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ABSTRACT
Although research on communication in multi-agent reinforcement
learning (MARL) has achieved some progress, the vulnerability of
the communication mechanism in MARL caused by adversarial
communication messages generated by malicious agents has not
been well investigated. Existing works about adversarial communi-
cation messages in MARL focus on the black-box scenario where
the attacker cannot access any model information about the multi-
agent system (MAS). But a more practical setting is the grey-box
scenario where the attacker can access the model information about
its controlled agent. To the best of our knowledge, there has not
been any work investigating grey-box attacks on communication in
MARL. In this paper, we propose the first grey-box attack method
on communication in MARL, which is called victim-simulation
based adversarial attack (VSA). At each timestep, the attacker sim-
ulates a victim attacked by other regular agents’ communication
messages and generates adversarial perturbations on its received
communication messages. The aggregation of these perturbations is
sent by the attacker to the regular agents through communication
messages, which will induce non-optimal actions of the regular
agents. Experimental results show that VSA can effectively degrade
the performance of the MAS on Predator-Prey. The findings in this
paper will make researchers aware of the grey-box attack in MARL.
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1 INTRODUCTION
Research on communication in multi-agent reinforcement learn-
ing (MARL) has achieved some progress [1, 2, 4, 5, 7, 9, 11], but the
communication mechanism in MARL is still vulnerable [11]. For
attackers, their controlled malicious agents might disrupt the col-
laboration of the multi-agent system (MAS) by sending adversarial
communication messages to other agents. Hence, it is necessary
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for the AI community to study adversarial attacks on communica-
tion in MARL. To the best of our knowledge, there exists only one
work [10] about adversarial attacks on communication in MARL.
This work is a black-box attack in which the attacker cannot ac-
cess any model of the MAS. However, in real applications, when
an attacker has controlled an agent, the model of this controlled
agent can be easily accessed by the attacker. This kind of attack
is called a grey-box attack and there has not existed any work to
study grey-box attacks on communication in MARL.

In this paper, we propose a novel and effective grey-box at-
tack method on communication in MARL, which is called victim-
simulation based grey-box adversarial attack (VSA). The main con-
tributions are listed as follows:

• VSA is the first grey-box attack method on communication
in MARL. VSA can easily be applied in real scenarios because
the grey-box scenario widely exists.

• The attacker simulates the controlled agent as a victim at-
tacked by other agents’ communication messages. At each
timestep, the attacker generates adversarial perturbations
on the received communication messages by disturbing its
controlled malicious agent (the simulated victim) to make
non-optimal actions. Then the aggregation of these perturba-
tions added to the malicious agent’s communication message
is sent to other agents.

• Experimental results show that VSA can effectively degrade
the performance of the MAS on Predator-Prey [7].

2 METHOD
2.1 Notation
We model a fully cooperative multi-agent task as a decen-
tralized partially observable Markov decision process (Dec-
POMDOP) [6] with communication, which can be defined by
𝐺 = ⟨N ,𝑇 , 𝑆,𝑂,𝐴, 𝑃, 𝑅, 𝑍,𝑀, 𝑛,𝛾⟩. N ≡ {1, 2, ...𝑛} is the finite set
of agents.𝑇 is the episode time horizon. Here, we take the timestep
𝑡 ∈ {0, 1, . . . ,𝑇 − 1} as an illustration. At the timestep 𝑡 , 𝑠𝑡 ∈ 𝑆 is
the true state of the environment. Each agent 𝑖 ∈ N has its own
partially observation 𝑜𝑡

𝑖
∈ 𝑂 , which is drawn from the true state

𝑠𝑡 according to the observation function 𝑍 (𝑠𝑡 , 𝑖). Agent 𝑖 sends its
communication message𝑚𝑡

𝑖
∈ 𝑀 to other agents −𝑖 , where𝑀 is the

communication message space and −𝑖 = N\{𝑖}. Agent 𝑖 receives
communication messages from other agents 𝒎𝑡

−𝑖 = {𝑚𝑡
𝑗
| 𝑗 ∈ −𝑖}.

