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ABSTRACT
The emergence of cooperation among self-interested agents has
been a key concern of the multi-agent systems community for
decades. With the increased importance of network-mediated in-
teraction, researchers have shifted the attention to the impact of
social networks and their dynamics on cooperation, drawing vari-
ous context-dependent and at times conflicting conclusions. In this
short paper, summarising the findings in [1], we provide an evo-
lutionary game theory framework to understand coevolutionary
processes from a bottom up perspective - in particular the emer-
gence of a cooperator-core and defector-periphery - clarifying the
impact of partner selection and imitation strategies in promoting
cooperative behaviour, without assuming underlying communica-
tion or reputation mechanisms. In doing so we provide a unifying
framework to study imitation-based cooperation in dynamic social
networks and show that disputes in the literature can in fact coexist.
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1 INTRODUCTION
The effects of networks on the emergence of cooperation in games
have been disputed over the years. Theoretical results [5] backed
by empirical evidence [6] have suggested that static networks have
little effect on cooperation or contribution [20]. Other works, how-
ever, have found they improve cooperation in experiments [14],
simulations [15] and theory [4, 10, 12]. Moreover it seems to be
the case that dynamic/temporal networks are far more amenable
to cooperation than their static counterparts [9]; a positive effect
on cooperation was found experimentally in dynamic [13, 21] and
temporal [8] networks with some analytic backing [11, 12, 16].

When edges (partnerships) evolve over time one must seriously
consider time scales - characteristic lengths of time over which
a particular process occurs. For example when edge activity is
“bursty" - i.e. narrow, sudden spikes of activity - cooperation is
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impeded while intermediate temporality analytically maximises
cooperation [8]. Other studies have found a similar Goldilocks zone
- maximal gain for an intermediate value(s) of input(s) - in the time
scales [18]. The most common observation, on the other hand, is
that of a threshold in time scales [7, 13] - below this threshold
cooperation fails and above it flourishes - which are further backed
by a slew of theoretic work [11, 12, 16].

In this extended abstract we outline the differential equations
governing our Cooperative And Networked DYnamics (CANDY)
Framework in Section 2, which is able to reproduce theoretical re-
sults for when agents undergo active linking [11] with fixed strate-
gies in Section 3, and present simulation results that highlight the
importance of timescales between partner-updates and strategy-
updates in Section 4, which are finally discussed in Section 5.

2 THEORETICAL MODEL
For a simple graph 𝐺 = (𝑉 , 𝐸) of 𝑁 nodes playing a repeated Pris-
oner’s Dilemma game, denote the adjacency matrix as 𝐴 = (𝑎𝑖 𝑗 :
𝑖, 𝑗 ∈ 𝑉 ) and the strategies as a vector 𝒔 = (𝑠𝑖 : 𝑖 ∈ 𝑉 ), where the
binary strategy 𝑠 can either be 1 (cooperate) or 0 (defect). A cooper-
ators pays a cost 𝑐 per neighbour, such that each of her neighbours
gains a benefit 𝑏. A defector, on the other hand, pays nothing and
nothing happens. An agent 𝑖’s payoff at time 𝑡 is given by 𝜋𝑖 (𝑡).
This payoff structure was chosen to match the predominant games
considered in the literature [13].

In the continuum, we can instead consider 𝑎𝑖 𝑗 ≡ P(𝑎𝑖 𝑗 = 1) and
𝑠𝑖 ≡ P(𝑠𝑖 = 1) as the probabilities for edge (𝑖, 𝑗) to exist and for
node 𝑖 to cooperate at time 𝑡 , respectively. We then assume such
probabilities evolve due to two independent processes - a vector
field acting on the adjacency matrix, 𝑓𝑔 , and one acting on the
strategy vector 𝑓𝑠 . In other words in the joint probability space
[0, 1]𝑁 2 × [0, 1]𝑁 where a point represents an entire state, this
point moves due to the ‘velocities’ 𝑓𝑔 and 𝑓𝑠 , each of which have
characteristic timescales 𝜏𝑔 and 𝜏𝑠 .

