximate (𝛼𝑙𝑏 ∈ (0, 1)) to
the social welfare if 𝑆𝑊 (𝑔(𝜃 ′)) ≥ 𝛼𝑙𝑏 · 𝑆𝑊 ∗ (𝑆), where 𝑆𝑊 ∗ (𝑆) is
the maximal social welfare given ∀𝜃 ′ ∈ Θ and 𝑙𝑏 represents that

𝛼𝑙𝑏 is a lower bound of the ratio
𝑆𝑊 (𝑔 (𝜃 ′ ) )
𝑆𝑊 ∗ (𝑆 ) .

Definition 4.5. A mechanism is 𝛽𝑢𝑏 -approximate (𝛽𝑢𝑏 ∈ (0, 1))
to the social welfare if 𝑆𝑊 (𝑔(𝜃 ′)) ≤ 𝛽𝑢𝑏 · 𝑆𝑊 ∗ (𝑆), where 𝑆𝑊 ∗ (𝑆)
is the maximal social welfare given ∀𝜃 ′ ∈ Θ and 𝑢𝑏 represents that

𝛽𝑢𝑏 is an upper bound of the ratio
𝑆𝑊 (𝑔 (𝜃 ′ ) )
𝑆𝑊 ∗ (𝑆 ) .

Proposition 4.6. There exists no cost sharing mechanism that sat-
isfies truthfulness, budget balance, feasibility, and 𝛼𝑙𝑏 -approximation
(𝛽𝑢𝑏 -approximation) simultaneously.

Proof. It suffices to consider a simple line graph in Figure 3.

Without loss of generality, assume that 𝑣𝑎 > 𝑚, 𝑣𝑏 = 𝑛 + 𝑝 (𝑝 >

0), 𝑐 (𝑠,𝑎) =𝑚 and 𝑐 (𝑎,𝑏 ) = 𝑛. When 𝑎 and 𝑏 are both selected by the

mechanism, the maximum social welfare is (𝑣𝑎 −𝑚 + 𝑝).

Next, we show when truthfulness, feasibility, and budget balance

are satisfied, 𝛼𝑙𝑏 -approximation and 𝛽𝑢𝑏 -approximation will be

violated. By Proposition 4.3, any mechanism cannot select both 𝑎

and 𝑏 and it can only select 𝑎. Then the social welfare is (𝑣𝑎 −𝑚).
Hence, the ratio equals

𝑣𝑎−𝑚
𝑣𝑎−𝑚+𝑝 . Letting 𝑝 → ∞, then the ratio

approaches 0. Therefore, the required 𝛼𝑙𝑏 does not exist. Again

letting 𝑝 → 0, then the ratio approaches 1, which means that the

required 𝛽𝑢𝑏 does not exist.

Therefore, any cost sharing mechanism cannot satisfy truth-

fulness, budget balance, feasibility, and 𝛼𝑙𝑏 -approximation (𝛽𝑢𝑏 -

approximation) simultaneously. □

We further consider the deficit of any mechanism that satisfies

truthfulness, feasibility, and efficiency. We introduce a concept

called budget balance ratio to evaluate it.

Definition 4.7. A mechanism has a budget balance ratio (BBR)

called 𝛾 ∈ (0, 1] if ∑𝑖∈𝑔 (𝜃 ′ ) 𝑥𝑖 (𝜃 ′) ≥ 𝛾 ·𝐶 (𝑔(𝜃 ′)), ∀𝜃 ′ ∈ Θ.

Proposition 4.8. A cost sharing mechanism that satisfies truth-
fulness, feasibility and efficiency does not have a BBR.

Figure 4: The 𝑠 represents the source and 𝑎, 𝑏 are the nodes
with the valuation𝑚. The cost of the edges (𝑠, 𝑎), (𝑎, 𝑏) and
(𝑠, 𝑏) are𝑚, 0,𝑚 respectively.

Proof. According to Definition 4.7, a cost sharing mechanism

having a BBR 𝛾 ∈ (0, 1] needs to satisfy the following: ∀𝜃 ′ ∈ Θ,∑
𝑖∈𝑔 (𝜃 ′ ) 𝑥𝑖 (𝜃 ′ )
𝐶 (𝑔 (𝜃 ′ ) ) ≥ 𝛾 > 0. So, to prove the proposition, it suffices to

find a 𝜃 ′ such that

∑
𝑖∈𝑔 (𝜃 ′ ) 𝑥𝑖 (𝜃 ′ )
𝐶 (𝑔 (𝜃 ′ ) ) = 0.

Without loss of generality, as shown in Figure 4, we assume 𝑉 =

{𝑎, 𝑏}, 𝑣𝑎 = 𝑣𝑏 = 𝑚, 𝑐 (𝑠,𝑎) = 𝑐 (𝑠,𝑏 ) = 𝑚, 𝑐 (𝑎,𝑏 ) = 0. By efficiency,

the mechanism should select both 𝑎 and 𝑏. By truthfulness, each

node offers all its adjacent edges and reports its valuation truthfully.

By feasibility and truthfulness, we have 𝑥𝑎 (𝜃 ′) = 𝑥𝑏 (𝜃 ′) = 0. Thus,

we have

∑
𝑖∈𝑔 (𝜃 ′ ) 𝑥𝑖 (𝜃 ′ )
𝐶 (𝑔 (𝜃 ′ ) ) = 0

𝑚 = 0. □

Note that there exists a trivial cost sharing mechanism where

each node pays 0 and all the nodes in 𝑉 are selected by the mecha-

nism. This mechanism satisfies truthfulness and feasibility but does

not satisfy efficiency and budget balance.

