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ABSTRACT
We study the problem of noisy information propagation in net-

works, where a small number of sources send messages across the

network and agents use Bayesian updates to make inferences about

the state of the world from the received messages. We provide upper

bounds on the total number of sources necessary for learning on a

given network and refine the bound in the case of small-world net-

works. We then extend the model to include an adversarial attacker,

who can corrupt some of the information sources. We find that

there is an optimal greedy attacking strategy in the case of a single

learner, while the multi-learner case is not always solved optimally

using greedy approaches. However, despite the influence function

not being submodular, we show that the greedy algorithm performs

well in practice. We also show that much simpler heuristics, which

only look at centrality measures, can also provide a good basis to

calculate successful attacking strategies. Finally we analyse the

loss of optimality in the case when the attacker has incomplete

information about the network and has to estimate the influence

of source corruption heuristically. We use real-world social net-

works, as well as random network models, to empirically evaluate

the effectiveness of attacking strategies and suggest a variety of

measures to counteract them.
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1 INTRODUCTION
Social networks have revolutionised the way we learn about each

other and the world. While making the spread of information easier

and faster than ever, they also pose a unique set of challenges when

it comes to mis-(and dis-)information in society. Each piece of news,

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

even those originating from a reliable source, has the potential to

be altered and/or misinterpreted as it travels through the network

towards its recipient. Recovering an objective truth about an event

can quickly become problematic in such a noisy environment.

A stark recent example of the dangers of misinformation is the

rise of mistrust in scientific expertise, in particular, regarding the

effects of vaccination [16]. While the reliable sources, such as peer-

reviewed medical research publications, give a clear consensus

about the benefits of vaccination, this message is often distorted

[27], whether deliberately or through ignorance and bias [22], con-

tributing to a significant movement against such consensus.

There is also growing evidence of manipulation of such infor-

mation systems strategically in order to instil doubt and create

divisions within society; for instance, the use of bots on social me-

dia can be weaponised by malicious agents to steer the social [25]

or political [26] discourse. While deliberate external attacks and

random perturbations plant the seed of misleading and harmful in-

formation, the social networks themselves, combined with human

psychology, have served as a conduit to greatly amplify its spread

[1]. These problems call for a systematic study of social networks

and information propagation within them.

In a recently proposed model, Jackson, Malladi and McAdams

[15] have shown how a Bayesian learner can infer the reliability of

information spreading through a tree from sources – a "Grapevine"

learning model – showing how the structure of the tree affects

learning. In this model a predetermined set of sources, placed at the

leaves of the tree, transmit truthful messages, which can however

mutate or disappear as they travel through the network. The learner,

sitting at the root node, applies Bayesian reasoning to this data to

form a posterior belief about the objective state of the world.

The Grapevine model is an important step in understanding how

information flows from sources to learners in a Bayesian framework.

However, it only considers trees and not networks, and it does not

study the effect of information manipulation, which is crucial for

the design of trustworthy social networks.

Contribution. In this paper, we extend the Grapevine model [15]

to allow a malicious external attacker to corrupt a set of sources and

have them transmit false information to multiple Bayesian learners

in a social network. The question we are concerned with is whether

the attacker can efficiently select the optimal subset of sources to

corrupt in order to reduce the probability that the learner assigns to
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the truth. We show that in the single-learner case, even if sources

are heterogeneously distant, the set of nearest sources are always

the optimal choice for the attacker. In the multiple-learner setting,

where both learners and sources exist on a network, the notion of

‘nearest’ source breaks down at the global level. In this case, the

optimal set is difficult to compute, and while a greedy algorithm

will perform fairly well, we show that it is not guaranteed to be

optimal even in small networks.

Paper Structure. In Section 2, we present previous work on the

topics of information propagation, opinion dynamics, manipulation

in networks and related problems. In Section 3, we provide the

necessary mathematical background as well as some basic facts

about the Grapevine model. In Section 4, we present and discuss our

extension to networks and formulate the problem we are interested

in. Section 5 provides the main results of the paper. Firstly, we

prove that, in the one learner case, manipulation of the sources is

easy. We then show that, in a network with multiple sources and

multiple learners, manipulation is non-trivial and provide empirical

evidence to support this claim. Lastly, we discuss the implication

of our work and future directions in Section 6.

2 RELATEDWORK
A vast amount of literature in multi-agent systems and theoretical

computer science deals with the problem of opinion diffusion and

its manipulation. Notably the seminal Kempe et al. [18] advances

the understanding of influence maximisation from an initial set

of triggering nodes. In particular, for innovation propagation on a

network, they asked which influential individuals are the best to

select in order to trigger a viral spread of innovation or information.

However, their sole focuswas to analysewhether the initial message

has reached each node in the network, while we consider whether

each node has learned the ground truth via a complex Bayesian

learning process.

Information cascades can be understood as how a message /

opinion / innovation can suddenly take root and quickly spread

across a portion of the network [29]. In contrast, we do not nec-

essarily try to model viral phenomena that spread quickly, and

instead focus on individuals learning informed opinions. Neverthe-

less, these models look at the spread of information and highlight

the importance of choosing the influential “seeds" - the original

sources of information.

Young [30] considers more complex types of diffusion of ideas

and innovations, such as contagion, social influence and social

learning. Our work, however, assumes no opinion aggregation in

the intermediate nodes, instead the complexity in our case arises

from the more complex Bayesian aggregation of sources at each

learner. This assumption is often avoided in favour of more simpli-

fied aggregation ([13] and the models mentioned above) or tackled

with rather complex learning models [3]. We primarily focus on

a variation on the latter, social learning, where learners make an

informed, principled choice given a variety of messages from a

variety of sources.

