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ABSTRACT
Despite recent works making great progress in continuous con-
trol tasks, exploration in these tasks has remained insufficiently
investigated. This paper proposes CCEP (Centralized Cooperative
Exploration Policy), which utilizes estimation biases of value func-
tions to contribute to the exploration capacity. CCEP keeps two
value functions initialized with different parameters, and generates
diverse policies with multiple exploration styles from a pair of value
functions. In addition, a centralized policy framework ensures that
CCEP achieves message delivery between multiple policies, fur-
thermore contributing to exploring the environment cooperatively.
Extensive experimental results demonstrate that CCEP achieves
higher exploration capacity. Empirical analysis shows diverse ex-
ploration styles in the learned policies by CCEP, reaping benefits
in more exploration regions. Besides, the exploration capabilities
of CCEP have been demonstrated to outperform current state-of-
the-art methods on multiple continuous control tasks.
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1 INTRODUCTION
In DRL settings, an agent aims to learn an optimal policy to max-
imize its expected cumulative rewards through trial and error. It
is essential that during the training phase, the agent should be en-
couraged to explore the environments and gather sufficient reward
signals for well-training. Therefore, exploration has obsessed with a
critical problem: submitting solutions too quickly without sufficient
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Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

STYLE
𝒂𝒕~𝝅𝝓(𝒂𝒕|𝒔𝒕, 𝒛𝒕)

ENVIRONMENT
𝒔𝒕#𝟏~𝒑(𝒔𝒕#𝟏|𝒔𝒕, 𝒂𝒕)

REPLAY BUFFER

Sample one style per step

POLICY
No.1

POLICY
No.2

POLICY
No.3

POLICY
No.4

UPDATE POLICY

𝝓𝒕#𝟏 ← 𝐚𝐫𝐠𝐦𝐚𝐱
𝝓

𝟏
𝟒
4𝑸𝒌(𝒔, 𝝅(𝒔, 𝒛𝒌))
𝟒

𝒌'𝟏

UPDATE CRITICS

𝜽𝒊𝒕#𝟏 ← 𝐚𝐫𝐠𝐦𝐢𝐧
𝜽𝒊

𝟏
𝑵
4 𝒚− 𝑸𝜽𝒊 𝒔, 𝒂

𝟐

Sample a batch of N transitions: 	(𝒔𝒕, 𝒂𝒕, 𝒛𝒕, 𝒔𝒕#𝟏, 𝒛𝒕#𝟏, 𝒓)

Generate critics by Eq. (9) 

Centralization

Cooperative Exploration 

𝒛~𝐃𝐢𝐬𝐜𝐫𝐞𝐭𝐞𝐔𝐧𝐢𝐟𝐨𝐫𝐦(𝟎, 𝟒)

𝒛

𝒛

𝒂𝒕

𝒔𝒕#𝟏

𝒔𝒕#𝟏

𝒔𝒕, 𝒂𝒕

r	,

Figure 1: The workflow of CCEP Algorithm. The agent 𝜋 in-
teractswith the environmentwith diverse style cooperatively.
A centralized policy with four different styles is learned from
the multi-styled critics.

exploration, leading to getting stuck at local minima or even com-
plete failure.Whereas existing explorationmethods [1, 3, 6, 7, 11, 16]
remain a problematic drawback – lacking diversity to explore. How-
ever, in massive situations, diverse styles of exploration are neces-
sary. For instance, in chess games, players should perform different
styles of policies to keep competitive.

Our insights originate from a non-trivial phenomenon during the
critic update process: the different critic functions may have great
differences even if they approximate the same target due to the
function approximation error which accumulates to the estimation
bias. Although many proposed methods are dedicated to reducing
estimation bias [4, 5, 8, 9, 14, 15], this knotty problem is impossible
to completely avoid. We raise the question of whether we can
“transform an enemy into a friend" – utilizing estimation bias to
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Figure 2: Measuring the exploration region. The points represent region explored by each method in 10 episodes. All the states
get dimension reduction by the same t-SNE transformation for better visualization.

Table 1: Max Average Return over 10 trials of 1 million time
steps. Themean values have been listed. Themaximumvalue
for each task is bolded.