By Proposition 4.3, a cost sharing mechanism cannot simultane-

ously satisfy truthfulness, feasibility, efficiency, and budget balance.

Therefore, we propose two feasible mechanisms satisfying truthful-

ness, respectively together with efficiency and budget balance in

the following sections.

We summarize the impossibility results and our mechanisms in

Table 1.

Table 1: "Null" means that there exists no mechanism satisfy-
ing all themarked properties in the column.Ourmechanisms
RSM and CVM satisfy the marked properties in the column.

Truthfulness Feasibility Budget Balance Efficiency Mechanism

✓ ✓ ✓ ✓ NULL

✓ ✓ ✓ 𝛼𝑙𝑏 (𝛽𝑢𝑏 ) NULL

✓ ✓ 𝛾 ✓ NULL

✓ ✓ ✓ CVM

✓ ✓ ✓ RSM

5 CRITICAL VALUE BASED MECHANISM
In this section, we propose a cost sharing mechanism that satisfies

truthfulness, feasibility, and efficiency but does not satisfy budget

balance. In addition, we show that it also satisfies other desirable

properties.

Session 6D: Mechanism Design
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2164



The key ideas of the mechanism are as follows. First, find out

the node set which has maximal social welfare. Second, for each

node in the set, compute its critical value (CV), i.e., the minimal

reported valuation that keeps it in the set.

Finally, let the cost share of the node in the set equal its critical

value and the others’ cost share is 0.

The computation of the minimum reported valuation of each

node 𝑖 ∈ 𝑔(𝜃 ′) is as follows. We first compute 𝛿 (𝑔(𝜃 ′) \ {𝑖}), the set
of nodes thatmaximizes the social welfare when node 𝑖 is not consid-

ered. Then we compute the social welfare of𝑔(𝜃 ′) and 𝛿 (𝑔(𝜃 ′)\{𝑖}).
Next, we find out the minimum reported valuation of 𝑖 that keeps

it in 𝑔(𝜃 ′) and guarantees 𝑆𝑊 (𝑔(𝜃 ′)) = 𝑆𝑊 (𝛿 (𝑔(𝜃 ′) \ {𝑖})).
The mechanism is formally described as follows. A running

example is given after the algorithm.

Critical Value Based Mechanism (CVM)

Input: A report profile 𝜃 ′ and a graph 𝐺 (𝜃 ′)

(1) Run Algorithm 1 and get 𝑔(𝜃 ′) = 𝛿 (𝑉 ).
(2) Compute the minimum Steiner tree of 𝑔(𝜃 ′) ∪ {𝑠} and

set 𝑓 (𝜃 ′) to be the set of edges in the tree.

(3) For 𝑖 ∈ 𝑔(𝜃 ′):
• Compute node 𝑖’s critical value

𝐶𝑉𝑖 (𝜃 ′) =(
∑︁

𝑗∈𝛿 (𝑔 (𝜃 ′ )\{𝑖 })
𝑣 ′𝑗 −𝐶 (𝛿 (𝑔(𝜃 ′) \ {𝑖})))

− (
∑︁

𝑘∈𝑔 (𝜃 ′ )\{𝑖 }
𝑣 ′
𝑘
−𝐶 (𝑔(𝜃 ′))),

(1)

where 𝛿 (·) is defined in Algorithm 1.

(4) Set 𝑥𝑖 (𝜃 ′) = 𝐶𝑉𝑖 (𝜃 ′).

Output: The selected nodes 𝑔(𝜃 ′), the selected edges 𝑓 (𝜃 ′),
the cost sharing 𝑥 (𝜃 ′)

Figure 5: The left figure is 𝐺 (𝜃 ′) and the right figure is the
minimum Steiner tree of 𝑔(𝜃 ′) ∪ {𝑠}.

Example 5.1. The graph𝐺 (𝜃 ′) generated by a report profile 𝜃 ′ ∈
Θ is shown in Figure 5(1). First, run Algorithm 1 and obtain 𝛿 (𝑆)
for all 𝑆 ⊆ 𝑉 . Especially, we have 𝑔(𝜃 ′) = 𝛿 (𝑉 ) = {𝑎, 𝑏, 𝑐, 𝑑} and
𝑓 (𝜃 ′) = {(𝑠, 𝑏), (𝑎, 𝑏), (𝑎, 𝑐), (𝑎, 𝑑)}. Then we compute each node’s

cost share. Taking the node 𝑎 for an example, we have 𝛿 (𝑔(𝜃 ′) \
{𝑎}) = {𝑏} and by Equation (1), 𝑥𝑎 (𝜃 ′) = 𝑣 ′

𝑏
−𝑐 (𝑠,𝑏 ) − (𝑣 ′

𝑏
+𝑣 ′𝑐 +𝑣 ′𝑑 −

𝑐 (𝑠,𝑏 ) −𝑐 (𝑎,𝑏 ) −𝑐 (𝑎,𝑐 ) −𝑐 (𝑎,𝑑 ) ) = 9−7− (9+6+7−7−8−6−5) = 6.

Similarly, we have 𝑥𝑏 (𝜃 ′) = 5, 𝑥𝑐 (𝜃 ′) = 6 and 𝑥𝑑 (𝜃 ′) = 5. Thus we

have 𝑥 (𝜃 ′) = (6, 5, 6, 5).

5.1 Properties of CVM
Now we show some nice properties of the critical value based

mechanism.

Theorem 5.2. The critical value based mechanism satisfies truth-
fulness.

Proof. First, we prove that each node 𝑖 ∈ 𝑉 will report its

valuation truthfully (i.e., 𝑣 ′
𝑖
= 𝑣𝑖 ). When 𝑖 truthfully reports its

valuation, there are two cases.