In an attempt to connect information diffusion and decision-

making in society, the link between social influence [28] and col-

lective decisions was studied by López-Pintado and Watts [20]. In

a similar context, Kameda et al. [17] discussed the importance of

finding the most influential nodes since they affect the collective

decision-making process the most.

Manipulation of information systems has also been subject to

extensive study. Bredereck and Elkind [9] consider several modes

of manipulation in a classical majority opinion model, including

bribing agents, changing the topology of the network and tempering

with themodel itself. In this paper, we only consider the “corruption”

aspect of manipulation. Auletta et al. [4] provide a time complexity

analysis of finding a set of agents that leads to consensus in a simple

opinion diffusion model. They show that in general this problem is

NP-hard, which foreshadows the hardness of the problem in our

case. Borgs et al. [8] study how mistrust propagates through an

influence system, in particular, using Google’s PageRank algorithm.

Alon et al. [2] consider a very similar setting, where the ground

truth is binary and the experts can be corrupted by an adversary in

order to disseminate falsehood in the network. Again, the setting

differs from ours by using a simplemajority opinion diffusionmodel.

Grandi et al. [14] develop the idea of corrupting the reviewers (for

example, users of an online review system) by modelling whether

it is profitable for the attacker to bribe the reviewers of their ser-

vice. They study robustness of such review networks according to

their topology, as well as under different assumptions of incomplete

knowledge. Faliszewski et al. [12] combine manipulation in voting

and opinion diffusion on social networks by considering the com-

putational complexity of “campaigning", i.e., influencing specific

nodes in the network to affect the outcome of an election. We note

that the results in this paper can be similarly extended to the setting

of elections by assuming that the state of the world is not objective

but subjective, such as a political affiliation. In this case corruption

of sources may correspond to a bribing of influential sources from

the opposing party.

Our work is connected to adversarial attacks on learning models,

with further links to path disruption games [5]. The problem of

choosing the best subset of influential sources is a particular case of

the general problem of Subset Selection, which arises in many appli-

cations. Qian et al. [24] study Subset Selection in the setting where

the objective function is noisy. They provide the approximation

guarantees for Greedy and POSS in the noisy setting and introduce

a new algorithm PONSS which is able to handle the noise.

Greedy has been a popular heuristic in dealing with set functions

in general. One of the first theoretical approximation guarantees of

Greedy was provided by Nemhauser et al. [23], where the objective

function is assumed to be submodular, which is the same property

used in [18] to show a 63% approximation bound for Greedy in

influence maximisation. A recent work by Bian et al. [6] extend this

approximation analysis by looking at more general properties of the

objective function, submodularity ratio and generalised curvature.

3 PRELIMINARIES
The Grapevine Model. We first describe the information propaga-

tion model by [15] which describes how simple messages propagate

from information sources to a learner, who then collects the mes-

sages and uses them to learn about the state of the world. The

messages may not always reach the learner directly, but through

the “Grapevine" by passing through other agents. Each transmis-

sion has a chance of mutating the message or losing it altogether.

Session 6E: Social Networks
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2235



An important feature of this model is that, in contrast to many other

opinion dynamics models, the probability of mutation is indepen-

dent of the agent who is passing the message, i.e., intermediaries

do not impose their own bias. In addition, intermediate agents do

not aggregate the messages and instead transmit all the received

messages.

Let 𝑇 be a tree, rooted at 𝑟 , which has𝑚 leaves. We call 𝑟 the
learner and leaves the sources, denoted by 𝑆 = {𝑠1, . . . , 𝑠𝑚}. We then

call the unique path from 𝑟 to each 𝑠𝑖 a chain. The number of edges

in this chain is the distance between 𝑟 and 𝑠𝑖 and is denoted 𝑑(𝑟, 𝑠𝑖 ),

or simply 𝑑𝑖 when it is clear from the context.
1

Firstly, assume the state of the world is given by a binary variable

𝜔 ∈ {0, 1}, which intuitively represents whether some fact is true

(e.g., “the new medical treatment is effective"). The prior probability

that the state is 1 is given by 𝜃 := 𝑃𝑟 (𝜔 = 1), which is known to the

learner.

The process of message propagation proceeds as follows. Each

source 𝑠𝑖 ∈ 𝑆 starts by propagating the truthful message 𝜔 . The

message then travels through the chain from 𝑠𝑖 to 𝑟 . At each inter-

mediate node in the chain, the message is passed onwith probability

𝑝0 if it is currently 0 and 𝑝1 if it is currently 1. If the message is

dropped, it enters the null state, which we denote by ∅ and does

not reach the learner. If it is passed, it has probability 𝜇10 to change

from 1 to 0, and similarly 𝜇01 from 0 to 1.

The process of message propagation is an independent Markov

chain with the state space {0, 1, ∅} and the transition matrix𝑀 :

𝑀 =

©«
𝑝0(1 − 𝜇01) 𝑝1𝜇10 0

𝑝0𝜇01 𝑝1(1 − 𝜇10) 0

𝑝0 𝑝1 1

ª®¬ .
Markov processes are memory independent, meaning that the

probability of going from one state to another does not depend on

previous mutations. Hence, for a source 𝑠 ∈ 𝑆 at distance 𝑑 away

from 𝑟 transmitting a message in state 𝑗 , the probability that the

message ends up in state 𝑖 at the learner is given by (𝑀𝑑𝑠
)𝑖 𝑗 , or𝑀

𝑑𝑠
𝑖 𝑗

for brevity. Thus, the learner receives𝑚 messages (including the

null ones), one from each source. We denote the vector of received

messages by 𝐼 ∈ {0, 1, ∅}𝑚 .