Env Ours OAC SAC TD3 ICM RND

HCheetah 11945 9921 11129 9758 10085 10629
Hopper 3636 3364 3357 3479 3504 3419
Walker2d 4706 4458 4349 4229 4255 4197
Ant 5630 4519 5084 5142 5166 4990
Pusher -21 -25 -20 -25 -23 -23
Humanoid 5325 5747 5523 5356 5374 5490

enhance the RL algorithm performance. Inspired by this, we use
the estimation bias gap between these two value functions, termed
as controversy, to encourage more exploration. In particular, our
intuition can be ascribed that controversy in the value estimation
will lead to sub-optimal policies. These policies have a bias toward
message acquisition known as the style.

This paper highlights that controversy can be utilized to encour-
age policies to yield multiple styles which encourages explorations.
Our paper contributes three aspects. (1) We first describe that the
estimation bias in double value functions can lead to various explo-
ration styles. (2) This paper proposes the CCEP algorithm (Please
refer to [10] for the full version of this paper), encouraging diverse
exploration for environments by cooperation from multi-styled
policies. (3) Finally, in CCEP, we design a novel framework, termed
as the centralized value function framework, which is updated by
experience collected from all the policies and accomplishes the
message delivery mechanism between different policies. Extensive
experiments are conducted on the MuJoCo platform to evaluate the
effectiveness of our method. The results reveal that the proposed
CCEP approach attains substantial improvements in both average
return and sample efficiency on the baseline across selected envi-
ronments. Besides, CCEP also allows agents to explore more states
during the same training time steps as the baseline.

2 OUR METHOD
CCEP start by maintaining double randomly initialized value func-
tions 𝑄𝜃1 and 𝑄𝜃2 with parameters 𝜃1 and 𝜃2 respectively and
update the value function with TD3 [4]. But the two randomly
initialized value functions potentially have different value estima-
tions for a given state-action pair due to the accumulated function

approximation error. This difference leads to the result that the two
critics may give two different suggestions for the best action choice.
These different criterias for a given state-action pair may lead to
a different style of action choice. It is reasonable the estimation is
radical if we choose the maximum value of the two to estimate and
the estimation is conservative if we choose the minimum value of
the two. Additionally, rather of constantly providing conservative
or radical estimates for the current batch of state-action pairs, we
would like to take into account random conservative or radical
estimates. Thus, we involve four critics during the update of policy
networks. There exists controversy among these critics, and the
controversy can influence the performance of the policy learned.
With four critics, we train a centralized cooperative policy to encour-
age multi-styled explorations through diverse value estimations.
The target is to train multiple policies, with each policy targeting an
individual value function. We express the policy function as 𝜋 (𝑠, 𝑧),
with state 𝑠 and latent variable 𝑧 as input. The latent variable 𝑧,
which is a one-hot label in our method, identifies different policies.
For a given latent variable 𝑧, the policy targets 𝑧-th value functions.
With different latent variable 𝑧, the policy shows diverse styles due
to the multi-styled targets. We make an experiment showing that
there exists different exploration preferences for these policies. In
the exploration procedure, we randomly sample latent variable 𝑧
and make decisions by policy 𝜋 (𝑠, 𝑧). This approach enables diverse
styles to be applied at each time step. The workflow of CCEP Al-
gorithm is shown in Figure 1. Broadly speaking, our exploration
policy has the following characteristics: Multi-styled, Centralized,
and Cooperative.

3 EXPERIMENTS
To evaluate our method, we test our algorithm on the suit of Mu-
JoCo [12] continuous control tasks. We show the max average
return over 10 trials of 1 million time steps in Table 1. Further, We
compare the exploration capabilities of CCEP with that of base-
lines [1, 2, 4, 7, 11] (Figure 2). For a fair comparison, these methods
are trained in Ant-v3 with the same seed at half of the training pro-
cess. In order to get reliable results, the states explored are gathered
in 10 episodes with different seeds. We apply the same t-SNE [13]
transformation to the states explored by all of the algorithms for
better visualization. While there are great differences between the
states explored by different algorithms, the result shows that our
algorithm (red) explores a wider range of states involving that other
algorithms has explored.
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