𝑑𝑎𝑖 𝑗

𝑑𝑡
= 𝑓

𝑔

𝑖 𝑗
(𝐴, 𝒔, 𝑡 ;𝜏𝑔),

𝑑𝑠𝑖

𝑑𝑡
= 𝑓 𝑠𝑖 (𝐴, 𝒔, 𝑡 ;𝜏𝑠 )

3 ACTIVE LINKING FOR FIXED STRATEGIES

𝑓
𝑔

𝑖 𝑗
= 𝑠𝑖𝑠 𝑗

[
𝛼2𝐶 (1 − 𝑎𝑖 𝑗 ) − 𝛽𝐶𝐶𝑎𝑖 𝑗

]
+ (𝑠𝑖 + 𝑠 𝑗 − 2𝑠𝑖𝑠 𝑗 )

[
𝛼𝐶𝛼𝐷 (1 − 𝑎𝑖 𝑗 ) − 𝛽𝐶𝐷𝑎𝑖 𝑗

]
+ (1 − 𝑠𝑖 ) (1 − 𝑠 𝑗 )

[
𝛼2𝐷 (1 − 𝑎𝑖 𝑗 ) − 𝛽𝐷𝐷𝑎𝑖 𝑗

]
(1)

We consider the active linking model [11] with fixed strategies
(𝑓 𝑠
𝑖
= 0) to illustrate how our framework can recover their results.
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Figure 1: Final ensemble-averaged payoff-per-capita versus
timescale ratio. Colour denote initial condition; the black
dashed line is a baseline of a complete graph of cooperators.
Note towards the fixed strategy limit the rate of cooperation
is bounded-from-above by the initial level of 𝐶 = 15.

In active linking, cooperators and defectors form edges at some
constant rate 𝛼𝐶 and 𝛼𝐵 and that different edge types decay away
at rates 𝛽𝐶𝐶 , 𝛽𝐶𝐷 and 𝛽𝐷𝐷 for 𝐶𝐶,𝐶𝐷 and 𝐷𝐷 edges respectively.

By taking the sum of each of the three terms in Eq. 1 we recover
exactly the evolutionary equations for the number of CC, CD and
DD edges (𝑋,𝑌 and𝑍 resp.) laid out originally in [11] and moreover
can find the steady states 𝑋∗, 𝑌∗, 𝑍∗, in terms of 𝑋𝑚, 𝑌𝑚, 𝑍𝑚 the
maximum edge-set sizes.

𝑋∗ =
𝛼2
𝐶
𝑋𝑚

𝛼2
𝐶
+ 𝛽𝐶𝐶

, 𝑌∗ =
𝛼𝐶𝛼𝐷𝑌𝑚

𝛼𝐶𝛼𝐷 + 𝛽𝐶𝐷
, 𝑍∗ =

𝛼2
𝐷
𝑍𝑚

𝛼2
𝐷
+ 𝛽𝐷𝐷

In a realistic setting cooperators rarely broke from each other
[13] so that 𝛽𝐶𝐶 ≈ 0 while defectors are regularly unfriended
by everyone [3] 𝛽𝐷𝐷 ≫ 𝛼2

𝐷
. We see therefore that 𝑋∗ ≈ 𝑋𝑚 ,

𝑍∗ ≪ 𝑍𝑚 and 𝑌∗ ∈ [0, 𝑌𝑚]. In other words we see a very clear core-
periphery emerging, wherein cooperators form a core and defectors
are typically isolated in the periphery, regardless of initial condition.
This structure has been seen elsewhere in the literature, such as in
multidimensional opinion spaces with only edge-breaking [17].

4 COEVOLUTIONARY PROCESS
Following evidence cooperators are more popular [2, 13, 21], we
take the extreme limit where only cooperators are befriended and
defectors are entirely unfriended. That is at each time step (discrete
round) a pair of nodes 𝑖, 𝑗 ≠ 𝑖 ∈ 𝑉 is randomly chosen. If the alter 𝑗
is a cooperator, 𝑠 𝑗 = 1, then the ego 𝑖 will unilaterally form an edge
with 𝑗 if none previously existed. Otherwise if 𝑗 is a defector, 𝑠 𝑗 = 0,
𝑖 will unilaterally break ties with 𝑗 if the edge already existed.