Having received the vector of messages 𝐼 , the Bayesian learner

𝑟 updates her beliefs about the state of the world. Below, we list

explicitly the knowledge available to the learner:

(1) The message vector 𝐼 and the distance to every associated

source {𝑑1, . . . , 𝑑𝑚}.
(2) The prior probability of the state of the world 𝑃𝑟 (𝜔 = 1) = 𝜃 .

(3) The parameters of the model, 𝑝0, 𝑝1, 𝜇10, 𝜇01.

We will show later that these assumptions can be relaxed slightly

without losing any learning power. For example, the learner does

not need to be aware of the null messages or even the probability of

losing the message (if 𝑝0 = 𝑝1 = 𝑝). Jackson et al. [15] also provide

an extensive discussion of the effects of incomplete knowledge

under this model.

The learner now updates her beliefs by computing the posterior

probability of 𝜔 being 1:

1
Jackson et al. [15] consider rooted trees in which all leaves are at the same fixed depth.

We formally generalise this here for the sake of introducing notation.

𝑏𝑟 (𝐼 ) := 𝑃𝑟 (𝜔 = 1 | 𝐼 ;𝜃, (𝑝0, 𝑝1, 𝜇10, 𝜇01))

=

𝑃𝑟 [𝐼 | 𝜔 = 1]𝜃

𝑃𝑟 [𝐼 | 𝜔 = 1]𝜃 + 𝑃𝑟 [𝐼 | 𝜔 = 0](1 − 𝜃 )

.
(1)

We further need the following definitions and notation.

Set Functions. Let 𝑋 be a set and 𝑓 : 2
𝑋 → R be a function

that assigns a real value to each subset of 𝑋 . 𝑓 is increasing if

for all 𝐴 ⊂ 𝐵 ⊂ 𝑋 , 𝑓 (𝐴) ≤ 𝑓 (𝐵). Similarly, 𝑓 is decreasing if the

inequality is reversed. If 𝑓 is either increasing or decreasing, it is

called monotone. We call 𝑓 submodular if for all 𝐴, 𝐵 ⊂ 𝑋 , 𝑓 (𝐴) +

𝑓 (𝐵) ≥ 𝑓 (𝐴∪𝐵)+ 𝑓 (𝐴∩𝐵). 𝑓 is subadditive if for all disjoint𝐴, 𝐵 ⊂ 𝑋 ,
𝑓 (𝐴) + 𝑓 (𝐵) ≥ 𝑓 (𝐴 ∪ 𝐵). Clearly, if 𝑓 (∅) ≥ 0, then every submodular

function is subadditive.

Supermodularity and superadditivity are defined analogously, just
with the inequalities reversed. Informally, submodularity represents

diminishing returns when adding new elements to the set.

Centrality Measures. In this work we consider the following five

centrality measures as heuristics to be used in picking influential

sources to corrupt. In particular, for a budget of 𝑘 , we will pick the

𝑘 sources 𝑠 ∈ 𝑆 with the highest centrality measure.

• Degree - Number of nodes connected to a source, Deg(𝑠).

• PageRank - Google’s PageRank [10] which takes into ac-

count quality and number of nodes connected to a source,

PR(𝑠).

• Eigenvector - Entries of the leading eigenvector of the ad-
jacency matrix 𝐴 of graph 𝐺 , Eigv(𝑠).

• Closeness - Inverse of the sum of geodesic distances
2 𝑑(𝑛, 𝑠)

from all other nodes 𝑛 ∈ 𝑉 \ {𝑠} to the source, 𝐶(𝑠) = (𝑁 −
1)/

∑
𝑛∈𝑉 \{𝑠 } 𝑑(𝑛, 𝑠).

• Harmonic - Sum of the inverse of geodesic distances 𝑑(𝑛, 𝑠)

from all other nodes 𝑛 ∈ 𝑉 \ {𝑠} to the source, 𝐻 (𝑠) =∑
𝑛∈𝑉 \{𝑠 } 𝑑(𝑛, 𝑠)−1

.

The choice of these five centralities are due to a mixture of pop-

ularity and intuition. The degree is the simplest centrality and is

highly localised. The Eigenvector and PageRank centralities are

related to random walks of infinite length, which in turn can char-

acterise epidemic/information spread on networks [21]. Finally the

Closeness and Harmonic centralities both consider nodes ‘nearest’

to all others as the most important - these can be seen as heuristics

to generalise the single-learner case in which sources nearest to

the learner are the most influential.

4 GRAPEVINE NETWORKS
We extend the model presented so far by consideringmultiple learn-
ers on a graph. Consider a connected graph𝐺 = (𝑉 , 𝐸) with node set

𝑉 of size |𝑉 | = 𝑛 and a set of sources 𝑆 ⊂ 𝑉 . For each node 𝑣 ∈ 𝑉 \𝑆
we can construct a tree 𝑇𝑣 , rooted at 𝑣 such that 𝑇𝑣 is a subgraph

of 𝐺 and the set of leaves of 𝑇𝑣 is precisely 𝑆 . Indeed there may be

many ways to construct such a tree. We choose to construct 𝑇𝑣 by

joining shortest paths from 𝑣 to each source 𝑠 ∈ 𝑆 , choosing an

arbitrary path if there are multiple. In so doing we may treat each

2
The geodesic distance between two nodes in a graph is defined to be the length of a

shortest path between the nodes.
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𝑣 ∈ 𝑉 \ 𝑆 as a Bayesian learner as in the original model with the

same message propagation and inference.

For the remainder of this paper, we assume 𝜇01 < 0.5 and 𝜇10 <

0.5 following [15], so it is more likely for the message to remain

unchanged than to flip at any given node. For simplicity we also

assume the probability of propagating the message is the same for

0 and 1, i.e., 𝑝 = 𝑝0 = 𝑝1. Hence, an (uncorrupted) instance of the

extended Grapevine model is completely characterised by the tuple

G = (𝐺, 𝑆, 𝜇10, 𝜇01, 𝑝, 𝜃 ).

