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ABSTRACT

We investigate verification and existence problems for prominent

stability concepts in hedonic games with friends, enemies, and op-

tionally with neutrals [8, 15]. We resolve several (long-standing)

open questions [4, 15, 19, 22] and show that for friend-oriented pref-

erences, under the friends and enemiesmodel, it is coNP-complete to

verify whether a given agent partition is (strictly) core stable, while

under the friends, enemies, and neutrals model, it is NP-complete to

determine whether an individual stable partition exists. We further

look into natural restricted cases from the literature, such as when

the friends and enemies relationships are symmetric, when the

initial coalitions have bounded size, when the vertex degree in the

friendship graph (resp. the union of friendship and enemy graph)

is bounded, or when such graph is acyclic or close to being acyclic.

We obtain a complete (parameterized) complexity picture regarding

these cases.
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1 INTRODUCTION

Hedonic games, introduced by Dréze and Greenberg [9], are coali-

tion formation games where each agent’s preferences over possible

coalitions (i.e., subsets of agents) depend only on the members in

the respective coalitions. The goal is to partition the agents into

disjoint coalitions which are “stable”. Typical stability concepts

include (strict) core stability, Nash stability, and individual stabil-

ity [2, 3, 5, 11, 12, 16, 18, 21]. Briefly put, a partition is core stable

if no subset 𝑆 of agents can strictly improve by joining 𝑆 , and it

is strictly core stable if no subset 𝑆 of agents can weakly improve

by joining 𝑆 whereas at least one agent can strictly improve. The

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,

London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

partition is Nash stable if it is individually rational (i.e., no agent

prefers to be alone), and no agent envies another coalition (i.e.,

prefers to be in this coalition rather than her own). It is individually

stable if it is individually rational, and no agent envies another

coalition and this coalition is fine with accepting her.

The existence of a stable partition and the computational com-

plexity of determining whether such partition exists depends on

the representation of the preferences of each agent [22]. To simplify

the representation of the preferences, Dimitrov et al. [8] introduce

the so-called hedonic games with friends and enemies, where there

is a directed graph on the agents (the so-called friendship graph)

such that an agent 𝑥 considers another agent𝑦 a friend if there is an

arc from 𝑥 to 𝑦; otherwise, 𝑥 considers 𝑦 an enemy. Depending on

whether more friends or fewer enemies are preferred, Dimitrov et al.

distinguish between friend-oriented and enemy-oriented preferences.

Under friend-oriented preferences, when comparing two coalitions,

an agent prefers the onewithmore friends, and for the same number

of friends, she prefers fewer enemies, while under enemy-oriented

preferences, an agent prefers the coalition with fewer enemies,

and for the same number of enemies, she prefers more friends.

Recently, Brandt et al. [6] show that it is NP-complete to deter-

mine the existence of a Nash stable partition under friend-oriented

preferences. Dimitrov et al. [8] show that under friend-oriented

preferences, there is always a strictly core stable partition (which

is hence core stable and individually stable), and under the enemy-

oriented preferences, a core stable partition always exists. However,

the computational effort to find these partitions is different: Under

the friend-oriented preferences, the strongly connected compo-

nents in the friendship graph form a strictly core stable partition

and can be found in linear time, whereas under the enemy-oriented

preferences, it is NP-hard to find a core stable partition [20, 22] and

beyond NP to find a strictly core stable partition [19]. One question

that has remained open for a decade asks what the complexity of

the core verification in the friend-oriented case is [4, 15, 19, 22]; it

was conjectured to be polynomial-time solvable by Woeginger [22].

Ota et al. [15] extend themodel of Dimitrov et al. by also allowing

agents to be neutral to other agents who do not impact the prefer-

ences, and show that the same approach of Dimitrov et al. gives rise

to a core stable partition under friend-oriented preferences. They

leave open the complexity of verifying core stable partitions. Barrot

et al. [4] show that this model may not admit individually stable

partitions and leave open the complexity of determining whether
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Table 1: FE
s
-(S)CoreV refers to the problems CoreV and StrictCoreV in FE

s
. See Section 2 for the definitions of Δ, 𝜅, and f. “♣”

means hardness holds even for planar graphs (and for symmetric preferences, albeit with a larger, constant max degree [T2]).

“
†
” (resp. “

♠
”) means hardness holds even for planar graphs (resp. symmetric preferences) . “

♦
” (resp. “

‡
”) means hardness holds

even when the enemy graph is acyclic (resp. 𝜅 + Δ + f is a constant). “
♦
” (resp. “

◦
”) means polynomial even if f = 2 (resp. only

the friendship graph is acyclic).
∗
Brandt et al. [6] recently showed it to be NP-h. However, their reduction does not bound the

maximum degree or the feedback arc set and it is not planar.

FE
s
-(S)CoreV FEN

s
-CoreV FEN

s
-StrictCoreV FE

s
-NashEx FEN

s
-NashEx FEN

s
-IndividEx

restrictions

always exists?

yes no no no no no

Δ coNP-c♣ [T1] coNP-c♠ [T12] coNP-c♠ [T12] NP-c†∗ [T3] NP-c♦ [T13] NP-c♦ [T14]

f coNP-c [T4] coNP-c [T11] coNP-c [T11] NP-c [T9] NP-c♦ [T13] NP-c♦ [T14]

Δ + f coNP-c [T5] coNP-c‡ [T11] coNP-c‡ [T11] NP-c [T9] NP-c♦ [T13] NP-c♦ [T14]

𝜅 coW[1]-h♠, XP [T6] coNP-c♠ [T12] coNP-c♠ [T12] – – – – – –

f + 𝜅 FPT [T8] coNP-c‡ [T11] coNP-c‡ [T11] – – – – – –

Δ + 𝜅 FPT [T7] coNP-c♠‡ [T12] coNP-c♠‡ [T12] – – – – – –

symm. coNP-c♣ [T1] coNP-c♠ [T12] coNP-c♠ [T12] P [O2] P [O2] P [O2]

DAG P [P2] P [P3] coNP-c [T11] P♦ [T9] P [T10] P◦ [T10]

one exists. As far as we know, Nash stability has not been studied

in the context with neutrals.

Bothmodels, with or without neutrals, are a restriction of hedonic

games with additive preferences where it is NP-complete to decide

whether a Nash stable or individually stable partition exists [21],

and it is Σ
p

2
-complete to decide whether a core stable or strictly

core stable partition exists [17, 23].

In this paper, we focus on the friend-oriented model and resolve

long-standing open questions by showing that all mentioned prob-

lems whose complexity was unknown are in fact intractable (either

coNP- or NP-complete). In particular, we refute Woeginger’s con-

jecture [19, 22] and show that verifying core stable partitions is

not polynomial-time solvable unless P=NP. To understand the true

causes of the intractability results and to explore the line between

easy and hard cases, we further look into interesting restricted

scenarios such as planar or acyclic graphs, and natural parameters

such as maximum degree Δ and feedback arc set number f of the
input graph, and also the size 𝜅 of the largest coalition in a given

partition. We analyze and obtain a complete picture of fine-grained

complexity of both the verification and existence problems with

respect to the four stability concepts and under friend-oriented

preferences. Our results are given in Table 1. We summarize our

main contributions as follows.

– First and foremost, we establish that it is coNP-complete to decide

whether a given partition is core stable or strictly core stable,

even in the case without neutrals (see Theorem 1), and it is NP-
complete to decide whether an individually stable partition exists

in the case with neutrals (see Theorem 14).

The first result has both theoretical and practical significance:

(1) The reduction is based on a novel friendship gadget, which

may be of independent interest for other hardness reductions

for hedonic games; (2) It not only showcases a rare complexity

situation where verification is much harder than searching, but it

can also be served as a complexity barrier against manipulation;

e.g., when an agent or a subset of agents want to know if it is

beneficial to maintain the status quo rather than to deviate, they

essentially need to solve the coNP-hard verification question.