Agent 𝑖 selects an action 𝑎𝑡
𝑖
∈ 𝐴 forming a joint action 𝒂𝑡 according

to the policy 𝜋𝜃 (𝑎 |𝑜𝑡𝑖 ,𝒎
𝑡
−𝑖 ), where𝐴 is the action space and 𝜃 is the
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policy parameter. The joint action 𝒂𝑡 causes a transition on the envi-
ronment according to the state transition function 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝒂𝑡 ) and
results in a shared reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝒂𝑡 ). 𝛾 ∈ [0, 1) is the discount
factor. The existence of attackers aims to degrade the performance
of the MAS by sending adversarial messages to other agents and
then making other agents take sub-optimal actions. The agent con-
trolled by attackers is called the malicious agent and B ⊂ N is the
finite set of malicious agents with size of 𝑏. The agent not controlled
by attackers is called the regular agent and R = N − B is the finite
set of regular agents with size of 𝑛 −𝑏. Malicious agent 𝑖 ∈ B sends
the adversarial communication message �̃�𝑡

𝑖
to other agents −𝑖 at

timestep 𝑡 . Regular agent 𝑖 ∈ R sends the true communication
message𝑚𝑡

𝑖
. We formally denote the communication message sent

by agent 𝑖 as �̂�𝑡
𝑖
at timestep 𝑡 . Hence, we have:

�̂�𝑡
𝑖 =

{
�̃�𝑡
𝑖
, if agent 𝑖 ∈ B is malicious,

𝑚𝑡
𝑖
, if agent 𝑖 ∈ R is regular. (1)

2.2 VSA
When attackers generate adversarial communication messages in
grey-box scenarios, attackers face two challenges: the occurrence of
deadlock and inaccessibility to other agents’ data. The deadlock oc-
curs due to the communication messages being sent synchronously
and this challenge will be overcome by using outdated messages
(shown in Section 2.2.1). As for other agents’ data, it is inaccessi-
ble naturally in grey-box scenarios, and the victim simulation will
overcome this challenge (shown in Section 2.2.2).

2.2.1 Using Outdated Messages. For each agent 𝑗 , when two
timesteps 𝑡 and 𝑡1 ≤ 𝑡 are close, the communication messages𝑚𝑡

𝑗

and𝑚𝑡1
𝑗
have certain similarities, intuitively. When ∥�̂�𝑡

−𝑖 − �̂�𝑡1
−𝑖 ∥ is

small, the action taken by agent 𝑖 will not be changed with a large
possibility, which is formulated as follows,

∥𝜋𝜃
(
𝑎 |𝑜𝑡𝑖 , �̂�

𝑡
−𝑖
)
− 𝜋𝜃

(
𝑎 |𝑜𝑡𝑖 , �̂�

𝑡1
−𝑖

)
∥ ≤ 𝑙𝜋𝑑

𝑡,𝑡1
𝑖

∀𝑎, 𝑖, 𝑡, ∀𝑡1 ≤ 𝑡, (2)

where 𝑑
𝑡,𝑡1
𝑖

= ∥�̂�𝑡
−𝑖 − �̂�𝑡1

−𝑖 ∥ and 𝑙𝜋 is a constant. Motivated by
this, we propose to use received (outdated) messages at the recent
timestep 𝑡1 = 𝑡 − 1 to approximate the optimal action at each
timestep 𝑡 , which can overcome the first challenge. Formally, we
use 𝜋𝜃

(
𝑎 |𝑜𝑡

𝑖
, �̂�𝑡−1

−𝑖

)
to approximate 𝜋𝜃

(
𝑎 |𝑜𝑡

𝑖
, �̂�𝑡

−𝑖

)
. Additionally,

the optimal action of agent 𝑖 at timestep 𝑡 is denoted as 𝑎𝑡,∗
𝑖

=

argmax𝑎 𝜋𝜃
(
𝑎 |𝑜𝑡

𝑖
, �̂�𝑡

−𝑖

)
and the approximate optimal action of

agent 𝑖 at timestep 𝑡 is denoted as 𝑎𝑡,∗
𝑖

= argmax𝑎 𝜋𝜃
(
𝑎 |𝑜𝑡

𝑖
, �̂�𝑡−1

−𝑖

)
.

2.2.2 Victim Simulation. Since attackers cannot obtain other un-
controlled agents’ data in real applications, we propose to simulate
a scenario to generate adversarial communication messages, where
the malicious agent under the control of attackers is a simulated
victim attacked by its received communication messages. Here, we
take the malicious agent 𝑖 ∈ B at the timestep 𝑡 as an illustration.