• 𝑖 ∉ 𝑔(𝜃 ′). We have 𝑢𝑖 (𝜃 ′) = 0. If node 𝑖 reports 𝑣 ′
𝑖
< 𝑣𝑖 , it is

still not selected and the utility does not change. Otherwise

(𝑣 ′
𝑖
> 𝑣𝑖 ), there are two possibilities.

– It is still not selected and the utility does not change.

– It is selected. By the proposed mechanism, since 𝑖’s critical

value is larger than 𝑣𝑖 , its utility is negative. Thus the

utility decreases.

• 𝑖 ∈ 𝑔(𝜃 ′). We have 𝑢𝑖 (𝜃 ′) ≥ 0. If node 𝑖 reports 𝑣 ′
𝑖
> 𝑣𝑖 , it

is still selected and the utility does not change. Otherwise

(𝑣 ′
𝑖
≤ 𝑣𝑖 ), there are two possibilities.

– It is still selected. The utility does not change.

– It is not selected and its utility is 0. So the utility decreases.

Second, we prove that each node 𝑖 ∈ 𝑉 will report its adjacent

edges truthfully (i.e., 𝑒′
𝑖
= 𝑒𝑖 ). When 𝑖 truthfully reports its adjacent

edges, there are two cases.

• 𝑖 ∉ 𝑔(𝜃 ′). We have 𝑢𝑖 (𝜃 ′) = 0. If node 𝑖 reports 𝑒′
𝑖
≠ 𝑒𝑖 , its

cost share will weakly increase and thus it is still not selected.

Hence, the utility does not change.

• 𝑖 ∈ 𝑔(𝜃 ′). We have 𝑢𝑖 (𝜃 ′) ≥ 0. If node 𝑖 reports 𝑒′
𝑖
≠ 𝑒𝑖 , there

are two possibilities.

– It is not selected. Obviously, its utility decreases.

– It is still selected. For simplicity, let 𝑆1 = 𝑔(𝜃 ′), 𝑆2 =

𝑔(𝜃 ′′), 𝑆3 = 𝑆1 \ 𝛿 (𝑆1 \ {𝑖}), 𝑆4 = 𝑆2 \ 𝛿 (𝑆2 \ {𝑖}) where
𝜃 ′′ = ((𝑒′

𝑖
, 𝑣 ′
𝑖
), 𝜃 ′−𝑖 ) and 𝜃

′ = ((𝑒𝑖 , 𝑣 ′𝑖 ), 𝜃
′
−𝑖 ). Then by Equa-

tion (1) we have

𝐶𝑉𝑖 (𝜃 ′) = 𝐶 (𝑆1) −𝐶 (𝛿 (𝑆1 \ {𝑖})) −
∑︁

𝑗∈𝑆3\{𝑖 }
𝑣 ′𝑗 ,

𝐶𝑉𝑖 (𝜃 ′′) = 𝐶′ (𝑆2) −𝐶′ (𝛿 (𝑆2 \ {𝑖})) −
∑︁

𝑗∈𝑆4\{𝑖 }
𝑣 ′𝑗 ,

where𝐶′ (·) denotes the value function when 𝑖 misreports

𝑒′
𝑖
. Since 𝑆1 maximizes the social welfare under 𝜃 ′, we

have ∑︁
𝑗∈𝑆3

𝑣 ′𝑗 − (𝐶 (𝑆1) −𝐶 (𝛿 (𝑆1 \ {𝑖})))

≥
∑︁
𝑗∈𝑆4

𝑣 ′𝑗 − (𝐶 (𝑆2) −𝐶 (𝛿 (𝑆2 \ {𝑖}))) .

For the set 𝑆4, the increment of SW will decrease since the

set of available edges of 𝑆4 is reduced. Then we have∑︁
𝑗∈𝑆4

𝑣 ′𝑗 − (𝐶 (𝑆2) −𝐶 (𝛿 (𝑆2 \ {𝑖})))

≥
∑︁
𝑗∈𝑆4

𝑣 ′𝑗 − (𝐶′ (𝑆2) −𝐶′ (𝛿 (𝑆2 \ {𝑖}))) .
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Therefore,∑︁
𝑗∈𝑆3

𝑣 ′𝑗 − (𝐶 (𝑆1) −𝐶 (𝛿 (𝑆1 \ {𝑖})))

≥
∑︁
𝑗∈𝑆4

𝑣 ′𝑗 − (𝐶′ (𝑆2) −𝐶′ (𝛿 (𝑆2 \ {𝑖}))) .

Eliminating 𝑣 ′
𝑖
, we have 𝐶𝑉𝑖 (𝜃 ′) ≤ 𝐶𝑉𝑖 (𝜃 ′′).

So the cost share of 𝑖 weakly increases when misreporting its adja-

cent edges. Therefore, 𝑖’s utility weakly decreases when misreport-

ing its adjacent edges. □

Theorem 5.3. The critical value based mechanism satisfies feasi-
bility.

Proof. According to the mechanism and Algorithm 1, the par-

ticipation of each selected node can increase social welfare. Because

the critical value is the minimum reported valuation that keeps

the node being selected, its cost share is less than or equal to its

reported valuation. For the other nodes, their cost share is 0, which

is less than their reported valuation. □

Theorem 5.4. The critical value based mechanism satisfies indi-
vidual rationality.