4.1 Corrupted Sources
The original work [15] focused on understanding the conditions

required for learning to occur. In particular, the results indicate how

many sources and how much knowledge of the model is required

for the learner to learn the correct information. The extension we

introduce allows us to focus on a wider set of problems. We briefly

revisit the question regarding the number of sources required for

learning to occur in a network, given its size and topology, in

Section 4.3. However, the main focus of this paper is to understand

how learning can be disrupted by an adversarial attacker who can

“corrupt" the sources.

In this paper we assume that the ground truth state, 𝜔 is always

1, without loss of generality. We hence define the corrupted state
to be 0. Recall that each source is originally uncorrupted, i.e., they

transmit 1 as the original signal. In order to measure the effect of

corruption, we introduce the influence metric.

Given an instance of the Grapevine model, recall that 𝑏𝑟 (𝐼 ) is the

posterior probability learner 𝑟 learns after receiving the message

vector 𝐼 . Define 𝑏𝑟 := 𝐸𝐼 [𝑏𝑟 (𝐼 )] =

∑
𝐼 𝑏𝑟 (𝐼 )𝑃𝑟 (𝐼 ), where 𝑃𝑟 (𝐼 ) the

probability of 𝑟 receiving 𝐼 in this instance of the model. In other

words, 𝑏𝑟 is the expected learned probability of learner 𝑟 . Lastly,

define 𝑏 :=
1

𝑛

∑
𝑟 ∈𝑉 𝑏𝑟 to be the average expected learned probabil-

ity across the network. 𝑏 represents the expected average belief in

the network that 𝜔 = 1.

Given an instance G and a subset of sources 𝑇 ⊆ 𝑆 , we define
a corrupted instance G𝑇 , in which every source 𝑠 ∈ 𝑇 propagates

the 0 message (while the rest still propagate the ground truth, 1).

We call 𝑇 a corrupting set. Analogically to 𝑏, we define 𝑏
𝑇
to be the

average expected learned probability in the corrupted case.

We now define the influence function 𝜎 : 2
𝑆 → [0, 1] by

𝜎(𝑇 ) = 𝑏 − 𝑏𝑇 , (2)

i.e., by how much the average belief in 1 is expected to drop if

sources in 𝑇 were corrupted to transmit 0.

Finally, we model the attacker’s desire to disrupt belief in 1

by maximising the influence, subject to how many sources they

are allowed to corrupt. The resulting optimisation problem can be

written succinctly as

max

|𝑇 | ≤𝑘
𝜎(𝑇 ) , (3)

where 𝑘 is the budget of the attacker.
Note that the above definitions assume that an instance of the

model G is fixed, hence the attacker’s aim is to optimise the influ-

ence function on a particular instance. However, of course, we want

to find algorithms that work on all or a wide selection of instances.

4.2 Simplified Posterior
Under some mild conditions, we can derive a more useful form of

the learned posterior from Equation 1. From the equation, we can

see that we only need to derive 𝑃𝑟 [𝐼 | 𝜔 = 1] and 𝑃𝑟 [𝐼 | 𝜔 = 0], i.e.,

the probability that the Markov process given by𝑀 produces the

message string 𝐼 from each ground truth state.

Firstly, recall that the probability that the original message 𝑗 ∈
{0, 1} at the source evolves into a message 𝑖 ∈ {0, 1, ∅} as it reaches
the learner depends only on the transitionmatrix𝑀 and the distance

between the source and the learner, 𝑑 and is given by 𝑀𝑑
𝑖 𝑗
. Denote

𝜇 := 𝜇01 + 𝜇10. In general, for any 𝜇 and 𝑝 as well as 𝑑 ∈ N, we have

𝑀𝑑
=

1

𝜇

©«
𝑝𝑑 (𝜇10 + 𝜇01(1 − 𝜇)

𝑑
) 𝜇10𝑝

𝑑
(1 − (1 − 𝜇)

𝑑
) 0

𝜇01𝑝
𝑑

(1 − (1 − 𝜇)
𝑑

) 𝑝𝑑 (𝜇01 + 𝜇10(1 − 𝜇)
𝑑

) 0

𝜇(1 − 𝑝𝑑 ) 𝜇(1 − 𝑝𝑑 ) 𝜇

ª®®¬ . (4)

Since the sources can be grouped by the distance to the learner,

let 𝑥𝑖 (𝑑) = |{𝑠𝑘 ∈ 𝑆 | 𝑑𝑘 = 𝑑 ∩ 𝑖𝑘 = 𝑖}| be the number of messages

𝑖 ∈ {0, 1, ∅} received by the learner from distance 𝑑 . Since the

Markov chains are independent and only depend on 𝑑 , we have

𝑃𝑟 [𝐼 |𝜔 = 𝑗] =

∏
𝑖∈{0,1,∅}

𝐷∏
𝑑=0

(𝑀𝑑
𝑖 𝑗 )

𝑥𝑖 (𝑑) .

We can now combine this with Equation 1 to derive the posterior

𝑏𝑟 (𝐼 ). This can be further simplified into a form 𝑃𝑟 [𝑤 = 1|𝐼 ] =

(1 + 𝜒)
−1
, where 𝜒−1

is the odds.

𝑏𝑟 (𝐼 ) = 𝑃𝑟 [𝑤 = 1|𝐼 ] =

1

1 + 𝜒
, where (5)

𝜒 ≡ 1 − 𝜃
𝜃

𝐷∏
𝑑=0

[(
𝜇10 + 𝜇01(1 − 𝜇)

𝑑

𝜇10(1 − (1 − 𝜇)
𝑑

)

)𝑥0(𝑑)
(
𝜇01(1 − (1 − 𝜇)

𝑑
)

𝜇01 + 𝜇10(1 − 𝜇)
𝑑

)𝑥1(𝑑)

]
.