In this simulated scenario, the attacker needs to perturb �̂�𝑡
−𝑖 and

then makes the simulated victim 𝑖 miss the optimal action 𝑎𝑡,∗
𝑖

. Due
to the existence of the first challenge, we can use 𝜋𝜃 (𝑎 |𝑜𝑡𝑖 , �̂�

𝑡−1
−𝑖 ) to

approximate 𝜋𝜃 (𝑎 |𝑜𝑡𝑖 , �̂�
𝑡
−𝑖 ), as discussed in Section 2.2.1. Malicious

agent 𝑖 can access its approximate optimal action 𝑎
𝑡,∗
𝑖
. Malicious

Table 1: Results of all attack methods. Each attack method
is reported withmean ± standard deviation across 5 random
runs.

without Attack MA VSA
Win-Rate (%) 100.00 ± 0.00 97.97 ± 1.57 72.82 ± 3.11

agent 𝑖 simulates that it is attacked by the message �̂�𝑡−1
𝑗

sent by
agent 𝑗 . Hence, the attacker tries to generate a perturbation on �̂�𝑡−1

𝑗
.

Here, we introduce a cost function to perturb received messages
{�̂�𝑡−1

𝑗
| 𝑗 ∈ −𝑖} from agents −𝑖 on the malicious agent 𝑖 , which is

shown as follows:

𝐽 (𝜃, 𝑜𝑡𝑖 , �̂�
𝑡−1
−𝑖 , 𝑎

𝑡,∗
𝑖
) =

∑
𝑎∈𝐴

𝑝 (𝑎) log𝜋𝜃 (𝑎 |𝑜𝑡𝑖 , �̂�
𝑡−1
−𝑖 ) . (3)

Here, 𝑝 (𝑎) is given by 𝑝 (𝑎) =
{

1, if 𝑎 = 𝑎
𝑡,∗
𝑖
,

0, otherwise.
Although our method can be combined with different techniques

for crafting adversarial examples, we choose the fast gradient sign
method (FGSM) [3] for efficiently generating adversarial examples
as an illustration. By minimizing and linearizing the cost function
𝐽 (𝜃, 𝑜𝑡

𝑖
, �̂�𝑡−1

−𝑖 , 𝑎
𝑡,∗
𝑖
) around {�̂�𝑡−1

𝑗
| 𝑗 ∈ −𝑖}, the optimal perturbations

under ℓ∞− norm around {�̂�𝑡−1
𝑗

| 𝑗 ∈ −𝑖} are shown as follows:

{𝜂𝑡,𝑖
𝑗

= sign
𝜕𝐽 (𝜃, 𝑜𝑡

𝑖
, �̂�𝑡−1

−𝑖 , 𝑎
𝑡,∗
𝑖
)

𝜕�̂�𝑡−1
𝑗

| 𝑗 ∈ −𝑖}. (4)

The communicationmessage�̂�𝑡−1
𝑗

contains the learned information
by the agent 𝑗 , e.g., its historical knowledge and its observations
at time-step 𝑡 − 1. Hence, 𝜂𝑡,𝑖

𝑗
as the perturbation of message �̂� 𝑗−1

𝑗

can be used to destroy the learned information by the agent 𝑗 . In
summary, the proposal to simulate victim scenarios can successfully
overcome the second challenge.

2.2.3 Generation of Adversarial Communication Messages. At
timestep 𝑡 , malicious agent 𝑖 ∈ B can receive 𝑛 − 1 candidate
perturbations {𝜂𝑡,𝑖

𝑗
| 𝑗 ∈ −𝑖}. Here, we propose to use the mean of

the candidate perturbations to aggregate these perturbations, which
is defined as 𝜂𝑡

𝑖
= 1

𝑛−1
∑

𝑗 ∈−𝑖 𝜂
𝑡,𝑖
𝑗
. Then malicious agent 𝑖 can gen-

erate an adversarial communication message �̃�𝑡
𝑖
=𝑚𝑡

𝑖
+ 𝜖 sign𝜂𝑡

𝑖

and send �̃�𝑡
𝑖
to others. Here, 𝜖 is a constant and each element of

the message is changed by no more than 𝜖 .

3 EXPERIMENTS
We evaluate VSA in the predator-prey (PP) task [7], where 2 agents
try to reach a stationary prey on a 3 × 3 grid. Here, we choose
CommNet [8] as the communication mechanism in MARL. We use
model-based message attack (MA) [10] on communication as the
baseline and also use ℓ−norm as the constraint of the adversarial
perturbation in MA for a fair comparison. For all attack methods,
𝜖 = 0.3 and 𝑏 = 1. The corresponding results of our method and
the baseline are shown in Table 1. We can find that VSA can more
effectively degrade the performance of MAS than the baseline. The
findings of this paper will make researchers aware of grey-box
attacks in MARL.
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