Proof. Given a report profile 𝜃 ′ ∈ Θ, for each node 𝑖 ∈ 𝑉 \𝑔(𝜃 ′),
we have 𝑢𝑖 (𝜃 ′) = 0. For each node 𝑖 ∈ 𝑔(𝜃 ′), by Theorem 5.3,

we have 𝑥𝑖 (𝜃 ′) ≤ 𝑣 ′
𝑖
. According to Theorem 5.2, 𝑣 ′

𝑖
= 𝑣𝑖 . Hence,

𝑢𝑖 (𝜃 ′) = 𝑣𝑖 − 𝑥𝑖 (𝜃 ′) ≥ 0. □

Theorem 5.5. The critical value based mechanism satisfies effi-
ciency.

Proof. According to the mechanism, it is obvious that the set

of selected nodes can maximize the social welfare. □

Theorem 5.6. The critical value based mechanism satisfies posi-
tiveness.

Proof. We prove the statement by contradiction. According to

the mechanism and Equation (1), we have

𝑥𝑖 (𝜃 ′) = 𝐶𝑉𝑖 (𝜃 ′) = (𝐶 (𝑔(𝜃 ′)) −𝐶 (𝛿 (𝑔(𝜃 ′) \ {𝑖}))) − Δ.

where

Δ =
∑︁

𝑘∈𝑔 (𝜃 ′ )\{𝑖 }
𝑣 ′
𝑘
−

∑︁
𝑗∈𝛿 (𝑔 (𝜃 ′ )\{𝑖 })

𝑣 ′𝑗

If 𝑥𝑖 (𝜃 ′) ≤ 0, then we have

𝐶 (𝑔(𝜃 ′)) −𝐶 (𝛿 (𝑔(𝜃 ′) \ {𝑖})) ≤ Δ

Since

𝐶 (𝑔(𝜃 ′) \ {𝑖}) ≤ 𝐶 (𝑔(𝜃 ′)),
we have

𝐶 (𝑔(𝜃 ′) \ {𝑖}) −𝐶 (𝛿 (𝑔(𝜃 ′) \ {𝑖})) ≤ Δ

Therefore, the nodes in (𝑔(𝜃 ′) \ {𝑖} −𝛿 (𝑔(𝜃 ′) \ {𝑖})) can be selected

by the mechanism. By the definition of 𝛿 (·), they cannot be selected
by the mechanism. This leads to a contradiction. □

Theorem 5.7. The critical value based mechanism satisfies sym-
metry.

Proof. We need to show that, given 𝜃 ′ ∈ Θ and 𝑖, 𝑗 ∈ 𝑉 with

𝑟𝑖 (𝜃 ′) \ { 𝑗} = 𝑟 𝑗 (𝜃 ′) \ {𝑖} and 𝑣𝑖 = 𝑣 𝑗 , 𝑐 (𝑖,𝑘 ) = 𝑐 ( 𝑗,𝑘 ) (∀𝑘 ∈ 𝑟𝑖 (𝜃 ′) \
{ 𝑗}) implies 𝑢𝑖 (𝜃 ′) = 𝑢 𝑗 (𝜃 ′). If 𝑖, 𝑗 ∉ 𝑔(𝜃 ′), we have 𝑢𝑖 (𝜃 ′) =

𝑢 𝑗 (𝜃 ′) = 0. If 𝑖, 𝑗 ∈ 𝑔(𝜃 ′), by the condition of symmetry, we have

𝑥𝑖 (𝜃 ′) = 𝑥 𝑗 (𝜃 ′). Since 𝑣𝑖 = 𝑣 𝑗 , we have 𝑢𝑖 (𝜃 ′) = 𝑢 𝑗 (𝜃 ′). □

Theorem 5.8. The critical value based mechanism satisfies utility
monotonicity.

Proof. For any node 𝑖 ∈ 𝑉 , given 𝜃 ′ ∈ Θ, 𝑗 ∈ 𝑉 such that

(𝑖, 𝑗) ∈ 𝐸, we use 𝑔+ (𝜃 ′) to denote the set of selected nodes when

𝑐 (𝑖, 𝑗 ) increases.
If 𝑖 ∉ 𝑔(𝜃 ′), then 𝑢𝑖 (𝜃 ′) = 0, and 𝑖 ∉ 𝑔+ (𝜃 ′) according to CVM.

So its utility does not change.

If 𝑖 ∈ 𝑔(𝜃 ′), then 𝑢𝑖 (𝜃 ′) ≥ 0. There are two cases.

• 𝑖 ∉ 𝑔+ (𝜃 ′). Then its utility weakly decreases.

• 𝑖 ∈ 𝑔+ (𝜃 ′). Its cost share becomes

(
∑︁

𝑗∈𝛿 (𝑔+ (𝜃 ′ )\{𝑖 })
𝑣 𝑗−𝐶 (𝛿 (𝑔+ (𝜃 ′)\{𝑖})))−(

∑︁
𝑘∈𝑔+ (𝜃 ′ )\{𝑖 }

𝑣𝑘−𝐶 (𝑔+ (𝜃 ′))) .

By the similar analysis to the second part in the proof of

Theorem 5.2, we know the utility of 𝑖 weakly decreases.

□

Theorem 5.9. The critical value based mechanism satisfies rank-
ing.

Proof. We need to show that, given 𝜃 ′ ∈ Θ and 𝑖, 𝑗 ∈ 𝑉 with

𝑟𝑖 (𝜃 ′) \ { 𝑗} = 𝑟 𝑗 (𝜃 ′) \ {𝑖} and 𝑣𝑖 = 𝑣 𝑗 , 𝑐 (𝑖,𝑘 ) ≤ 𝑐 ( 𝑗,𝑘 ) (∀𝑘 ∈ 𝑟𝑖 (𝜃 ′) \
{ 𝑗}) implies 𝑢𝑖 (𝜃 ′) ≥ 𝑢 𝑗 (𝜃 ′). For nodes 𝑖 and 𝑗 , there are three

cases.