(6)

Note that this expression does not depend on the propagation

rate, 𝑝 . This is due to the simplifying assumption of the symmetric

propagation rate, which implies that null messages do not carry any

information. Of course, low propagation rate still hurts learning as

it means that few useful messages reach the learner, implications

of which are discussed in Section 4.3.

Full derivation of the posterior is provided in the supplementary

materials.

4.3 Learning Threshold
We now consider the implications of one of the main results for the

original model:

Lemma 1 ([15]). Suppose the distance between the sources and the
learner is 𝑑 . Then the learner needs at least ℓ(𝑑) =

1

(𝑝(1−𝜇)
2
)
𝑑 sources

to learn the ground truth.

The expression ℓ(𝑑) is called the learning threshold. Informally,

learning the ground truth means that the learner’s posterior tends

to 1 as 𝑑 increases, provided the learning threshold is met.

In our extended model, the learning threshold dictates howmany

sources a network needs as it grows in size. Since both the learners

and the sources live on the network, the distance between them is

bounded from above by the diameter of the network,𝐷 . Hence, ℓ(𝐷)
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provides a (possibly loose) upper bound for the sufficient number

of sources in the network.

Consider the case of small-world networks, where the diameter

grows logarithmically with the network, i.e., 𝐷 = 𝛼 log𝑛. This

results in ℓ(𝐷) = 𝑂(𝑛𝛽 ), where 𝛽 depends on the parameters of the

model, 𝜇 and 𝑝 and the rate of growth of the diameter, 𝛼 . Hence,

the necessary number of sources is polynomial in the number of

nodes; however, the order of the polynomial can be quite low if

the mutation rates are low. Figure 2 in the supplementary material

illustrates the effect of the number of sources on learning as the

network grows.

5 COMPUTING OPTIMAL ATTACKS
The main aim of this paper is to analyse how susceptible the ex-

tended Grapevine model is to corrupting attacks. To do this, we

analyse the complexity of computation of the optimisation problem

given in (3), which represents the ability of the attacker to choose

the best corrupting set.

The optimisation problem faces two difficulties. Firstly, the at-

tacker might not be able to query the influence function efficiently.

The definition of the influence of a set of sources involves com-

puting the expected learner posterior over all possible received

messages. Since the number of such messages grows exponentially

with the number of sources, a single query 𝜎(𝑇 ) may be infeasible

to compute, if the source set is large.

Secondly, even if we assume that the attacker can query 𝜎 in

polynomial time, there are

(𝑚
𝑘

)
possible sets of sources to corrupt.

For any non-trivial size of parameters 𝑚 and 𝑘 , this renders the

brute-force approach infeasible.

In this section, we show that, even when finding the exact solu-

tion is infeasible, heuristics provide a good approximation of the

optimal solutions.

5.1 Single Learner
Theorem 2. Choosing closest sources is always optimal in the

single learner case.

Proof. While here we describe the main intuitions behind the

proof, the formal proof is provided in the supplementary material.

Consider the problem of corrupting one of two sources, 𝐴 or 𝐵,

where 𝑑𝐴 > 𝑑𝐵 , given a set of existing corrupted and uncorrupted

sources.

Without loss of generality, assume the world is in state 𝜔 = 1.

Maximising the influence function is equivalent to minimising the

expected learned probability given the sources:

¯𝑏𝑇 =

∑
𝐼

𝑝(𝑤 = 1 | 𝐼 )𝑝(𝐼 | 𝑇 )

The received message has a stronger effect on the posterior the

closer it is to the learner, as there is less chance of it having been

mutated from the true value (from the naive learner’s point of view).

A 1 increases the posterior probability of the world being in state

1, while a 0 decreases the probability. From the attacker’s point

of view, a closer distance increases the probability of a 0 being

received and decreases the probability of a 1 being received. The

attacker prefers a closer source on both counts, as a 0 is more likely

to be received, and the learner will give more credence to that 0.

Conversely, a 1 is less likely to be received, which would have a

positive effect on the posterior. Note that the null messages have

no effect on the posterior.

The attacker’s preference for a closer source is independent of

the existing set of corrupted sources. As such, a greedy attacker

strategy of always choosing closest sources is optimal. □

5.2 Multiple Learners
We now use the full extent of our extended model and consider the

problem of source corruption on a graph with multiple learners.

Figure 1a gives a small example of the model, where the coloured

nodes are the sources and the two grey nodes in the middle are the

learners. In general, we are also interested in large social networks

that can vary from thousands to millions of users. For example, for

our experiments we use a subset of the Facebook network intro-

duced by Leskovec and Mcauley [19], which contains over 4000

nodes. As discussed in Section 4.3, the number of sources required

to ensure learning in the network is a polynomial fraction of the

size of the network, but varies a lot according to the parameters of

the model.

The optimisation problem given in (3) is an example of a general

problem of subset selection, where the aim is to select the best

subset according to an objective function subject to constraints. In

the general case, this problem is NP-hard [11].

We first show that the problem is non-trivial only when the

mutation rates are not too high so that learning actually occurs in

the network.

Lemma 3. If 𝜇 = 1, no learning can occur. Hence, any algorithm is
trivially optimal.