– Second, we show that assuming the friends and enemies re-

lationship graph to be acyclic (DAG) almost always ensures

polynomial-time solvability. The strict core verification prob-

lem with neutrals is the only exception. Moreover, we obtain

complexity dichotomies with regards to the distance to being

a DAG, the so-called feedback arc set number f. We note that

DAGs or relationship graphs with small f occurs, for instance,
for authors when the friendships are based on the popularity

of authors. A prominent author is followed by many other au-

thors, whereas, this relation is often asymmetric and ordering

the authors according to their popularity can yield a small f.
– Third, strengthening known and own results, we show that as-

suming the relationship graph to be planar (e.g., when the agents

are located on the plane) or sparse (i.e., the maximum degree Δ
in the relationship graph is bounded since each agent typically

only knows a few other agents) does not lower the complexity.

– Finally, for the verification problem where a partition is given,

we show that under the friends and enemies model, if the initial

coalitions have small constant sizes, then the problem can be

solved in polynomial time, i.e., an XP algorithm wrt. 𝜅, but this

parameter alone cannot yield fixed-parameter (FPT) algorithms

under standard complexity theoretic assumptions. Combining

with f or Δ, we obtain FPT algorithms. Note that the algorithm

for the combined parameter (𝜅, f) is based on a reduction to

Directed Subgraph Isomorphism where the pattern graph is of

size𝑂 (𝜅2). Our crucial observation further reduces it to the case

where the pattern graph is indeed a directed in-tree, enabling us

to design an algorithm with desired running time. The problem

is much harder when neutrals are present; both core verification

problems remain coNP-hard even if 𝜅 + Δ + f is a constant.
Paper structure. In Section 2, we define the model and relevant

concepts, the central problems, and parameters. In Sections 3 and 4,

we consider the model without neutrals and with neutrals, respec-

tively. We conclude in Section 5. Due to space constraints, proofs
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of the results and additional materials marked with (★) are deferred

to the full version of the paper [? ].

2 BASIC DEFINITIONS AND FUNDAMENTALS

Given an integer 𝑡 , let [𝑡] denote the set {1, 2, . . . , 𝑡}. Given a di-

rected graph 𝐺 and a vertex 𝑣 , the sets 𝑁 +
𝐺
(𝑣) and 𝑁 −

𝐺
(𝑣) denote

the out- and in-neighborhood of 𝑣 . An instance of Hedonic Games

consists of a set 𝑉 of agents and for each agent a preference order

(with possibly ties) over non-empty agent subsets, called coalitions,

which contains her. In this paper, we focus on a natural and simple

variant of Hedonic Games where each agent regards every other

agent either good (i.e., a friend), or bad (i.e., an enemy), or neutral

such that agents’ preferences are friends oriented. Formally, we

are given a set of agents 𝑉 and two directed graphs on 𝑉 , called

friendship graph 𝐺g
and enemy graph 𝐺b

with disjoint arc sets,

such that an agent 𝑖 regards another agent 𝑗 as friend (resp. enemy)

whenever𝐺g
(resp.𝐺b

) contains the arc (𝑖, 𝑗); 𝑖 considers 𝑗 neutral
if neither 𝐺g

nor 𝐺b
contains (𝑖, 𝑗).

For each agent 𝑖 ∈ 𝑉 , the preference order ⪰𝑖 of 𝑖 is derived as

follows: For two coalitions 𝑆 and 𝑇 containing 𝑖 , agent 𝑖 (strictly)

prefers 𝑆 to𝑇 , written as 𝑆 ≻𝑖 𝑇 , if (i) either |𝑁 +𝐺g (𝑖)∩𝑆 | > |𝑁 +𝐺g (𝑖)∩
𝑇 |, (ii) or |𝑁 +

𝐺g (𝑖)∩𝑆 | = |𝑁 +𝐺g (𝑖)∩𝑇 | and |𝑁 +
𝐺b (𝑖)∩𝑆 | < |𝑁 +𝐺b (𝑖)∩𝑇 |.

Agent 𝑖 is indifferent between 𝑆 and𝑇 , written as 𝑆 ∼𝑖 𝑇 , if |𝑁 +𝐺g (𝑖)∩
𝑆 | = |𝑁 +

𝐺g (𝑖) ∩𝑇 | and |𝑁 +
𝐺b (𝑖) ∩ 𝑆 | = |𝑁 +𝐺b (𝑖) ∩𝑇 |. Agent 𝑖 weakly

prefers 𝑆 to 𝑇 if 𝑆 ≻𝑖 𝑇 or 𝑆 ∼𝑖 𝑇 . Note that the number of neutral

agents in the coalition does not affect agent’s preferences regarding

that coalition.

We call 𝑉 the grand coalition. A coalition structure Π of 𝑉 is a

partition of𝑉 into disjoint coalitions, i.e., the coalitions𝑉 ′ in Π are

pairwise disjoint and

⋃
𝑉 ′∈Π 𝑉

′ = 𝑉 . We will use coalition structure

and partition interchangeably. Given a coalition structure Π of 𝑉

and an agent 𝑖 ∈ 𝑉 , let Π(𝑖) denote the coalition which contains 𝑖 .

A coalition𝑊 is strictly blocking a coalition structure Π if every

agent 𝑖 ∈𝑊 strictly prefers𝑊 to Π(𝑖), and it is weakly blocking Π
if every agent 𝑖 ∈ 𝑊 weakly prefers𝑊 to Π(𝑖) and at least one

agent 𝑖 ∈𝑊 strictly prefers𝑊 to Π(𝑖).
We use FEN

s
to denote the Hedonic Games variant with friends,

enemies, and neutrals, and use FE
s
to denote the restricted variant

of FEN
s
where no agent is neutral to any other agent, i.e., (𝑖, 𝑗) ∈

𝐸 (𝐺g) ∪ 𝐸 (𝐺b) holds for all distinct agents 𝑖 and 𝑗 . Note that the

superscript
s
refers to simple and is added to distinguish from the

abbreviation FEN used in the literature [12]. For FE
s
, we follow the

convention in the literature and only specify the friendship relation.

Due to this, in the remainder of the paper, we assume that an FE
s

instance consists of the friendship graph only.

(Strictly) core stable coalition structures, Nash and individual

stability. Let Π be a coalition structure. We say that Π is core stable

(resp. strictly core stable) if no coalition is strictly (resp. weakly)

blocking Π. Clearly, by definition, a strictly core stable partition

is also a core stable one. We call Π Nash stable if it is individually

rational (i.e., no agent prefers to be alone) and no agent envies

another coalition (i.e., no agent 𝑥 and coalition 𝐶 in Π exist such

that 𝑥 prefers 𝐶 ∪ {𝑥} to her own). It is individually stable if it is

individually rational, and no agent 𝑥 and coalition 𝐶 ∈ Π form a

blocking tuple (i.e., 𝑥 envies 𝐶 and each agent 𝑗 ∈ 𝐶 weakly prefers

𝐶 ∪ {𝑥} to 𝐶).

Example 1. The graph on the left (with blue arcs only) is an in-

stance of FE
s
, where each arc specifies the friendship relation. The

coalition structure, derived from the strongly connected components,

Π1 = {{1, 2}, {3}, {4}} is strictly core stable, but not Nash stable since
3 wants to join {4}. Indeed, there is no Nash stable solution. The graph
on the right (blue arcs indicating friends while red arcs enemies) is

an instance of FEN
s
. The coalition structure Π2 = {{1, 2}, {3, 4}} is

strictly core stable and Nash stable.

1

2

3 4

FE
s
:

1

2

3 4

FEN
s
:

The following relation is known from the literature [5, 8, 15].

Proposition 1. (i) Every strictly core stable coalition structure

is individually stable and core stable.

(ii) Nash stability implies individual stability.

(iii) For FE
s
, a strictly core stable coalition structure always exists

and it can be found in linear time.

(iv) For FEN
s
, a core stable coalition structure always exists and it

can be found in linear time.

Central problems. We are interested in the following core verifi-

cation problems.