• 𝑖, 𝑗 ∉ 𝑔(𝜃 ′). We have 𝑢𝑖 (𝜃 ′) = 𝑢 𝑗 (𝜃 ′) = 0.

• 𝑖 ∈ 𝑔(𝜃 ′) but 𝑗 ∉ 𝑔(𝜃 ′). By individual rationality, we have

𝑢𝑖 (𝜃 ′) ≥ 0 = 𝑢 𝑗 (𝜃 ′).
• 𝑖, 𝑗 ∈ 𝑔(𝜃 ′). Since 𝑣𝑖 = 𝑣 𝑗 , it suffices to prove 𝑥𝑖 (𝜃 ′) ≤ 𝑥 𝑗 (𝜃 ′).
From Equation (1), we know the last two terms of the ex-

pressions of 𝑥𝑖 (𝜃 ′) and 𝑥 𝑗 (𝜃 ′) are equal. Next, we compare∑
𝑗∈𝛿 (𝑔 (𝜃 ′ )\{𝑖 }) 𝑣 𝑗−𝐶 (𝛿 (𝑔(𝜃 ′)\{𝑖}))with

∑
𝑖∈𝛿 (𝑔 (𝜃 ′ )\{ 𝑗 }) 𝑣𝑖−

𝐶 (𝛿 (𝑔(𝜃 ′)\{ 𝑗})). The former represents themaximum social

welfare of 𝑔(𝜃 ′) \ {𝑖} and the latter represents the maximum

social welfare of 𝑔(𝜃 ′) \ { 𝑗}. By the symmetry of 𝑖 and 𝑗 in

the graph, the condition of ranking, and the proof of The-

orem 5.8, the latter is larger than or equal to the former.

Therefore, we have 𝑥𝑖 (𝜃 ′) ≤ 𝑥 𝑗 (𝜃 ′).
□

6 REPEATED SELECTION MECHANISM
The CVM defined in Section 5 satisfies truthfulness, feasibility, and

efficiency but does not satisfy budget balance. In this section, we

propose another cost sharing mechanism that satisfies truthful-

ness, feasibility, and budget balance but does not satisfy efficiency.

Moreover, we show that it also satisfies other desirable properties.

We use the method of iterative optimization. In the first round

(stage) of optimization, we find a subset of nodes and the minimum

satisfying the constraints of feasibility and budget balance as the

cost share of these nodes. In the following rounds of optimization,

we consider the remaining nodes and add an extra constraint that

the optimizing variable is larger than or equal to the cost share of
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the last round, which guarantees the truthfulness of the mechanism.

The iterative process is repeated until all the nodes are considered.

The proposed mechanism is called Repeated Selection Mecha-

nism (RSM) formally described in the following.

Repeated Selection Mechanism (RSM)

Input: A report profile 𝜃 ′ and a graph 𝐺 (𝜃 ′)

(1) For stage 𝑡 (𝑡 = 0, 1, 2, . . . ), we introduce:

• 𝑆𝑡 : the set of nodes selected in stage 𝑡 ,

• 𝑀𝑡
: the union of 𝑆0, 𝑆1, · · · , 𝑆𝑡 ,

• 𝑋 𝑡
: the cost share of every node in 𝑆𝑡 ,

• 𝑊 𝑡
: the set of nodes which will not be considered

after stage 𝑡 ,

• 𝑁 𝑡
: the set of remaining nodes after stage 𝑡 , and

• E𝑡
: the set of edges of the minimum Steiner tree of

𝑆𝑡 .

E is the set of selected edges during the process, i.e.,

the union of E0, E1, · · · , E𝑡
.

(2) Stage 0:

Set 𝑋 0 = 0, 𝑁 0 = 𝑉 ,𝑀0 = ∅,𝑊 0 = ∅, and E = ∅.
(3) For 𝑡 = 1, 2, · · · :

Stage 𝑡 :

𝑆𝑜𝑙𝑣𝑒 𝑚𝑖𝑛
𝑆𝑡 ⊆𝑁 𝑡−1

𝑋 𝑡

𝑠 .𝑡 . 𝑋 𝑡 ≥ 𝑋 𝑡−1

𝑋 𝑡 · |𝑆𝑡 | = 𝐶 (𝑆𝑡 )
𝑣 ′𝑖 ≥ 𝑋 𝑡 ,∀𝑖 ∈ 𝑆𝑡

• If there is a solution, set 𝑥𝑖 (𝜃 ′) = 𝑋 𝑡
(∀𝑖 ∈ 𝑆𝑡 ).

Then, update:

𝑊 𝑡 = {𝑖 |𝑣 ′𝑖 < 𝑋 𝑡 },
𝑁 𝑡 = 𝑁 𝑡−1 \ {𝑆𝑡 ∪𝑊 𝑡 },

𝑀𝑡 = 𝑀𝑡−1 ∪ 𝑆𝑡 .

Set:

𝑐 (𝑖, 𝑗 ) = 0,∀𝑖, 𝑗 ∈ 𝑀𝑡 ∪ {𝑠}, 𝑖 ≠ 𝑗,

E = E ∪ E𝑡 .

Note that "𝑐 (𝑖, 𝑗 ) = 0" means that the remaining nodes

can use the edge (𝑖, 𝑗) without paying cost.

• Else, set 𝑔(𝜃 ′) = 𝑀𝑡−1
and 𝑓 (𝜃 ′) = E. Break the

loop.