Proof. Using Equation 6 with 𝜇 = 1 gives 𝜒 = 𝜃−1 − 1 and

𝑏𝑟 (𝐼 ) = 𝜃 for any message vector 𝐼 . This means that all learners

stay at their prior beliefs and no learning occurs. Full derivation is

available in the supplementary material. □

A popular heuristic for achieving an approximate good solution

is the Greedy algorithm. Starting with an empty set, at each iter-

ation, an element is added to the set with the highest marginal

contribution. The process stops when no additional element has a

non-negative marginal contribution or when the size constraint is

reached. We will now show that 𝜎 is non-decreasing, hence Greedy

always outputs a set of size 𝑘 .

Lemma 4. 𝜎 is a non-decreasing set function.

Proof. Suppose we have an instance of the Grapevine model

G = (𝐺, 𝑆, 𝜇10, 𝜇01, 𝑝, 𝜃 ). By the definition in Section 3, all we need to

show is that 𝜎(Ω∪ {𝑠}) ≥ 𝜎(Ω) for all Ω ⊂ 𝑆, 𝑠 ∈ 𝑆. Equivalently, by
the definition of 𝜎 given in (2), we need to show that 𝑏

Ω∪{𝑠 } ≤ 𝑏Ω.

Claim. Corrupting an extra source reduces the expected learned

posterior for every agent in the network.

Proof. A full proof is given in the supplementary material, we

simply note that it requires two steps: 1) flipping a source from 1 to

0 increases the probability of the learner to receive a 0; 2) receiving

a 0 instead of 1 reduces the posterior belief of the learner. Since the

𝑏 is simply the average over all learners, this completes the proof.

□
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Algorithm 1 Greedy Algorithm

Input: Grapevine model instance G, budget 𝑘
Output: Corrupting set 𝑇 ⊂ 𝑆
1: Initialise 𝑇 ← ∅
2: for i in {1, . . . , 𝑘} do
3: 𝑆 ′ ← 𝑆 \𝑇 ⊲ Available sources

4: 𝑠∗ ← argmax𝑠∈𝑆′ 𝜎(𝑇 ∪ {𝑠}) ⊲ Choose source with highest

marginal influence

5: 𝑇 ← 𝑇 ∪ {𝑠∗} ⊲ Update corrupted set

6: end for
7: return 𝑇

The Greedy algorithm is presented in Algorithm 1. Consider the

time complexity of the algorithm. The algorithm performs 𝑘 itera-

tions, where iteration 𝑖 requires𝑚 − 𝑖 evaluations of the influence
function 𝜎(·). In total, this requires𝑚 +𝑚 − 1 + ... +𝑚 − 𝑘 + 1 =

𝑘(𝑚 − 𝑘) +
𝑘(𝑘+1)

2
= 𝑂(𝑘𝑚 − 𝑘2

) evaluations. Note that evaluations

of the influence function are often infeasible and even good empir-

ical approximations can be costly. Hence, in most cases, this is a

significant improvement on the brute-force search, which requires

𝑂(

(𝑛
𝑘

)
) evaluations.

5.2.1 Optimality of Greedy. We now show that, in the case with

multiple learners, Greedy does not necessarily output the optimal

corrupting set.

1 45

2

3

(a) Example network.

𝑇 𝜎(𝑇 )

{3} 0.0533

{2} 0.0533

{4} 0.0646

{4, 3} 0.2332

{2, 3} 0.2588

{4, 2} 0.2332

{4, 2, 3} 0.7134

(b) Influence of the possible sets.

Figure 1: An instance of the Grapevine model, on which
Greedy does not find the optimal solution. Nodes 1 and 5
are the learners and nodes 2, 3 and 4 are the sources.

Example 5. Consider an instance of the Grapevine model with

the graph given in Figure 1a and the following parameters: 𝜇10 =

0.1353, 𝜇01 = 0.0386, 𝑝 = 0.9299, 𝜃 = 0.9297. Let nodes 2, 3 and 4 be

the sources and the attacker’s budget be 𝑘 = 2. Table 1b shows the

influence of each possible corrupting set.

In the first round, Greedy selects source 4 as it has the highest

influence. It then randomly selects between {4, 3} and {4, 2} as they
have the same influence. However, the optimal pair to corrupt is

{2, 3}, which is missed by Greedy.

When Greedy is not optimal, a common approach to providing

approximation guarantees is by exploiting properties of the ob-

jective function, in particular, submodularity [23]. Unfortunately,

the influence function arising from our model is neither submodu-

lar nor supermodular, which makes analysing the approximation

guarantees of Greedy difficult.

Lemma 6. Influence 𝜎 is neither submodular, nor supermodular.

Proof. The proof of Lemma 6 is by counterexample. Take the

system represented in Figure 1a, in particular, note the influence 𝜎

in Figure 1b. Recall the definition of submodularity from Section 3.

Setting 𝐴 = {2, 4} and 𝐵 = {3, 4} violates the condition, hence 𝜎 is

not submodular in this instance.

To show that in some instances 𝜎 may also be not supermod-

ular, consider an instance with an odd number of sources,𝑚 and

parameters 𝜇01 = 𝜇10 = 𝑝 = 𝜀 for some small 𝜀. Intuitively, there

is very little noise in the model, which is known to the learners,

hence they trust the messages they receive completely. As 𝜀 → 0,

we can see that 𝜎(𝑇 )→ 1 if |𝑇 |≥ 𝑚
2
and 𝜎(𝑇 )→ 0 otherwise. Now

choose 𝐴 and 𝐵 such that |𝐴|, |𝐵 |≥ 𝑚
2
– this violates the condition

of supermodularity. □

5.3 Computing Influence
The ability of the attacker to identify the best sources for corruption

is reliant on their ability to calculate the influence of a source set.

