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ABSTRACT
Multiagent reinforcement learning (MARL) has benefited signifi-
cantly from population-based and game-theoretic training regimes.
One approach, Policy-Space Response Oracles (PSRO), employs
standard reinforcement learning to compute response policies via
approximate best responses and combines them via meta-strategy
selection. We augment PSRO by adding a novel search procedure
with generative sampling of world states, and introduce two new
meta-strategy solvers based on the Nash bargaining solution. We
evaluate PSRO’s ability to compute approximate Nash equilibrium,
and its performance in negotiation games: Colored Trails and Deal-
or-no-Deal. We conduct behavioral studies where human partici-
pants negotiate with our agents (𝑁 = 346). Search with generative
modeling finds stronger policies during both training time and
test time, enables online Bayesian co-player prediction, and can
produce agents that achieve comparable social welfare negotiating
with humans as humans trading among themselves.
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1 INTRODUCTION
Learning to act from experience in an environment with multiple
learning agents is a difficult problem.

One class of MARL algorithms, policy-space response oracles
(PSRO), follows the spirit of fictitious play and its generalizations [7,
8, 10, 15], decomposing the goal into two steps via empirical game-
theoretic analysis (EGTA) [21]: i) the meta-strategy solver (MSS)
step, a process which chooses which policy a player should play
from a library, and ii) the best response (BR) stepwhich computes ap-
proximate best response policies to the distribution over opponents’
policies, adding them to the library.

We propose a training regime for multiagent (partially observ-
able) general sum, 𝑛-player, and negotiation games using game-
theoretic RL. We extend PSRO as follows: (i) We integrate an Monte
Carlo tree search (MCTS) AlphaZero-style approximate best re-
sponse into the best-response step, incorporating deep-generative
models into the training loop, which allows us to tractably rep-
resent belief-states during search in large imperfect information
games). (ii) We introduce and evaluate several new meta-strategy
solvers, including those based on bargaining theory, which are par-
ticularly well-suited for negotiation games. (iii) We conduct an
extensive evaluation across a variety of benchmark games and in
two negotiation games, including one with human participants.

Due to the space limitations, we present only an overview of our
algorithm and subset of our results. The full paper is found at [12].
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2 SEARCH-IMPROVED GENERATIVE PSRO
Empirical game-theoretic analysis (EGTA) [21] is an approach to
reasoning about large sequential games through normal-form em-
pirical game models, induced by simulating enumerated subsets
of the players’ full policies in the sequential game. Policy-Space
Response Oracles (PSRO) [10] uses EGTA to incrementally build
up each player’s set of policies (“oracles”) through repeated appli-
cations of approximate best response using RL.

We integrate search into the best response step based on Approxi-
mate Best Response (ABR) [20], which uses a variant of Information
Set Monte Carlo tree search [2] called IS-MCTS-BR. At the root of
the IS-MCTS-BR search (starting at information set 𝑠), the posterior
distribution over world states, Pr(ℎ | 𝑠, 𝜋−𝑖 ) is computed explicitly,
which requires both (i) enumerating every history in 𝑠 , and (ii)
computing the opponents’ reach probabilities for each history in 𝑠 .
Then, during each simulation step, a world state is sampled from
this belief distribution, then the game-tree regions are explored
in a similar way as in the vanilla MCTS, and finally the statistics
are aggregated on the information-set level. Steps (i) and (ii) are
prohibitively expensive in games with large belief spaces. Hence,
we propose learning a generative model online during the BR step.

We introduce new meta-strategy solvers based on the Nash Bar-
gaining Solution (NBS) [16]. Define the set of achievable payoffs
as all expected utilities 𝑢𝑖 (𝜇) under a joint-policy profile 𝜇 [6, 14].
Denote the disagreement outcome of player 𝑖 , which is the payoff
it gets if no agreement is achieved, as 𝑑𝑖 . The Nash bargaining
score is: max𝜇∈Δ(𝛱 ) Π𝑖∈N (𝑢𝑖 (𝜇) − 𝑑𝑖 ); the NBS is the joint policy
that maximizes this score. When 𝑛 = 2 this leads to a quadratic pro-
gram (QP) with the constraints derived from the policy space struc-
ture [5]. Even in this simplest case, the objective is non-concave
posing a problem for most QP solvers. Scaling to 𝑛 players requires
higher-order polynomial solvers. Instead, we solve for the NBS us-
ing projected gradient ascent, and use it at an optimization criteria
for other solution concepts (correlated equilibria) [13].