Output: The selected nodes 𝑔(𝜃 ′), the selected edges 𝑓 (𝜃 ′),
the cost sharing 𝑥 (𝜃 ′)

A running example is given as follows.

Example 6.1. The graph𝐺 (𝜃 ′) generated by a report profile 𝜃 ′ ∈
Θ is shown in Figure 6. For stage 1, we have 𝑋 1 = 3 and 𝑆1 = {𝑏}.
Hence, E = E1 = {(𝑠, 𝑏)}. For stage 2, we have𝑋 2 = 4 and 𝑆2 = {𝑎}.
Hence, E2 = {(𝑎, 𝑏)} and E = E1 ∪E2 = {(𝑠, 𝑏), (𝑎, 𝑏)}. For stage 3,
we have𝑋 3 = 5 and 𝑆3 = {𝑐, 𝑑, 𝑒}. Hence, E3 = {(𝑎, 𝑑), (𝑎, 𝑐), (𝑏, 𝑒)}
and E = E1 ∪ E2 ∪ E3 = {(𝑠, 𝑏), (𝑎, 𝑏), (𝑎, 𝑑), (𝑐, 𝑑), (𝑏, 𝑒)}. Since

there does not exist𝑋 4
satisfying the constraints, the proposed algo-

rithm ends and we have 𝑔(𝜃 ′) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝑥 (𝜃 ′) = (3, 4, 5, 5, 5)
and 𝑓 (𝜃 ′) = {(𝑠, 𝑏), (𝑎, 𝑏), (𝑎, 𝑑), (𝑐, 𝑑), (𝑏, 𝑒)}.

Figure 6: The left figure is 𝐺 (𝜃 ′). The red line in the right
figure denotes the selected edge in the first stage, the green
line denotes the selected edge in the second stage and the
blue lines denote the selected edges in the third stage.

6.1 Properties of RSM
We show the properties of RSM in this section.

Theorem 6.2. The repeated selection mechanism satisfies truth-
fulness.

Proof. Firstly, we prove that each node 𝑖 ∈ 𝑉 will report its adja-

cent edges truthfully. Denote two report profile by𝜃 ′ = ((𝑒′
𝑖
, 𝑣 ′
𝑖
), 𝜃 ′−𝑖 )

where 𝑒′
𝑖
= 𝑒𝑖 and 𝜃

′′ = ((𝑒′′
𝑖
, 𝑣 ′
𝑖
), 𝜃 ′−𝑖 ). When 𝑖 truthfully reports

its adjacent edges, there are two cases.

(1) 𝑖 ∉ 𝑔(𝜃 ′). Then we have 𝑢𝑖 (𝜃 ′) = 0. If 𝑖 reports 𝑒′′
𝑖

⊂ 𝑒𝑖 , for

any 𝑆 (𝑖 ∈ 𝑆), 𝐶 (𝑆) will increase since the set of available
edges shrinks. Hence, 𝑖 ∉ 𝑔(𝜃 ′′) and the utility does not

change.

(2) 𝑖 ∈ 𝑔(𝜃 ′). Then 𝑢𝑖 (𝜃 ′) = 𝑣𝑖 − 𝑥𝑖 (𝜃 ′) ≥ 0. Assume that 𝑖 ∈ 𝑆𝑡 .

If 𝑖 reports 𝑒′′
𝑖

⊂ 𝑒𝑖 , we first prove the set of selected nodes

before stage 𝑡 does not change due to 𝑖’s misreporting, i.e.,

𝑀𝑡−1 = �̂�𝑡−1
, where �̂�𝑡−1

is the set of selected nodes before

stage 𝑡 given 𝜃 ′′. If node 𝑖 belongs to the minimum Steiner

tree of 𝑆𝑟 in the stage 𝑟 (𝑟 < 𝑡 ), then it should have been

selected in stage 𝑟 , which leads to a contradiction to 𝑖 ∈ 𝑆𝑡 .

Therefore, we know node 𝑖 does not belong to the minimum

Steiner tree of 𝑆𝑟 for any stage 𝑟 (𝑟 < 𝑡 ). Then the selected

edges of𝑀𝑡−1
and �̂�𝑡−1

are the same, i.e.,𝑀𝑡−1 = �̂�𝑡−1
.

Then we prove the utility of node 𝑖 weakly decreases due to

𝑖’s misreporting. Based on the above analysis, there are two

cases for node 𝑖 .

• Node 𝑖 ∈ 𝑔(𝜃 ′′). Let 𝐶′ (𝑆) denote the minimum cost of

any set 𝑆 under 𝜃 ′′. Since𝐶′ (𝑆) ≥ 𝐶 (𝑆), we have 𝐶′ (𝑆 )
|𝑆 | ≥

𝐶 (𝑆 )
|𝑆 | . Hence, 𝑥𝑖 (𝜃 ′′) ≥ 𝑥𝑖 (𝜃 ′) and 𝑢𝑖 (𝜃 ′′) ≤ 𝑢𝑖 (𝜃 ′).

• Node 𝑖 ∉ 𝑔(𝜃 ′′). Then we have 𝑢𝑖 (𝜃 ′′) = 0 ≤ 𝑢𝑖 (𝜃 ′).
Secondly, we prove that each node 𝑖 ∈ 𝑉 will report its valuation

truthfully. Denote two report profile by 𝜃 ′ = ((𝑒′
𝑖
, 𝑣 ′
𝑖
), 𝜃 ′−𝑖 ) where

𝑣 ′
𝑖
= 𝑣𝑖 and 𝜃 ′′ = ((𝑒′

𝑖
, 𝑣 ′′
𝑖
), 𝜃 ′−𝑖 ). When 𝑖 truthfully reports its

valuation, there are two cases.