Consider the definition of influence, 𝜎(𝑇 ) = 𝑏 − 𝑏𝑇 . Computing 𝜎

requires computing the average expected learned posterior in both

the corrupted and the uncorrupted case. Since 𝑏 :=
1

𝑛

∑
𝑟 ∈𝑉 𝑏𝑟 , this

reduces to 𝑛 evaluations of individual expected learned posterior,

𝑏𝑟 .

Since 𝑏𝑟 =

∑
𝐼 𝑏𝑟 (𝐼 )𝑃𝑟 (𝐼 ), computing this expected posterior re-

quires iterating over all possible received vectors of messages by

the learner. Since each message is either 0, 1 or ∅, and there are𝑚

sources, there are 3
𝑚

such vectors. Even if the computation of the

posterior, given the message vector, can be done quickly, iterating

over this number of possibilities grows infeasibly fast as the number

of sources grows.

However, the simplified posterior given by (6) allows us to sim-

plify the sum by grouping together the vectors of messages that

produce the same posteriors. Since the posterior only depends on

the number of 0- and 1-messages at a particular distance from the

learner, all sources at the same distance are indistinguishable from

each other.

Suppose𝑚 =

∑𝐷
𝑑=1

𝑚𝑑 , where𝑚𝑑 is the number of sources at

distance 𝑑 from the learner and 𝐷 is the diameter of the network

(and hence the greatest distance a source can be at). Since, at dis-

tance 𝑑 , any permutation of the 𝑚𝑑 messages leads to the same

posterior, there are
1

2
(𝑚𝑑 + 1)(𝑚𝑑 + 2) possible distinct message

vectors. Then, the total number of equivalence classes of message

vectors is

∏𝐷
𝑑=1

1

2
(𝑚𝑑 + 1)(𝑚𝑑 + 2).

Notice that when all sources have a distinct distance from the

learner, each𝑚𝑑 = 1 and so the number of equivalence classes is

once again 3
𝑚
: each message is distinct as it comes from a unique

distance. On the other hand, when all sources are at the same

distance, the number of classes is reduced to
1

2
(𝑚 + 1)(𝑚 + 2): all

that matters to the learner is the number of 1s and 0s received.

Hence, in the best case scenario, the computation of the expected

posterior of a learner can be polynomial in the number of sources,

namely 𝑂(𝑚2
). In the worst case, however, the computation is still

𝑂(3
𝑚

), while a realistic scenario is somewhere in-between: it is

exponential but only in the number of distinct distances to sources,

which is in turn bounded by the diameter of the network, 𝐷 .
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5.3.1 Approximating Influence with Simulations. When the net-

work and the number of sources are both large, direct computation

of the influence becomes infeasible and thus a common approach is

to compute an estimate using repeated simulations of the diffusion

process given by our model. This process is fast: we only need to

precompute𝑀𝑑
as given in 4 and then sample each of the𝑚 mes-

sages independently. This samples a message vector 𝐼 with the true

probability of 𝑟 receiving it, so repeated sampling approximates the

expected posterior probability, 𝑏𝑟 .

Figure 1 in the supplementary material shows the accuracy of

the estimates as a function of the number of samples, 𝑁 . Even with

𝑁 = 10, most estimates are within 0.3% of the true influence. Larger

sample sizes do narrow the spread of the estimates, although with

diminishing returns - using more than 𝑁 = 100 samples is unnec-

essary for most applications. This shows that fast and accurate

estimates of the influence function are available to the attacker,

provided they know the parameters of the model.

5.4 Empirical Analysis
5.4.1 Experimental Setup. We conducted several simulation-based

experiments to test the effectiveness of various attacking strategies.

The strategies are all based on the greedy approach. The Greedy

algorithm given in Algorithm 1 uses empirical estimates of the

influence function at each iteration of the algorithm. All other

algorithms are based on a specific centrality measure and simply

select a set of 𝑘 sources with highest centralities. Where possible

we compared the heuristics against the optimal solution, computed

either analytically or empirically. Where computing the optimum

is infeasible, we compared the heuristics against each other.

5.4.2 Experiment on the Facebook Network. In Experiment 1, we

used a subset of the Facebook friendship network, provided by

Leskovec and Mcauley [19]. It is an undirected graph that has

around 4000 nodes, which represent Facebook users, and around

88000 edges, which represent the friendship relation. We generated

667 unique instances on this network as follows. We select between

5 and 9 nodes at random to serve as sources. Then we choose

𝜇10, 𝜇01 ∈ [0, 0.5] and 𝑝, 𝜃 ∈ [0.5, 1], each uniformly at random.

This characterises an instance of the Grapevine model.

Now we run 100 simulations of the diffusion process to estimate

𝜎(𝑇 ), for each𝑇 ⊂ 𝑆 . Then, for each 𝑘 ∈ {2, ...,𝑚−1}, we record the
highest, lowest and average influence for sets of size 𝑘 . We then run

the algorithms with the budget of 𝑘 and normalise the influence

of their output as to be between the optimal and the worst choice

of the corrupting set. This produces the score for each algorithm

between 0 and 1, where 0 selects the corrupting set with the lowest

influence and 1 with the highest.

The empirical distribution of the scores for each algorithm on

the Facebook network are shown on the right plot in Figure 2.

Each curve illustrates the number of instances where the algorithm

performs above a threshold. For example, the Greedy algorithm is

only sub-optimal in around 5% of the cases, while using PageRank

centrality is only optimal in 10% of the instances.

The results highlight the power of the Greedy algorithm. While

there are instances where Greedy only achieves 60% of the optimal

value, 95% of the time it outputs the optimal set in only𝑂(𝑘𝑚 − 𝑘2
)

evaluations of the influence function.

However, when evaluation of the influence function is infeasible

or even impossible due to incomplete knowledge of the model

parameters, relying on evaluation-free methods does not jeopardise

the performance much. Choosing the nodes with highest harmonic

centrality will yield an optimal result in over 80% of the cases, while

closeness centrality achieves the optimum 75% of the time.