FEN
s
-CoreV (resp. FE

s
-CoreV)

Input: An FEN
s
instance (𝑉 ,𝐺g,𝐺b) (resp. FEs instance (𝑉 ,𝐺g)),

and a coalition structure Π on 𝑉 .

Question: Is Π core stable?

We define FEN
s
-StrictCoreV and FE

s
-StrictCoreV accordingly

when we instead ask whether Π is strictly core stable. All four

problems are contained in coNP since checking whether a coalition

is blocking a coalition structure can be done in polynomial time.

By definition, it is straightforward that verifying Nash stability

or individual stability is polynomially solvable. Hence, we look into

the existence questions, which are contained in NP.

FEN
s
-NashEx (resp. FEN

s
-IndividEx)

Input: An FEN
s
instance 𝐼 = (𝑉 ,𝐺g,𝐺b).

Question: Does 𝐼 admits a Nash stable (resp. individually stable)

coalition structure?

We define FE
s
-NashEx accordingly for the FE

s
case. We assume

basic knowledge of parameterized complexity and refer to the fol-

lowing textbooks [7, 14] for more details.

Graph structures and parameters. We investigate the (parame-

terized) complexity of the above problems and focus on restricted

instances. Given an instance 𝐼 = (𝑉 ,𝐺g,𝐺b), we define the follow-
ing parameters:

– Max degree Δ: For FENs
, it is defined as max𝑖∈𝑉 |𝑁 +𝐺g+𝐺b (𝑖) ∪

𝑁 −
𝐺g+𝐺b (𝑖) |, while for FE

s
, it is defined as max𝑖∈𝑉 |𝑁 +𝐺g (𝑖) ∪

𝑁 −
𝐺g (𝑖) | since 𝐺g +𝐺b

is a complete digraph.

– Max coalition size𝜅: It is defined as the size of the largest coalition

in the coalition structure from the input.

– Feedback arc set number f: For FENs
, f is the smallest number

of arcs deleting which makes 𝐺g +𝐺b
acyclic, while for FE

s
, f is

the smallest number of arcs deleting which makes 𝐺g
acyclic,

We say that 𝐼 has symmetric preferences if each arc in 𝐺g
and 𝐺b

is

bi-directional (see the arcs (1, 2) and (2, 1) in Example 1). It contains
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acyclic graph (DAG) if the union 𝐺g +𝐺b
is acyclic for the FEN

s

model and 𝐺g
is acyclic for the FE

s
model, respectively.

3 THE FRIENDS AND ENEMIES MODEL

In this section, we focus on the FE
s
model [8]. First of all, we settle

the complexity of problems regarding (strict) core verification and

Nash existence, and show that they are intractable and remain so

even for very restricted cases such as sparse graphs and symmetric

preferences. For the hardness reductions, we use the following

NP-complete problem:

Planar-X3C

Input: A 3�̂�-element set X = [3�̂�] and a collection C = (𝐶1, . . . ,

𝐶�̂�) of 3-element subsets of 𝑋 such that each element 𝑖 ∈ 𝑋 ap-

pears in either two or three members in C and that the associated

element-linked graph is planar.

Question: Does C contain an exact cover for 𝑋 , i.e., a subcollec-

tion K ⊆ C such that each element of 𝑋 occurs in exactly one

member of K?
Herein, given a Planar-X3C instance 𝐼 = (𝑋, C), the associated
element-linked graph of 𝐼 is a graph𝐺 (𝐼 ) = (𝑈⊎𝑊, 𝐸) on two partite
vertex sets 𝑈 = {𝑢𝑖 | 𝑖 ∈ 𝑋 } and𝑊 = {𝑤 𝑗 | 𝐶 𝑗 ∈ C} such that

𝐸 = {{𝑢𝑖 ,𝑤 𝑗 } | 𝑖 ∈ 𝐶 𝑗 } ∪ {{𝑢𝑖 , 𝑢𝑖+1} | 𝑖 ∈ [3�̂� − 1]} ∪{{𝑢1, 𝑢3�̂�}}
is planar. We call the vertices in 𝑈 and𝑊 the element-vertices and

the set-vertices, respectively. We also call the cycle induced by the

element-vertices the element-cycle. For notational convenience, for

each element 𝑖 ∈ [3�̂�], let C(𝑖) B {𝐶 𝑗 ∈ C | 𝑖 ∈ 𝐶 𝑗 } denote the
sets which contain element 𝑖 .

Dyer and Frieze [10] show that the NP-completeness of Planar-

X3C remains even if the planar embedding of the associated element-

linked graph satisfies the following:

for all 𝑢𝑖 ∈ 𝑈 there are at most two vertices𝑤 𝑗 such that 𝑖 ∈ 𝐶 𝑗

and both lie inside or outside of the element-cycle. (♥)
Hence, for notational convenience and based on this planar embed-

ding, we partition C into two disjoint subcollections: Cout B {𝐶 𝑗 ∈
C | 𝑤 𝑗 lies outside of the element-cycle } and Cin B C\Cout. In the
hardness proofs, we will utilize this fact to construct appropriate

gadgets which do not exceed the desired maximum vertex degree.

Theorem 1. FE
s
-CoreV and FE

s
-StrictCoreV are coNP-complete

even for planar friendship graphs and Δ = 4.

Proof sketch. We show hardness for both problems via the

same reduction. Let 𝐼 = ( [3�̂�], C) denote an instance of Planar-

X3C with C = {𝐶1, . . . ,𝐶�̂�}, and let 𝐺 (𝐼 ) = (𝑈 ∪𝑊, 𝐸) denote the
associated element-linked planar graph. Recall that there exists a

planar embedding of𝐺 (𝐼 ) which satisfies (♥) such that Cout and Cin
partition the set family C into two disjoint subfamilies according

to this embedding.

For brevity’s sake, define 𝐿 = 27�̂� − 1; we note that the desired
blocking coalition will be of size 𝐿+1. For each element 𝑖 ∈ [3�̂�], cre-
ate three element agents 𝑥𝑖 , 𝑠𝑖 , 𝑡𝑖 , and a set of 𝐿 + 1 private friendship
agents 𝑥𝑧

𝑖
, 𝑧 ∈ {0, . . . , 𝐿}; these 𝐿 + 1 agents comprise the friend-

ship gadget of element 𝑖 . The number of the friendship agents will

ensure that we indeed have an exact cover. For each set𝐶 𝑗 ∈ C and

each element 𝑖 ∈ 𝐶 𝑗 , create two set agents 𝑐
𝑖
𝑗
and 𝑑𝑖

𝑗
. To connect the

elements with the sets, for each element 𝑖 ∈ [3�̂�], create two groups

𝑢𝑖 𝑢𝑖+1

𝑤 𝑗

𝑤𝑞

𝑤𝑝

{
𝑥𝑖 𝑥𝑖+1𝑠𝑖 𝑡𝑖

𝑎0
𝑖

𝑎1
𝑖

𝑎2
𝑖

𝑎3
𝑖

𝑑𝑖
𝑗 𝑑𝑖𝑝

𝑏1
𝑖

𝑏2
𝑖

𝑏0
𝑖

𝑏3
𝑖

𝑑𝑖𝑞

𝑤 𝑗

𝑢𝑖

𝑢𝑘𝑢𝑟

{ 𝑐𝑖
𝑗

𝑑𝑖
𝑗

𝑐𝑘
𝑗

𝑑𝑘
𝑗

𝑐𝑟
𝑗

𝑑𝑟
𝑗

Figure 1: Gadgets for Theorem 1. The red areas indicate the

coalitions in the initial partition Π. Upper part: An element-

gadget, where C(𝑖) = {𝐶 𝑗 ,𝐶𝑝 ,𝐶𝑞} such that 𝐶 𝑗 ,𝐶𝑝 ∈ Cout (in-
dicated by the dashed line). The private friendship gadget

for 𝑥𝑖 (resp. 𝑥𝑖+1) is depicted as a gray directed cycle. Lower

part: A set-gadget, where 𝐶 𝑗 = {𝑖, 𝑘, 𝑟 }. The red areas indicate

the coalitions in the initial partition Π.