(1) 𝑖 ∈ 𝑆𝑡 ⊆ 𝑔(𝜃 ′). If 𝑖 reports 𝑣 ′′
𝑖
> 𝑣𝑖 , it is still selected in stage

𝑡 and 𝑋 𝑡 = 𝑋 𝑡
, where 𝑋 𝑡

denotes the cost share in stage 𝑡
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given 𝜃 ′′. Hence, 𝑢𝑖 (𝜃 ′′) = 𝑣𝑖 − 𝑋 𝑡 = 𝑣𝑖 − 𝑋 𝑡 = 𝑢𝑖 (𝜃 ′). If 𝑖
reports 𝑣 ′′

𝑖
< 𝑣𝑖 , there are two possibilities.

• 𝑋 𝑡 ≤ 𝑣 ′′
𝑖
< 𝑣𝑖 . Then it is still selected and 𝑢𝑖 (𝜃 ′′) = 𝑢𝑖 (𝜃 ′).

• 𝑣 ′′
𝑖
< 𝑋 𝑡

. Then it is not selected and 𝑢𝑖 (𝜃 ′′) = 0 ≤ 𝑢𝑖 (𝜃 ′).
(2) 𝑖 ∉ 𝑔(𝜃 ′). If 𝑖 reports 𝑣 ′′

𝑖
< 𝑣𝑖 , then it is still not selected and

the utility does not change. If 𝑖 reports 𝑣 ′′
𝑖

> 𝑣𝑖 , there are

two possibilities.

• 𝑖 ∉ 𝑔(𝜃 ′′). Then the utility does not change.

• 𝑖 ∈ 𝑆𝑡 ⊆ 𝑔(𝜃 ′′). Then 𝑥𝑖 (𝜃 ′) = 𝐶 (𝑆𝑡 )
|𝑆𝑡 | . Since node 𝑖 cannot

be selected given 𝜃 ′, we have 𝑣𝑖 <
𝐶 (𝑆𝑡 )
|𝑆𝑡 | . Hence,𝑢𝑖 (𝜃 ′′) =

𝑣𝑖 − 𝐶 (𝑆𝑡 )
|𝑆𝑡 | < 0 = 𝑢𝑖 (𝜃 ′).

Therefore, 𝑢𝑖 (𝜃 ′) ≥ 𝑢𝑖 (𝜃 ′′), i.e., 𝑖’s utility is maximized when 𝑖

reports its valuation truthfully. □

Theorem 6.3. The repeated selection mechanism satisfies budget
balance.

Proof. Given 𝜃 ′ ∈ Θ, in stage 𝑡 , the sum of all nodes’ cost share

in 𝑆𝑡 equals the total cost of connecting all the nodes in 𝑆𝑡 , i.e.,

𝑋 𝑡 · |𝑆𝑡 | = 𝐶 (𝑆𝑡 ). Then for all the stages, the sum of all selected

nodes’ cost share in 𝑔(𝜃 ′) equals the total cost of connecting all

nodes in 𝑔(𝜃 ′), i.e., ∑𝑡 𝑋
𝑡 · |𝑆𝑡 | = ∑

𝑡 𝐶 (𝑆𝑡 ) =
∑

(𝑖, 𝑗 ) ∈ 𝑓 (𝜃 ′ ) 𝑐 (𝑖, 𝑗 ) .
Hence, the mechanism satisfies budget balance. □

Theorem 6.4. The repeated selection mechanism satisfies feasibil-
ity.

Proof. Given a report profile 𝜃 ′ ∈ Θ, for each node 𝑖 ∈ 𝑉 \𝑔(𝜃 ′),
we have 𝑥𝑖 (𝜃 ′) = 0 ≤ 𝑣 ′

𝑖
. For each node 𝑖 ∈ 𝑔(𝜃 ′), by the proposed

mechanism,𝑥𝑖 (𝜃 ′) = 𝑋 𝑡 ≤ 𝑣 ′
𝑖
for the stage 𝑡 . Sowe have𝑥𝑖 (𝜃 ′) ≤ 𝑣 ′

𝑖
.

Therefore, the mechanism satisfies feasibility. □

Theorem 6.5. The repeated selection mechanism satisfies individ-
ual rationality.

Proof. Given a report profile 𝜃 ′ ∈ Θ, for each node 𝑖 ∈ 𝑉 \𝑔(𝜃 ′),
we have 𝑢𝑖 (𝜃 ′) = 0. For each node 𝑖 ∈ 𝑔(𝜃 ′), by the proposed

mechanism, we have 𝑥𝑖 (𝜃 ′) ≤ 𝑣 ′
𝑖
. By Theorem 6.2, we have 𝑣 ′

𝑖
= 𝑣𝑖 .

Hence, we have𝑢𝑖 (𝜃 ′) = 𝑣𝑖 −𝑥𝑖 (𝜃 ′) ≥ 0. So the mechanism satisfies

individual rationality. □

Theorem 6.6. The repeated selection mechanism satisfies positive-
ness.

Proof. Given a report profile 𝜃 ′ ∈ Θ, for each node 𝑖 ∈ 𝑉 \
𝑔(𝜃 ′), we have 𝑥𝑖 (𝜃 ′) = 0. For each node 𝑖 ∈ 𝑔(𝜃 ′), without loss
of generality, we assume that it is selected in stage 𝑡 . Obviously,

according to the proposed mechanism, its cost share 𝑋 𝑡 (𝜃 ′) is non-
negative. Therefore, the mechanism satisfies positiveness. □

Theorem 6.7. The repeated selection mechanism satisfies symme-
try.