Amore complex method of estimating centrality, PageRank, does

not seem to correlate with influence very well. It is only optimal

in 10% of the cases, while in 35% of the cases it achieves a below-

average score. Eigenvector centrality provides somewhat better

results, although it is still significantly worse than the shortest

path-based measures.

On the other hand, a simple method of choosing the sources

with highest degree, while outperforming PageRank slightly, also

falls behind the other heuristics. This suggests that knowing the

topology of the network is very important for the attacker, even if

the parameters of the model are unknown.

We also run the same experiment on two smaller (𝑛 = 200)

networks, one generated using the Erdős–Rényi model and the

other - using Watts-Strogatz [7]. While the results show a similar

pattern for the algorithms, an interesting observation is that cen-

trality measure-based algorithms all provide the same results on the

Erdős–Rényi graph. This suggests that the topology generated by

this random model is not well-described by the centrality measures.

5.4.3 Experiment on a Watts-Strogatz Graph. In Experiment 2, our

aim was to test the performance of the algorithms when the number

of sources is large. We have used a smaller network to make the

simulations computationally feasible. To this extent, we generated a

random graph using the Watts-Strogatz model with 𝑛 = 200 nodes,

the mean degree of 𝐾 = 10 and the rewiring probability of 𝛽 = 0.1.

For each value of 𝑘 ∈ [3, 19], we generated 50 unique instances

by selecting𝑚 = 20 sources at random and setting parameters in

the same way as in Experiment 1.

With this number of sources, a brute-force search of the optimal

solution becomes infeasible. Hence, we compare the Greedy algo-

rithm and its heuristic variants. We also select one set uniformly at

random to serve as a benchmark. We measure the performance of

the algorithms by normalising the influence of their output by the

influence of the random output.

Figure 3 shows the performance comparison of the algorithms.

We observe a similar story to Experiment 1. Greedy paired with

the empirical evaluations of the influence function performs best,

beating the random choice by more than 30%, on average, when

selecting 𝑘 = 4 corrupted sources. However, this advantage dimin-

ishes when selecting a large number of sources to corrupt, down to

around 3% when selecting 18/20 sources. This can be explained by

the submodular behaviour of the influence when corrupting signifi-

cantly more than half of the sources: at some point the attacker has

already convinced the learners enough (i.e., reduced their posterior

belief close to 0), so that corrupting more sources has little impact.

In the cases where selecting a good corrupting set matters, sim-

ilarly to Experiment 1, using closeness and harmonic centrality

works best when considering evaluation-free algorithms. Once

again, PageRank and degree centrality lag behind in performance,

but nevertheless outperform the random choice on average. This

is an important consideration for the degree-based algorithm as it
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Figure 2: Empirical distribution function of the algorithms’ performances on each corresponding network.

Figure 3: Mean normalised performance of the algorithms
on a Watts-Strogatz network with𝑚 = 20 sources as a func-
tion of the budget, 𝑘 .

assumes very little knowledge about the network, while still giving

an edge over a random choice.

6 DISCUSSION
In this paper, we extended Jackson,Malladi andMcAdam’s Grapevine

model [15], originally proposed for a single Bayesian learner on

a tree, to a multi-learner model on a network. In Section 4.3 we

generalised their main result by deriving the number of sources

necessary for learning as a function of the diameter of the network,

moreover providing an analytic form for small-world networks.

We then focused on the problem of a coordinated attack on the

sources, which corrupts them to share false information. We show

in Theorem 2 that, in the single learner case, the attacker has a

simple optimal strategy: pick the sources closest to the learner. In

contrast, the general case, where multiple learners form a network,

cannot always be solved optimally by the Greedy algorithm, even if

the attacker can evaluate the influence function exactly (Example 5).

We then analyse the effectiveness of Greedy attacking strategies

in Section 5.4: one that uses empirical evaluations of influence, and

several that only rely on centrality measures as a heurisitic. We test

these approaches against the optimal (where feasible) or random

choice on a subset of the Facebook network as well as two random

graph models: Erdős–Rényi and Watts-Strogats.

All experiments show that Greedy approaches work well in prac-

tice and their effectiveness depends on the information available

to the attacker. If evaluations of influence are available, Greedy is

almost always optimal on the Facebook network. Selecting nodes

based on the Closeness or Harmonic centrality can also be an ef-

fective strategy, while being ignorant of model parameters. Even

selecting sources based only on their degree provides an edge over

random selection.

This work paves way for many future directions. The Bayesian

approach to learning is a realistic extension of many information

diffusion models, yet it clearly introduces complexity in its analysis.

For instance, it gives rise to a complex influence function, which

characterises the effect of a set of sources on the learning process.

While we provided justification for the complexity of computation

of the influence, a theoretical hardness guarantee would provide

security by making efficient attacks more difficult.

Similarly, the complexity of influence makes it harder to provide

theoretical guarantees of the Greedy algorithm, while empirical re-

sults suggest that such guarantees should be possible. This calls for

further investigation of Greedy approximations for a more general

class of functions, which exhibit submodularity and supermodu-

larity features at the same time. In our case, a good starting point

would be applying the work of Bian et al. [6] to the influence func-

tion arising from a specific instance of the Grapevine model.

There is also more work to be done in examining knowledge

assumptions in the model. For instance, assuming heterogeneous

probability of message propagation (i.e., 𝑝0 ̸= 𝑝1) introduces an

aspect of learning purely from the number of received messages .

While assuming that the learners (or the attacker) lack the knowl-

edge of model parameters can lead to a simpler learning process,

but may also make it more difficult for the attacker to create a

sophisticated strategy.
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