of connection gadgets (one for each side of the element-cycle) with

a total of eight agents called 𝑎𝑧
𝑖
, 𝑏𝑧

𝑖
, 𝑧 ∈ {0, 1, 2, 3}, which serve as se-

lector agents. We remark that agents 𝑎3
𝑖
and 𝑏3

𝑖
serve as connectors

and will be friends with the agents corresponding to the sets which

contain 𝑖 . This completes the construction of the agents. In total,

we have agent set 𝑉 B {𝑥𝑖 , 𝑥0𝑖 , . . . , 𝑥
𝐿
𝑖
, 𝑠𝑖 , 𝑡𝑖 , 𝑎

𝑧
𝑖
, 𝑏𝑧

𝑖
| 𝑖 ∈ [3�̂�], 𝑧 ∈

{0, 1, 2, 3}}∪{𝑐𝑖
𝑗
, 𝑑𝑖

𝑗
, 𝑐𝑘

𝑗
, 𝑑𝑘

𝑗
, 𝑐𝑟

𝑗
, 𝑑𝑟

𝑗
| 𝐶 𝑗 ∈ C with 𝐶 𝑗 = {𝑖, 𝑘, 𝑟 }}. Next,

we describe the friendship graph𝐺g
; its planar embedding is based

on the planar embedding of 𝐺 (𝐼 ).
– Starting from the planar embedding of 𝐺 (𝐼 ), we replace each

element vertex 𝑢𝑖 ∈ 𝑈 with the corresponding element agent 𝑥𝑖
and their friendship agents 𝑥𝑧

𝑖
, 𝑧 ∈ {0, . . . , 𝐿}, with bidirectional

arcs (𝑥𝑖 , 𝑥0𝑖 ), (𝑥
0

𝑖
, 𝑥𝑖 ) and directed cycle (𝑥𝑧𝑖 , 𝑥

𝑧+1
𝑖
) (𝑧 ∈ {0, . . . , 𝐿},

𝑧+1 taken modulo 𝐿+1). For each edge {𝑢𝑖 , 𝑢𝑖+1} on the element-

cycle, we replace it with the arcs (𝑥𝑖 , 𝑠𝑖 ), (𝑠𝑖 , 𝑎0𝑖 ), (𝑠𝑖 , 𝑏
0

𝑖
), (𝑎0

𝑖
, 𝑡𝑖 ),

(𝑏0
𝑖
, 𝑡𝑖 ), (𝑡𝑖 , 𝑥𝑖+1); let 𝑖 + 1 = 1 if 𝑖 = 3�̂�. Further, for each (𝑖, 𝑧) ∈

[3�̂�] × {0, 1, 2}, we add the arcs (𝑎𝑧
𝑖
, 𝑎𝑧+1

𝑖
), (𝑏𝑧

𝑖
, 𝑏𝑧+1

𝑖
) (𝑧 + 1 taken

modulo 3), (𝑎1
𝑖
, 𝑎3

𝑖
), (𝑎2

𝑖
, 𝑎3

𝑖
), and (𝑏1

𝑖
, 𝑏3

𝑖
), (𝑏2

𝑖
, 𝑏3

𝑖
).

– For each set 𝐶 𝑗 ∈ C with 𝐶 𝑗 = {𝑖, 𝑘, 𝑟 } and 𝑖 < 𝑘 < 𝑟 , we replace

the corresponding set vertex in the planar embedding with a di-

rected subgraph consisting of the following arcs: (𝑐𝑖
𝑗
, 𝑑𝑖

𝑗
), (𝑑𝑖

𝑗
, 𝑐𝑖

𝑗
),

(𝑐𝑘
𝑗
, 𝑑𝑘

𝑗
), (𝑑𝑘

𝑗
, 𝑐𝑘

𝑗
), (𝑐𝑟

𝑗
, 𝑑𝑟

𝑗
), (𝑑𝑟

𝑗
, 𝑐𝑟

𝑗
), (𝑐𝑖

𝑗
, 𝑐𝑘

𝑗
), (𝑐𝑘

𝑗
, 𝑐𝑟

𝑗
), (𝑐𝑟

𝑗
, 𝑐𝑖

𝑗
).

– For each edge {𝑢𝑖 ,𝑤 𝑗 } ∈ 𝐸 (𝐺 (𝐼 )), we replace this edge according
to where the corresponding set vertex lies in the planar embed-

ding. If 𝐶 𝑗 ∈ Cout, then we add the arcs (𝑎3
𝑖
, 𝑑𝑖

𝑗
), (𝑑𝑖

𝑗
, 𝑎𝑧

𝑖
), where

𝑧 is deterministically fixed to either 1 or 2 so as to maintain the
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planarity. Analogously, if 𝐶 𝑗 ∈ Cin, then we add arcs (𝑏3
𝑖
, 𝑑𝑖

𝑗
),

(𝑑𝑖
𝑗
, 𝑏𝑧

𝑖
); again 𝑧 is deterministically fixed to either 1 or 2 so as

to maintain the planarity. Note that by (♥), adding arcs (𝑑𝑖
𝑗
, 𝑣𝑧
𝑖
)

(𝑣 ∈ {𝑎, 𝑏}, 𝑧 ∈ [2]) preserves planarity.
See Figure 1 for an illustration. To complete the construction, define

the initial coalition structure Π B {{𝑥𝑖 , 𝑥0𝑖 , 𝑥
1

𝑖
, . . . , 𝑥𝐿}, {𝑠𝑖 }, {𝑡𝑖 } |

𝑖 ∈ [3�̂�]} ∪ {{𝑣0
𝑖
, 𝑣1
𝑖
, 𝑣2
𝑖
}, {𝑣3

𝑖
} | (𝑖, 𝑣) ∈ [3�̂�] × {𝑎, 𝑏}} ∪ {{𝑐𝑖

𝑗
, 𝑑𝑖

𝑗
} |

{𝑢𝑖 ,𝑤 𝑗 } ∈ 𝐸 (𝐺 (𝐼 ))}.
The general idea for the reduction is as follows: For each ele-

ment 𝑖 ∈ [3�̂�] we created an element-gadget (consisting of several

element agents). The element-gadgets are “connected” via appro-

priate selector gadgets so they correspond to the element-cycle

in the associated element-linked graph 𝐺 (𝐼 ). This ensures that a
weakly blocking coalition will need to contain dedicated agents

which correspond to all elements. For each set𝐶 𝑗 ∈ C we created a

set-gadget (again consisting of several set agents). We connected

an element-gadget to a set-gadget via a communication gadget if

and only if the corresponding element is contained in the corre-

sponding set. This ensures that an agent in a set-gadget is in a

blocking coalition if and only if the element agents “contained” in

the set are in the blocking coalition as well. Note that this already

gives us a covering for the elements. To have an exact cover, we

introduced a novel friendship gadget which can never participate

in any blocking coalition but shall ensure that its associated agent

will never join a blocking coalition that is too large. This sets an

upper limit on the size of a blocking coalition.

One can verify that the graph is planar. The proofs for having

maximum degree 4 and the correctness are deferred to the full

version. □

Next, we show that restricting the preferences to be symmetric

does not lower the complexity. The ideas of the reduction are fairly

similar to that for Theorem 1.

Theorem 2 (★). FEs-CoreV and FE
s
-StrictCoreV are coNP-com-

plete even if the preferences are symmetric and the friendship graph

is planar and Δ = 8.

Next, strengthening the result by Brandt et al. [6], we show that

finding a Nash stable solution is NP-hard even if the friendship

graph has constant maximum degree and is planar.

Theorem 3 (★). FEs-NashEx isNP-complete even if the friendship

graph is planar and Δ = 9.

3.1 Algorithms and refined complexity for FE

We start with some simple polynomial-time algorithms for core

verification.

Proposition 2 (★). For each of the following cases, FE
s
-CoreV

and FE
s
-StrictCoreV are polynomial-time solvable.