𝑓
𝑔

𝑖 𝑗
=

1
𝜏𝑔

[
𝑠𝑖 + 𝑠 𝑗

2
− 𝑎𝑖 𝑗

]

Here we consider discretely payoff-dependent strategies updated
by pure imitation, that is imitation occurs if and only if the proposed
alter has a higher payoff. Every 𝜁 time-steps, 𝜂 existing edges are
picked randomly. One node per edge is then chosen randomly to be
the ego 𝑖 , who will imitate the strategy of their partner 𝑗 iff 𝜋 𝑗 > 𝜋𝑖 .

𝑓 𝑠𝑖 =
1
𝜏𝑠

(𝑠𝑘 − 𝑠𝑖 ), 𝑘 = argmax
𝑗 ∈𝑉

(𝑎𝑖 𝑗𝜋 𝑗 ) s.t. 𝜋 𝑗 > 𝜋𝑖

We run agent-based simulations to explore the coevolution-
ary process for 𝑁 = 20 agents, running 100 runs of a Prisoner’s
Dilemma with (𝑏, 𝑐) = (100, 50) to be in line with the experiments
of [13]. Each simulation is ran for 5𝑇 = 950 time-steps, where 𝑇 is
the number of dyads 𝑇 = 𝑁 (𝑁 − 1)/2 = 190. In this way, as 1 edge
is updated at each time-step, then on average in 𝑇 time-steps then
all node pairs (dyads) are updated once.

Moreover we use a variety of initial network configurations
(i.e. 100 runs per network type), namely those generated by the
following models: Erdös-Rènyi (ER) with 𝑝 = 0.2; Barabási-Albert
with 𝑚 = 3, wherein cooperators are either assigned randomly
(rBA) or to nodes with the highest degree (hBA); complete graphs
(Complete); stochastic block model (SBM) with 2 communities,
an in-group edge probability of 𝑝 = 0.8 and out-group probability
𝑞 = 0.2; cooperator clique (CClique) where all cooperators form a
complete subgraph and all defectors have 0 degree.

5 DISCUSSION
For comparison, in experiments where a fraction 𝜈 of subject pairs
- such as in [21] and [19] - are picked at random to update every
round, 𝜏𝑠/𝜏𝑔 = 𝜈 . In much of the experimental literature [13, 14, 19],
there are 3 typical values for 𝜈 : the fixed (𝜈 = 0%), viscous (𝜈 = 10%)
and fluid (𝜈 = 30%) conditions. They all found that higher 𝜈 have
higher cooperative levels. We replicate these results across the
different initial conditions (see Fig. 1) and show how other unseen
phenomena may also occur.

As seen in Fig. 1, there is a separation of time scales in most
realistic graphs; after such a long period of time most of these be-
have near identically with mass defection occurring consistently
for 𝜏𝑠/𝜏𝑔 < 10 and non-zero levels of cooperation persisting above
this threshold. Individually, this occurs as defection is optimal and
preferential. Moreover note that for all realistic graphs when the
network is static (𝜏𝑠/𝜏𝑔 = 0), we reproduce the qualitative result,
seen empirically in [5, 6] and theoretically in [20], that static net-
works do not promote cooperation. The fact that the fraction of
cooperators is higher in more dynamic networks has previously
been experimentally observed [21].

For the CClique initial graph, however, playing under the same
rules a different phenomenon occurs.When strategies update rapidly,
the core is large enough to convert defectors quicker than they can
infiltrate the core. As the edges update faster, more and more de-
fectors can attach themselves to the core quickly enough to start
converting the cooperators. After some point strategies become too
slow for everyone to defect hence the payoff-per-capita rises again
in the limit of fixed strategy. These two competing factors thus pro-
duce a reverse Goldilocks zone, where cooperation is minimised,
not maximised, at intermediate ratios.
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