Proof. We need to show that, given 𝜃 ′ ∈ Θ and 𝑖, 𝑗 ∈ 𝑉 with

𝑟𝑖 (𝜃 ′) \ { 𝑗} = 𝑟 𝑗 (𝜃 ′) \ {𝑖} and 𝑣𝑖 = 𝑣 𝑗 , 𝑐 (𝑖,𝑘 ) = 𝑐 ( 𝑗,𝑘 ) (∀𝑘 ∈ 𝑟𝑖 (𝜃 ′) \
{ 𝑗}) implies 𝑢𝑖 (𝜃 ′) = 𝑢 𝑗 (𝜃 ′).

By the proposed mechanism, nodes 𝑖 and 𝑗 are either both se-

lected in the same stage or they are not selected. If they are not

selected, we have 𝑢𝑖 (𝜃 ′) = 𝑢 𝑗 (𝜃 ′) = 0. Without loss of generality,

if they are both selected in stage 𝑡 , by the proposed mechanism, we

have 𝑥𝑖 (𝜃 ′) = 𝑥 𝑗 (𝜃 ′) = 𝑋 𝑡
. Since 𝑣𝑖 = 𝑣 𝑗 , we have 𝑢𝑖 (𝜃 ′) = 𝑢 𝑗 (𝜃 ′).

So the mechanism satisfies symmetry. □

Theorem 6.8. The repeated selection mechanism satisfies ranking.

Proof. We need to show that, given 𝜃 ′ ∈ Θ and 𝑖, 𝑗 ∈ 𝑉 with

𝑟𝑖 (𝜃 ′) \ { 𝑗} = 𝑟 𝑗 (𝜃 ′) \ {𝑖} and 𝑣𝑖 = 𝑣 𝑗 , 𝑐 (𝑖,𝑘 ) ≤ 𝑐 ( 𝑗,𝑘 ) (∀𝑘 ∈ 𝑟𝑖 (𝜃 ′) \
{ 𝑗}) implies 𝑢𝑖 (𝜃 ′) ≥ 𝑢 𝑗 (𝜃 ′). For nodes 𝑖 and 𝑗 , there are three

cases.

• 𝑖, 𝑗 ∉ 𝑔(𝜃 ′). Obviously, we have 𝑢𝑖 (𝜃 ′) = 𝑢 𝑗 (𝜃 ′) = 0.

• 𝑖 ∈ 𝑔(𝜃 ′), 𝑗 ∉ 𝑔(𝜃 ′). By individual rationality, we have

𝑢𝑖 (𝜃 ′) ≥ 0 = 𝑢 𝑗 (𝜃 ′).
• 𝑖, 𝑗 ∈ 𝑔(𝜃 ′). Let 𝑡𝑖 and 𝑡 𝑗 denote the stages where nodes 𝑖

and 𝑗 are selected respectively. For any set 𝑆 with 𝑖, 𝑗 ∉ 𝑆 , we

have 𝐶 (𝑆 ∪ {𝑖}) ≤ 𝐶 (𝑆 ∪ { 𝑗}). So we have 𝑡𝑖 ≤ 𝑡 𝑗 . Since the

later the selected stage is, the higher the cost share will be,

we have 𝑋 𝑡𝑖 ≤ 𝑋 𝑡 𝑗
. Since 𝑣𝑖 = 𝑣 𝑗 , we have 𝑢𝑖 (𝜃 ′) −𝑢 𝑗 (𝜃 ′) =

𝑥 𝑗 (𝜃 ′) − 𝑥𝑖 (𝜃 ′) = 𝑋 𝑡 𝑗 − 𝑋 𝑡𝑖 ≥ 0.

Therefore, the mechanism satisfies ranking. □

Theorem 6.9. The repeated selection mechanism satisfies utility
monotonicity.

Proof. Given 𝜃 ′ ∈ Θ and nodes 𝑖, 𝑗 ∈ 𝑉 such that the edge

(𝑖, 𝑗) ∈ 𝐸, there are two cases for node 𝑖 .

• 𝑖 ∉ 𝑔(𝜃 ′). Then 𝑢𝑖 (𝜃 ′) = 0. When 𝑐 (𝑖, 𝑗 ) increases, 𝑖 cannot
be selected and the utility remains unchanged.

• 𝑖 ∈ 𝑔(𝜃 ′). Then 𝑢𝑖 (𝜃 ′) = 𝑣𝑖 − 𝑥𝑖 (𝜃 ′). When 𝑐 (𝑖, 𝑗 ) increases,
let 𝑔+ (𝜃 ′) denote the set of selected nodes.

– 𝑖 ∉ 𝑔+ (𝜃 ′). Then its utility is 0. So the utility weakly de-

creases.

– 𝑖 ∈ 𝑔+ (𝜃 ′). According to Theorem 6.8, it is easy to show

the utility of 𝑖 weakly decreases.

Hence, when 𝑐 (𝑖, 𝑗 ) increases, the utility of 𝑖 weakly decreases, i.e.,

the mechanism satisfies utility monotonicity. □

7 CONCLUSIONS
In this paper, we study the cost sharing problem under private

valuation and connection control on general graphs. We consider

two important strategic behaviors of a node (i.e., cutting its adjacent

edges and misreporting its valuation). We show that it is impossible

for a mechanism to satisfy truthfulness, feasibility, efficiency, and

budget balance simultaneously. We also prove that there exists

no approximate ratio for efficiency and budget balance. Then we

propose two truthful and feasible cost sharing mechanisms that

satisfy efficiency or budget balance.

In the future, we try to characterize all possible cost sharing

mechanisms that incentivize nodes to share their connections and

reveal their valuations.
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