(i) The friendship graph is a acyclic.

(ii) Δ = 2.

(iii) The preferences are symmetric and Δ = 4.

While both verification problems are trivial if the friendship

graph is acyclic, we show that interestingly even one feedback arc

makes the problem intractable.

Theorem 4 (★). FEs-CoreV and FE
s
-StrictCoreV are coNP-com-

plete even if f = 1, and each agent has at most 3 friends.

Additionally bounding the maximum degree Δ does not help to

break down the complexity.

Theorem 5 (★). FEs-CoreV and FE
s
-StrictCoreV are coNP-com-

plete, even if f = 2 and Δ = 5.

Next, we observe that checking whether a specific strictly block-

ing coalition exists can be done in linear time. This result will be

useful for designing further algorithms.

Lemma 1 (★). Given a coalition structure Π with maximum coali-

tion size 𝜅, in linear time, we can either find a blocking coalition

where every agent obtains strictly more friends than in Π, or conclude
that each weakly (resp. strictly) blocking coalition has size at most 𝜅 .

Proof sketch. Call a coalition a wonderfully blocking coalition

if every agent in it has strictly more friends than in Π. We observe

that if no coalitions are wonderfully blocking, then in any blocking

(resp. weakly blocking) coalition 𝑈 ′, there is an agent who has the

same number of friends, so she cannot get more enemies than in

Π, implying that |𝑈 ′ | ≤ 𝜅. Hence, checking whether wonderfully

blocking coalitions exist in the desired time completes the proof.

For each agent 𝑣 ∈ 𝑉 , let 𝑓Π (𝑣) denote the number of friends

she has in Π, i.e., 𝑓Π (𝑣) = |𝑁 +𝐺g (𝑣) ∩Π(𝑣) |, and let 𝑟 (𝑣) = 𝑓Π (𝑣) + 1.
Let𝑈 be a hypothetical wonderfully blocking coalition. Then, each

agent 𝑣 ∈ 𝑈 needs at least 𝑟 (𝑣) friends in𝑈 . Now, if there are agents

in the input with out-degree less than 𝑟 (𝑣), then we delete them

since they cannot be included in 𝑈 . Then, we recursively delete

the agents 𝑣 that have less than 𝑟 (𝑣) out-neighbors in the resulting

friendship graph. We repeat this process as long as there is an

agent 𝑣 with out-degree less than 𝑟 (𝑣). If this procedure terminates

with some agents remaining, then they form awonderfully blocking

coalition; otherwise, there can be none. The correctness proof and

the running time are deferred to the full version. □

Based on Lemma 1, core verification is polynomial-time solvable

if the largest initial coalition has bounded size. However, this result

cannot be improved to obtain fixed-parameter tractability.

Theorem 6 (★). FEs-CoreV and FE
s
-StrictCoreV are in XP and

coW[1]-hard wrt.𝜅 ; hardness remains even for symmetric preferences.

Combining 𝜅 with Δ, we obtain a fixed-parameter algorithm, based

on random separation.

Theorem 7 (★). FEs-CoreV and FE
s
-StrictCoreV are FPTwrt.

(𝜅,Δ).

Based on the observation below, we obtain a color-coding based

fixed-parameter algorithm for the combined parameter (𝜅, f). To
this end, we call a coalition in a given coalition structure Π a single-

ton (resp. non-singleton) coalition if it has size one (resp. larger than

one). Accordingly, an agent is a singleton (resp. non-singleton) agent

(wrt. Π) if she is in a singleton (resp. non-singleton) coalition.

Observation 1 (★). If Π is core stable, then there are at most 𝜅 · f
non-singleton agents.

Theorem 8. FE
s
-CoreV and FE

s
-StrictCoreV are FPTwrt. (𝜅, f).
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Proof sketch. Let (𝑉 ,𝐺g) be an instance of FE
s
and Π an ini-

tial coalition structure. The algorithm has two phases. First, we

preprocess the instance so that each non-trivial blocking coalition

has at most 𝜅 agents and the reduced instance excludes some unde-

sired cycles. Second, we further reduce the instance to one which

is acyclic and observe that any non-trivial blocking coalition must

“contain” an in-tree of size 𝑂 (𝜅2). Hence, for each possible in-tree

we can use color-coding to check whether it exists in FPT-time.

In the following we use 𝑉S and 𝑉NS to denote the singleton and

non-singleton agents, respectively.

The first phase consists of the following polynomial-time steps:

(P1) CheckwhetherΠ contains a coalition𝑈 such that𝐺g [𝑈 ] is not
strongly connected. If yes, then return NO since the strongly

connected subgraph corresponding to the sink component

in 𝐺g [𝑈 ] is strictly blocking Π.
(P2) If 𝐺g [𝑉S] contains a cycle, then the singletons agents on the

cycle is strictly blocking Π, so return NO.

(P3) By Lemma 1, check in linear time whether there is a blocking

(resp. weakly blocking) coalition of size greater than 𝜅.

The second phase is as follows: For each subset 𝐵NS ⊆ 𝑉NS of

size 𝑘′ ≤ 𝜅 and each size 𝑏 with 𝑘′ ≤ 𝑏 ≤ 𝜅, we check whether

there exists a blocking coalition of size 𝑏 which contains all non-

singletons from 𝐵NS and exactly 𝑏 − |𝐵NS | singletons; note that

after phase one, we only need to focus on coalitions of size at most

𝜅 and can assume that |𝑉NS | ≤ 𝜅 · f. We return YES if and only

if no pair (𝐵NS, 𝑏) can be extended to a blocking coalition (i.e.,

Algorithm 1 returns NO for all (𝐵NS, 𝑏)).
Given (𝐵NS, 𝑏), the task reduces to searching for the 𝑏 − |𝐵NS |

missing singleton agents, assuming that such an extension is pos-

sible. To achieve this, we reduce to searching for an in-tree of

size 𝑂 (𝜅2) in a directed acyclic graph (DAG) 𝐻 , which using color

coding, can be done in 𝑓 (𝜅) · |𝐻 |𝑂 (1) time where 𝑓 is some com-

putable function. First of all, if |𝐵NS | = 𝑏, then we check whether

𝐵NS is blocking (resp. weakly blocking) in polynomial time and

return 𝐵NS if this is the case; otherwise we continue with a next

pair (𝐵NS, 𝑏). In the following, let 𝐵 be a hypothetical blocking

coalition of size 𝑏 > |𝐵NS | which consists of 𝐵NS and 𝑏 − |𝐵NS |
singleton agents. The searching has two steps.

(C1) Construct a search graph 𝐺g
from 𝐺g

. Based on 𝐺g
we

construct a DAG 𝐺g
, where we later search for the crucial part of

the blocking coalition. We compute the minimum number 𝑟 (𝑎𝑖 ) of
singleton-friends each non-singleton agent 𝑎𝑖 in 𝐵NS should obtain

from 𝐵 by checking how many friends she initially has. Let 𝑛𝑖 (Π)
and 𝑛𝑖 (𝐵NS) denote the number of friends agent 𝑎𝑖 has in Π(𝑎𝑖 )
and 𝐵NS, respectively. If 𝑛𝑖 (Π) < 𝑛𝑖 (𝐵NS), then let 𝑟 (𝑎𝑖 ) B 0.

Otherwise for CoreV, let

𝑟 (𝑎𝑖 ) B
{
𝑛𝑖 (Π) + 1 − 𝑛𝑖 (𝐵NS), if 𝑏 ≥ |Π(𝑎𝑖 ) |
𝑛𝑖 (Π) − 𝑛𝑖 (𝐵NS), otherwise.