3 EXPERIMENTS IN A NEGOTIATION GAME
“Deal or No Deal” (DoND) is a simple alternating-offer bargaining
game with incomplete information, which has been used in many
AI studies [1, 3, 9, 11]. Our focus is to train RL agents to play against
humans without human data, similar to previous work [19]. Two
players are assigned private preferences v1 ≥ 0, v2 ≥ 0 for three
different items (books, hats, and basketballs). At the start of the
game, there is a pool p of 5 to 7 items drawn randomly such that: (i)
the total value for a player of all items is 10: v1 · p = v2 · p = 10, (ii)
each item has non-zero value for at least one player: v1 + v2 > 0,
(iii) some items have non-zero value for both players, v1 ⊙ v2 ≠ 0,
where ⊙ represents element-wise multiplication. The players take
turns proposing how to split the pool of items, for up to 10 turns (5
turns each). If an agreement is not reached, the negotiation ends
and players both receive 0. Otherwise, the agreement represents a
split of the items to each player, p1 + p2 = p, and player 𝑖 receives a
utility of v𝑖 · p𝑖 . DoND is an imperfect information game because
the other player’s preferences are private. We use a database of
6796 bargaining instances made publicly available in [11].

We recruited participants from Prolific [17, 18] to evaluate the
performance of our agents in DoND (overall 𝑁 = 346; 41.4% female,

Agent 𝑢Humans 𝑢Agent 𝑢Comb D% NBS

IndRL 5.86 6.50 6.18 0.96 38.12[5.37, 6.40] [5.93, 7.06] [5.82, 6.56]

Com1 5.14 5.49 5.30 0.90 28.10[4.56, 5.63] [4.87, 6.11] [4.93, 5.76]

Com2 6.00 5.54 5.76 0.92 33.13[5.49, 6.55] [4.96, 6.10] [5.33, 6.12]

Coop 6.71 6.17 6.44 1 41.35[6.23, 7.20] [5.66, 6.64] [6.11, 6.75]

Fair 7.39 5.98 6.69 1 44.23[6.89, 7.87] [5.44, 6.49] [6.34, 7.01]
Table 1: Humans versus Agents performance with 𝑵 = 129
human participants, 547 games total. �̄�𝑿 refers to the average
utility to group 𝑿 (for the humans when playing the agent,
or for the agent when playing the humans), Comb refers to
Combined, D% is the proportion of deals accepted. Square
brackets indicate 95% confidence intervals.

56.9% male, 0.9% trans or nonbinary; median age range: 30–40).
Crucially, participants played DoND for real monetary stakes, with
an additional payout for each point they earned in the game.

We trained 112 agents using search-augmented PSRO with gen-
erative world state sampling for 15-20 iterations.

As detailed in [12], these agents vary in terms of MSS, back-
propagation type, and final extraction technique. We then ran tour-
naments to rank and select from four representative categories: (i)
the most competitive agents (maximizing utility), (ii) the most coop-
erative agents (maximizing social welfare), the (iii) the fairest agent
(minimizing social inequity [4]); (iv) we add a separate category
of the top-performing independent RL agent trained in self-play
(DQN).

We collect data under two conditions: human vs. human (HvH),
and human vs. agent (HvA). In the HvH condition, we collect 483
games: 482 end in deals made (99.8%), and achieve a return of 6.93
(95% c.i. [6.72, 7.14]), on expectation. We collect 547 games in the
HvA condition: 526 end in deals made (96.2%; see Table 1). There
are several observations: first, DQN achieves the highest individual
return. By looking at the combined reward, it achieves this by
aggressively reducing the human reward (down to 5.86)–possibly
by playing a policy that is less human-compatible. The competitive
PSRO agents seem to do the same, but without overly exploiting
the humans, resulting in the lowest social welfare overall. The
cooperative agent achieves significantly higher combined utility
playing with humans. Better yet is Human/Fair, the only Human
vs. Agent combination to achieve social welfare comparable to the
Human vs. Human social welfare.

Overall, the fair agent is both adaptive to many different types
of agents, and cooperative, increasing the social welfare in all the
groups it negotiated with. This could be due to its MSS (MGCE)
putting significant weight on many policies leading to Bayesian
prior with high support (similarly to the uniform distribution over
self-play checkpoints method in Fictitious Co-Play, which collabo-
rated well with humans in Overcooked [19]), and/or its backpropa-
gation of the product of utilities rather than individual return.

Poster Session I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2446



REFERENCES
[1] Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z. Leibo, Karl Tuyls, and Stephen

Clark. 2018. Emergent communication through negotiation. In Sixth International
Conference on Learning Representations.

[2] Peter I. Cowling, Edward J. Powley, and Daniel Whitehouse. 2012. Information
set Monte Carlo tree search. IEEE Transactions on Computational Intelligence and
AI in Games 4 (2012), 120–143. Issue 2.