For StrictCoreV, the first if-condition is 𝑏 > |Π(𝑎𝑖 ) | instead of

𝑏 ≥ |Π(𝑎𝑖 ) |. After the computation, we check whether some non-

singleton agent 𝑎𝑖 ∈ 𝐵NS has 𝑟 (𝑎𝑖 ) > 𝑏 − |𝐵NS |. If 𝑎𝑖 is such an

agent, then she will not weakly prefer 𝐵 to Π(𝑎𝑖 ) since there are
not enough friends for her, so we continue with a next pair (𝐵NS, 𝑏).
Now, we construct 𝐺g

. First, duplicate the vertices in 𝐵NS as �̂�NS
B {𝑎𝑧

𝑖
| (𝑎𝑖 , 𝑧) ∈ 𝐵NS × [𝑟 (𝑎𝑖 )]}. The vertex set and the arc set of

𝐺g
are defined as 𝑉 B �̂�NS ∪𝑉S ∪ {𝑡}, where 𝑡 is an artificial sink,

and 𝐸 B {(𝑎𝑧
𝑖
, 𝑠) | (𝑎𝑖 , 𝑠) ∈ 𝐸 (𝐺g) ∩ (𝐵NS × 𝑉S), 𝑧 ∈ [𝑟 (𝑎𝑖 )]} ∪

𝐸 (𝐺g [𝑉S]) ∪ {(𝑠, 𝑡) | (𝑠, 𝑎𝑖 ) ∈ 𝐸 (𝐺g) ∩ (𝑉S × 𝐵NS)}, respectively.
Now let 𝐺g B (𝑉 , 𝐸). Briefly put, we remove all arcs that are not

incident to the singletons, and redirect every arc from a singleton

to a non-singleton vertex in 𝐵NS to the artificial sink 𝑡 . Note that

𝐺g
is acyclic since by (P2) no singleton agents induce a cycle.

(C2) Search for a tree structure in 𝐺g
. Observe that in 𝐺g [𝐵],

each non-singleton agent 𝑎𝑖 ∈ 𝐵NS has at least 𝑟 (𝑎𝑖 ) singleton
friends and each singleton agent in 𝐵 \ 𝐵NS has at least one friend.
Equivalently, in the modified induced subgraph 𝐺g [𝐵], each non-

singleton agent in �̂�NS (resp. singleton agent in 𝐵 \ �̂�NS) has at
least one out-arc. Then, 𝐺g [𝐵] contains an in-tree 𝑇𝐵 on vertex

set �̂�NS ∪ (𝐵 \ 𝐵NS) ∪ {𝑡} such that

(t1) every vertex 𝑎𝑧
𝑖
∈ �̂�NS has exactly one out-neighbor and

this out-neighbor is a singleton vertex such that no two non-

singletons 𝑎𝑧
𝑖
and 𝑎

𝑗
𝑖
(𝑧 ≠ 𝑗 ) share the same out-neighbor,

(t2) every singleton vertex in 𝑉 (𝑇𝐵) \ (�̂�NS ∪ {𝑡}) has exactly one

out-neighbor and this out-neighbor is either the root 𝑡 or some

singleton vertex, and

(t3) 𝑡 does not have any out-neighbors.

Observe that𝑇𝐵 has exactly |�̂�NS |+ |𝐵\𝐵NS | arcs. Since𝐺g
is acyclic

and the artificial sink 𝑡 does not have any out-arcs, by the above

conditions,𝑇𝐵 must be a directed in-tree with root at 𝑡 . In particular,

𝑇𝐵 is connected. For ease of reasoning, let us call an in-tree 𝑇 good

if there exists a subset 𝐵′ of𝑉S with 𝑏 − |𝐵NS | vertices such that𝑇 is

a directed graph on �̂�NS ∪ 𝐵′ ∪ {𝑡} and satisfies condition (t1)–(t3)

above, replacing the name 𝑇𝐵 with 𝑇 .

If𝐺g
contains a good in-tree𝑇 ′, then the vertices in 𝐵NS and the

singleton vertices in 𝑇 ′ forms a desired blocking coalition. By ap-

plying the color-coding algorithm of Alon et al. [1], we can already

search for a good in-tree in FPT-time. For the sake of completeness

and to better analyze the running time, we show how to combine

color-coding with a polynomial-time algorithm to search for it.

We describe the approach via Algorithm 1. By Naor et al. [13],

in line 1, we compute in 𝑓 (𝜅) · |𝑉S |𝑂 (1) time a family F of coloring

functions (aka. perfect Hash family) from 𝑉S to [𝑏 − |𝐵NS |] which
guarantees to contain a good coloring function. Here, a function

𝜒 : 𝑉S → [𝑏 − |𝐵NS |] is called good (wrt. 𝐵) if it assigns to each

singleton vertex in 𝐵 ∩ 𝑉S a distinct color from [𝑏 − |𝐵NS |]; see
the full version for more details on this. Hence, in line 2 we iterate

through each coloring 𝜒 in F . Note that if 𝜒 is good for 𝐵, then

after coloring the vertices in 𝑉S according to 𝜒 , there must exist a

good in-tree on vertices �̂�NS ∪ [𝑏 − |𝐵NS |] ∪ {𝑡} as well. Hence, in
line 3, we iterate through all good in-trees 𝑇 .

For ease of reasoning, we also use color to refer to a vertex in

[𝑏 − |𝐵NS |], and given a subset 𝑆 ′ ⊆ 𝑉S let 𝜒 (𝑆 ′) = {𝜒 (𝑠) | 𝑠 ∈ 𝑆 ′}.
In lines 5–9, we iterate through each singleton vertex 𝑣 in the

topological order 𝜏 (𝑉S) in 𝐺g
(recall that 𝐺g

is a DAG), and check

whether it has enough in-neighbors whose colors match the in-

neighbors of its color 𝜒 (𝑣) in the tree 𝑇 (line 7). More specifically,

we check whether 𝑣 has singleton in-neighbors of colors 𝐶𝑣 indi-

cated by the in-neighbors of 𝜒 (𝑣) in 𝑇 and whether it has the same

non-singleton in-neighbors as its color 𝜒 (𝑣) in 𝑇 . If yes, then we

use 𝑆𝑣 to store a subset of such singleton in-neighbors for 𝑣 (line

8). Otherwise, assuming that 𝜒 is good, 𝑣 cannot be used for the

blocking coalition, so we delete it from the search graph. Note that
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ALGORITHM 1: (C2) Searching for𝑇𝐵 in �̂�g
given 𝐵NS and 𝑏

1 F ← ( |𝑉S |, 𝑏 − |𝐵NS | )-perfect Hash family on the universe𝑉S

2 foreach coloring 𝜒 ∈ F with 𝜒 : 𝑉S → [𝑏 − 𝐵NS ] do
3 foreach Good in-tree𝑇 on vertex set �̂�NS ∪ [𝑏 − |𝐵NS | ]∪{𝑡 } do
4 𝐵S ← ∅; 𝜏 (𝑉S ) ← a topological order of𝑉S in �̂�

g

5 foreach 𝑣 ∈ 𝜏 (𝑉𝑆 ) do
6 𝐶𝑣 ← 𝑁 −

𝑇
(𝜒 (𝑣) ) ∩ [𝑏 − |𝐵NS | ]

7 if 𝐶𝑣 ⊆ 𝜒 (𝑁 −
�̂�g (𝑣) ∩𝑉S ) and

𝑁 −
𝑇
(𝜒 (𝑣) ) ∩ �̂�NS = 𝑁 −

�̂�g (𝑣) ∩ �̂�NS then

8 let 𝑆𝑣 ⊆𝑁 −
�̂�g(𝑣)∩𝑉S s.t. |𝑆𝑣 | = |𝐶𝑣 | and

𝜒 (𝑆𝑣 ) =𝐶𝑣

9 else �̂�g ← �̂�g − 𝑣;

10 if 𝑁 −
𝑇
(𝑡 ) ⊆ 𝜒 (𝑁 −

�̂�g (𝑡 ) ) then
11 let 𝑆𝑡 ⊆𝑁 −

�̂�g (𝑡 ) s.t. |𝑆𝑡 | = |𝑁 −𝑇 (𝑡 ) | and 𝜒 (𝑆𝑡 ) =𝑁 −𝑇 (𝑡 )
12 𝐵S ← 𝑆𝑡 ;𝑄 ← 𝑆𝑡

13 while𝑄 ≠ ∅ do
14 𝑃 ← ⋃

𝑣∈𝑄 𝑆𝑣

15 𝐵S ← 𝐵S ∪ 𝑃 ;𝑄 ← 𝑃

16 if |𝐵S | = 𝑏 − |𝐵NS | then return 𝐵S ∪ 𝐵NS;

17 return NO, i.e., (𝐵NS, 𝑏 ) cannot be extended to a blocking coalition

the order 𝜏 (𝑉S) ensures that we do not mistakenly store a singleton

vertex which cannot be used later on. Finally, in line 10, we check

whether the in-neighbors of 𝑡 contain enough singletons with ap-

propriate colors. If yes, we use the stored set of singleton vertices 𝑆𝑣
to iteratively collect all vertices in 𝑆𝑣 from root 𝑡 to leaves; note

that in an in-tree, the root is the sink and the leaves are the sources.

We return the set 𝐵S if it contains exactly 𝑏 − |𝐵NS | singletons, and
return NO if no iteration gives a desired set 𝐵S. The correctness

proof and running time analysis are deferred to the full version.

□

Next, we determine the existence of Nash stable partitions and

show a dichotomy result, strengthening a result by Brandt et al. [6].

Theorem 9 (★). FEs-NashEx is polynomial-time solvable if f ≤ 2,

whereas it is NP-hard even if f = 3 and Δ = 5.

Proof sketch. We only show the first part and give a linear-

time algorithm for f ≤ 2. Let (𝑉 ,𝐺g) be an instance of FE
s
-NashEx.

For ease of reasoning, call an agent a sink agent if she does not

have any friend in 𝐺g
; otherwise call her a non-sink agent. Let 𝑆

denote the set of all sink agents. First, we put each sink agent into a

singleton coalition. After that, if there is a non-sink agent who has

only sink friends, then we return NO. If every non-sink agent that

has a sink friend also has at least two non-sink friends, then we

return YES. Otherwise there is an agent 𝑣 who has at least one sink

friend and only one non-sink friend𝑤 . We place 𝑣 and𝑤 in a size-

two coalition {𝑣,𝑤} if the friendship relation is symmetric (i.e.,𝑤

also considers 𝑣 a friend), otherwise we stop and return NO. Finally,

we put all remaining agents in the same coalition. If the obtained

partition is Nash stable, then we output YES, otherwise NO.

For correctness, observe that all sink agents must be in singleton

coalitions in any Nash stable partition. If there is an agent 𝑣 who

has only sink friends, there is no way to place her into a coalition

which contains at least one of her friends. However, because 𝑣 has

at least one sink friend, she will envy the singleton coalition of

the friend, and we cannot have a Nash stable partition. If every

non-sink agent, who has a sink friend, has at least two non-sink

friends, the following partition {{𝑠} | 𝑠 ∈ 𝑆} ∪ {{𝑉 \ 𝑆}} is Nash
stable: Clearly, each agent 𝑣 ∈ 𝑉 \ 𝑆 that has a sink friend has at

least 2 friends in 𝑉 \ 𝑆 but at most one friend in any {𝑠}, where
𝑠 ∈ 𝑆 . If 𝑣 ∈ 𝑉 \ 𝑆 has no sink friends, then all of 𝑣 ’s friends are by

construction in 𝑉 \ 𝑆 .
Assume there is a vertex 𝑣 , who has a sink friend 𝑠 but only

one non-sink friend 𝑤 . Then by the above, in any Nash stable

partition Π, Π(𝑠) = {𝑠} but 𝑣 has one friend and no enemies in {𝑠}.
This means, in Π, we have Π(𝑣) = {𝑣,𝑤}. Hence, if the friendship
is not symmetric, then there is no Nash stable solution. Finally, if

the algorithm assigned 𝑣 and 𝑤 together, then (𝑣,𝑤, 𝑣) is a cycle
and must contain a feedback arc. Every remaining non-sink agent

must have a friend in any Nash stable solution. This implies that

they must be in a coalition that contains a cycle. Since there is only

one feedback arc left in 𝐺g [𝑉 \ (𝑆 ∪ {𝑣,𝑤}], the remaining agents

must be in the same coalition in a Nash stable partition. Therefore,

if there is a Nash stable solution, then the algorithm finds one

and otherwise outputs NO. The analysis of the running time is

straightforward and deferred to the full version. FE
s
-NashEx is

polynomial-time solvable if f ≤ 2, whereas it is NP-hard even if

f = 3 and Δ = 5. □

4 THE MODEL WITH NEUTRALS

In this section, we consider the model with neutrals [15]. First, we

observe that for acyclic friendship graphs, checking core stability

is easy since it is equivalent to checking individual rationality.

Proposition 3 (★). For acyclic friendship graphs, FENs
-CoreV is

linear-time solvable.

For acyclic graphs, IndividEx and NashEx can be solved by a

clever greedy algorithm operated on the reverse topological order.

Theorem 10 (★). If the friendship graph (resp. the union graph) is

acyclic, then every FEN
s
-instance admits an individually stable (resp.

Nash stable) partition, which can be found in polynomial time.

Proof Sketch. Let (𝑉 ,𝐺g,𝐺b) be an FEN
s
-instance. We first

consider FEN
s
-IndividEx and assume that𝐺g

is acyclic and thus

has a topological order 𝑣1, . . . , 𝑣𝑛 of 𝑉 . The algorithm proceeds as

follows: Iterate over 𝑉 in the reverse topological order 𝑣𝑛, . . . , 𝑣1.

In each step, check whether there exists a coalition𝑈 where 𝑣𝑖 has

at least one friend and no one in 𝑈 considers her an enemy. If no

such coalition exists, then 𝑣𝑖 starts a new coalition. Otherwise, let

𝑣𝑖 join the most preferred coalition 𝑈 among all such coalitions.

Now, we turn to FEN
s
-NashEx and assume that𝐺g∪𝐺b

is acyclic

and thus has a topological order 𝑣1, . . . , 𝑣𝑛 of 𝑉 . The algorithm

proceeds as follows: We iterate over 𝑉 in the reverse topological

order 𝑣𝑛, . . . , 𝑣1. In each step we let the current agent 𝑣𝑖 join her

most preferred existing coalition, or in the case when 𝑣𝑖 has no

friends in any, to start a new one.

The correctness of both algorithms relies on iterating through

the agents in the topological order. Each of the agents selects in her

turn her most preferred feasible coalition, and due to the ordering

no agent will change her choice about her most preferred coalition

later in the execution. The details of the correctness and the running

time are deferred to the full version. □
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It is know that for symmetric and additive separable preferences,

Nash stable partitions always exist [5]. For the FEN
s
-model, we can

even find one in linear time, which consists of singletons who do

not have any friends and the remaining agents in a grand coalition.

Observation 2 (★). For symmetric friendship relations, Nash (and

hence individually) stable partitions can be found in linear time.

The following complements Proposition 3 regarding f and show

that both core verification problems remain hard even if f,Δ and 𝜅

are bounded.

Theorem 11 (★). FENs
-CoreV (resp. FEN

s
-StrictCoreV) is coNP-

complete even if Δ = 12, 𝜅 = 3, and f = 1 (resp. f = 0).

Unlike the Nash and individual stability, symmetric preferences

do not help in reducing the complexity.

Theorem 12 (★). FENs
-CoreV (resp. FEN

s
-StrictCoreV) is coNP-

complete even when the preferences are symmetric, Δ=7 (resp. Δ=26),

and 𝜅=3 (resp. 𝜅=4).

The following two theorems complement Theorem 10 regard-

ing f and show that determining Nash (resp. individually) stable

partitions remain hard even if both f and Δ are bounded.

Theorem 13 (★). FENs
-NashEx remains NP-complete even if Δ =

9 and f = 1, and both the friendship and the enemy graphs are

respectively acyclic. .

Theorem 14. FEN
s
-IndividEx remains NP-complete even if Δ =

18 and f = 1 such that the friendship graph has one feedback arc and

the enemy graph is acyclic.