[3] David DeVault, Johnathan Mell, and Jonathan Gratch. 2015. Toward natural
turn-taking in a virtual human negotiation agent. In AAAI Spring Symposium on
Turn-taking and Coordination in Human-Machine Interaction.

[4] E. Fehr and K. Schmidt. 1999. A theory of fairness, competition and cooperation.
Quarterly Journal of Economics 114 (1999), 817–868.

[5] Christopher Griffin. 2010. Quadratic programs and general-sum games. In Game
Theory: Penn State Math 486 Lecture Notes. 138–144. https://docs.ufpr.br/~volmir/
Math486.pdf.

[6] John C Harsanyi and Reinhard Selten. 1972. A generalized Nash solution for
two-person bargaining games with incomplete information. Management science
18 (1972), 80–106.

[7] Johannes Heinrich, Marc Lanctot, and David Silver. 2015. Fictitious self-play
in extensive-form games. In Thirty-Second International Conference on Machine
Learning.

[8] Johannes Heinrich and David Silver. 2016. Deep reinforcement learning from
self-play in imperfect-information games. CoRR abs/1603.01121 (2016).

[9] Minae Kwon, Siddharth Karamcheti, Mariano-Florentino Cuellar, and Dorsa
Sadigh. 2021. Targeted data acquisition for evolving negotiation agents. In Thirty-
Eighth International Conference on Machine Learning, Vol. 139. 5894–5904.

[10] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl
Tuyls, Julien Perolat, David Silver, and Thore Graepel. 2017. A unified game-
theoretic approach to multiagent reinforcement learning. In Thirtieth Interna-
tional Conference on Neural Information Processing Systems.

[11] Mike Lewis, Denis Yarats, Yann N. Dauphin, Devi Parikh, and Dhruv Batra. 2017.
Deal or no deal? End-to-end learning for negotiation dialogues. In 2017 Conference

on Empirical Methods in Natural Language Processing.
[12] Zun Li, Marc Lanctot, Kevin R. McKee, Luke Marris, Ian Gemp, Daniel Hennes,

Paul Muller, Kate Larson, Yoram Bachrach, and Michael P. Wellman. 2023. Com-
bining Tree-Search, Generative Models, and Nash Bargaining Concepts in Game-
Theoretic Reinforcement Learning. https://doi.org/10.48550/ARXIV.2302.00797

[13] Luke Marris, Paul Muller, Marc Lanctot, Karl Tuyls, and Thore Graepel. 2021.
Multi-agent training beyond zero-sum with correlated equilibrium meta-solvers.
In Twenty-Eighth International Conference on Machine Learning.

[14] Peter Morris. 2012. Introduction to game theory. Springer Science & Business
Media.

[15] Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Pérolat,
Siqi Liu, Daniel Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang,
Guy Lever, Nicolas Heess, Thore Graepel, and Rémi Munos. 2019. A generalized
training approach for multiagent learning. In Eighth International Conference on
Learning Representations.

[16] John Nash. 1950. The bargaining problem. Econometrica 18, 2 (1950), 155–162.
[17] Eyal Peer, Laura Brandimarte, Sonam Samat, and Alessandro Acquisti. 2017.

Beyond the Turk: Alternative platforms for crowdsourcing behavioral research.
Journal of Experimental Social Psychology 70 (2017), 153–163.

[18] Eyal Pe’er, David Rothschild, Andrew Gordon, Zak Evernden, and Ekaterina
Damer. 2021. Data quality of platforms and panels for online behavioral research.
Behavior Research Methods (2021), 1–20.

[19] DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett.
2021. Collaborating with Humans without Human Data. In Thirty-Fifth Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan (Eds.), Vol. 34. 14502–14515.

[20] Finbarr Timbers, Nolan Bard, Edward Lockhart, Marc Lanctot, Martin Schmid,
Neil Burch, Julian Schrittwieser, Thomas Hubert, and Michael Bowling. 2022.
Approximate exploitability: Learning a best response in large games. In Thirty-
First International Conference on Artificial Intelligence.

[21] Michael P. Wellman. 2006. Methods for empirical game-theoretic analysis. In
Twenty-First National Conference on Artificial Intelligence.

Poster Session I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2447

https://docs.ufpr.br/~volmir/Math486.pdf
https://docs.ufpr.br/~volmir/Math486.pdf
https://doi.org/10.48550/ARXIV.2302.00797

	Abstract
	1 Introduction
	2 Search-Improved Generative PSRO
	3 Experiments in a Negotiation Game
	References