Proof. We reduce from Planar-X3C; we will not use the pla-

narity property though. Let 𝐼 = ( [3�̂�], C) be an instance of Planar-

X3C, where C = {𝐶1, . . . ,𝐶�̂�}. Without loss of generality, as-

sume that �̂� is odd. For each element 𝑖 ∈ [3�̂�], create an element

agent 𝑎𝑖 , a leader agent 𝑢𝑖 , and two follower agents 𝑢1
𝑖
, 𝑢2

𝑖
; de-

fine 𝑈𝑖 = {𝑢𝑖 , 𝑢1𝑖 , 𝑢
2

𝑖
}. For each set 𝐶 𝑗 ∈ C, create a set agent

𝑐 𝑗 . The friendship (resp. enemy) graph contains the following

arcs, where 𝑖 + 1 is taken as (𝑖 mod 3�̂�) + 1: 𝐸 (𝐺g) = {(𝑢𝑧
𝑖
, 𝑢𝑖 ) |

(𝑖, 𝑧) ∈ [3�̂�] × [2]} ∪ {(𝑎𝑖 , 𝑎𝑖+1) | 𝑖 ∈ [3�̂�]} ∪ {(𝑎𝑖 , 𝑐 𝑗 ) | 𝑖 ∈ [3�̂�]
and 𝑗 ∈ [�̂�] with 𝑖 ∈ 𝐶 𝑗 }

⋃{(𝑎𝑖 , 𝑢1𝑖 ), (𝑎𝑖 , 𝑢2𝑖 ), (𝑎𝑖 , 𝑢1𝑖+1), (𝑎𝑖 , 𝑢2𝑖+1)}.
𝐸 (𝐺b) = {(𝑢𝑖 , 𝑢𝑖+1) | 𝑖 ∈ [3�̂� − 1]} ∪ {(𝑢1, 𝑢3�̂�)}

⋃{(𝑎𝑖 , 𝑢𝑖+1) |
𝑖 ∈ [3�̂�]} ∪ {(𝑐 𝑗 , 𝑐𝑡 ) | 𝑗, 𝑡 ∈ [�̂�] : 𝑗 < 𝑡 ∧ 𝐶 𝑗 ∩ 𝐶𝑡 ≠ ∅} ∪
{(𝑢𝑖 , 𝑐 𝑗 ), (𝑢𝑖+1, 𝑐 𝑗 ), (𝑢𝑖+2, 𝑐 𝑗 ) | (𝑖, 𝑗) ∈ [3�̂�] × [�̂�] : 𝑖 ∈ 𝐶 𝑗 }. The
construction is illustrated in Figure 2, and satisfies:

Claim 14.1 (★). The constructed instance satisfies that Δ = 18, the

friendship and enemy graphs are respectively acyclic, and f = 1.

It remains to show that 𝐼 admits an exact cover if and only if the

constructed instance has an individually stable partition. For the

“if” part, let Π be an individually stable partition. We first observe:

Claim 14.2 (★). (i) For each 𝑖 ∈ [3�̂�], agents 𝑢𝑖 , 𝑢1𝑖 , 𝑢
2

𝑖
must be

together in Π.
(ii) For each 𝑖 ∈ [3�̂�], agent 𝑎𝑖 must have at least two friends in Π

and at most one of them can be a set agent 𝑐 𝑗 .

(iii) There is no 𝑖 ∈ [3�̂�] such that 𝑎𝑖 and𝑈𝑖 are together in Π.
(iv) There is no 𝑖 ∈ [3�̂�] s.t. 𝑎𝑖 and𝑈 (𝑖 mod 3�̂�)+1 are together Π.

2f
2f

1e

2f
2f

1e

2f
2f

1e

𝑎𝑖

𝑢1
𝑖

𝑢2
𝑖

𝑢1
𝑖+1 𝑢2

𝑖+1

𝑢𝑖 𝑢𝑖+1

𝑐 (𝑖−2)3𝑐 (𝑖−2)2𝑐 (𝑖−2)1 𝑐 (𝑖−1)3𝑐 (𝑖−1)2𝑐 (𝑖−1)1 𝑐𝑖3𝑐𝑖2𝑐𝑖1 𝑐 (𝑖+1)3𝑐 (𝑖+1)2𝑐 (𝑖+1)1

𝑈𝑖+3𝑈𝑖+2𝑈𝑖+1𝑈𝑖

𝑎𝑖+2𝑎𝑖+1𝑎𝑖

𝑐𝑖1 𝑐𝑖2 𝑐𝑖3

Figure 2: Illustration for the proof of Theorem 14. Top: An

overview of the reduction, where solid blue (resp. dashed red)

arcs indicate friends (resp. enemies). For each 𝑧 ∈ [3�̂�], let
𝐶𝑧1 ,𝐶𝑧2 ,𝐶𝑧3 denote the sets containing it such that 𝑧1 < 𝑧2 < 𝑧3.

Bottom: Description of the arcs related to𝑈𝑖 = {𝑢𝑖 , 𝑢1𝑖 , 𝑢
2

𝑖
} and

𝑈𝑖+1 = {𝑢𝑖+1, 𝑢1𝑖+1, 𝑢
2

𝑖+1}.

By Claim 14.2(iii)–(iv), for each 𝑖 ∈ [3�̂�], agent 𝑎𝑖 does not have
any friends from𝑈𝑖 or𝑈𝑖+1. By Claim 14.2(ii) 𝑎𝑖 must have at least

two friends and at most one of them can be a set agent. Therefore,

we obtain that in Π, each agent 𝑎𝑖 , 𝑖 ∈ [3�̂�] must have exactly one

set agent friend and 𝑎𝑖+1 as friends. This implies that 𝑎1, . . . , 𝑎3𝑛
are all together and each of them has exactly one set agent friend

in the coalition. Hence, the sets corresponding to those set agents

must form an exact cover.

For the “only if” part, let K be an exact cover. Then, define a

coalition 𝑃 = {𝑐 𝑗 | 𝐶 𝑗 ∈ K} ∪ {𝑎𝑖 | 𝑖 ∈ [3�̂�]}. We claim that

Π =
⋃

𝑖∈[3�̂�] {𝑈𝑖 } ∪ {𝑃} ∪
⋃
𝐶 𝑗 ∈C\K {{𝑐 𝑗 }}, consisting of 3�̂� +�̂� + 1

coalitions, is Nash stable, and hence individually stable. Since 𝑐 𝑗
has no friends in 𝐺 for all 𝑗 ∈ [�̂�], and they have no enemies in

Π, they do not envy any coalition. Similarly, 𝑢𝑖 has no friends in

𝐺 for any 𝑖 ∈ [3�̂�] and she has no enemies in Π. For all 𝑖 ∈ [3�̂�],
𝑧 ∈ [2], agent 𝑢𝑧

𝑖
has all of her friends and no enemies in Π, so she

does not envy any coalition. Finally, for each 𝑖 ∈ [3�̂�], 𝑎𝑖 has two
friends and no enemies in Π, and among the other six friends of

𝑎𝑖 , two of them are alone (the two other set agents 𝑐 𝑗 with 𝑖 ∈ 𝐶 𝑗 ),

two of them are in 𝑈𝑖 , and two of them are in 𝑈𝑖+1. Therefore, 𝑎𝑖
envies none of the coalitions. □

5 CONCLUSION AND FUTUREWORK

We resolved many complexity questions from the literature un-

der the FE
s
as well as the FEN

s
model, and significantly extended

previous work for these two models. As an immediate open ques-

tion, we do not know the complexity of FE
s
-CoreV (resp. FE

s
-

StrictCoreV) Δ = 6 for the symmetric case. For the case of Δ = 3

with not necessarily symmetric preferences, we can show that FE
s
-

CoreV remains coNP-hard, even if f = 1, between the submission

and the publication of the paper. We conjecture that Last but not

least, it would be interesting to know how the refined complexity

for the variant with enemy aversion [8] behaves.
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