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ABSTRACT
A basic assumption of traditional reinforcement learning is that

the value of a reward does not change once it is received by an

agent. The present work forgoes this assumption and considers

the situation where the value of a reward decays proportionally to

the time elapsed since it was obtained. Emphasizing the inflection

point occurring at the time of payment, we use the term asset to
refer to a reward that is currently in the possession of an agent.

Adopting this language, we initiate the study of depreciating assets

within the framework of infinite-horizon quantitative optimization.

In particular, we propose a notion of asset depreciation, inspired

by classical exponential discounting, where the value of an asset is

scaled by a fixed discount factor at each time step after it is obtained

by the agent. We formulate an equational characterization of opti-

mality in this context, establish that optimal values and policies can

be computed efficiently, and develop a model-free reinforcement

learning approach to obtain optimal policies.
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1 INTRODUCTION
Time preference [10, 13] refers to the tendency of rational agents

to value potential desirable outcomes in proportion to the expected

time before such an outcome is realized. In other words, agents

prefer to get a future reward sooner rather than later, all else being

equal, and similarly, agents prefer to experience negative outcomes

later rather than sooner. This phenomenon is typically codified in

mathematical models in terms of discounting [17] and has been ap-

plied to a diverse array of disciplines concerned with optimization

such as economics [11, 14], game theory [9], control theory [15],

and reinforcement learning [19]. These models focus on the situa-

tion in which an agent moves through a stochastic environment in

discrete time by selecting an action to perform at each time step

and receiving an immediate reward based on the selected action

and environmental state. In particular, we consider exponential

discounting, as introduced by Shapley [17], in which the agent car-

ries this process on ad infinitum to generate an infinite sequence
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of rewards ⟨𝑟𝑛⟩∞𝑛=1 with the goal of maximizing, with respect to a

discount factor 𝜆 ∈ (0, 1), the discounted sum∑∞
𝑛=1 𝜆

𝑛−1𝑟𝑛 . The dis-
count factor is selected as a parameter and quantifies the magnitude

of the agent’s time preference.

A notable characteristic of the aforementioned discounted op-

timization framework is an implicit assumption that the utility of

a reward remains constant once it is obtained by a learning agent.

While this seemingly innocuous supposition simplifies the model

and helps to make it amenable to analysis, there are a number of

scenarios where such an assumption is not appropriate. Consider,

for instance, the most basic and ubiquitous of rewards used to in-

centivize human behaviors: money. The value of money tends to

decay with time according to the rate of inflation, and the con-

sequences of this decay are a topic of wide spread interest and

intense study [2, 5, 8, 12]. Recognizing the fundamental role such de-
cay has in influencing the dynamics of economic systems throughout
the world, we consider its implications with respect to optimization
and reinforcement learning in Markov decision processes.

2 ASSET DEPRECIATION
When discussing a situation with decaying reward values, it is

useful to distinguish between potential future rewards and actual

rewards that have been obtained. As such, we introduce the term

asset to refer to a reward that has been obtained by an agent at

a previous moment in time. Using this terminology, the present

work may be described as an inquiry into optimization and learning

under the assumption that assets depreciate. Depreciation, a term
borrowed from the field of finance and accounting [4, 21], describes

exactly the phenomenon where the value of a commodity or asset

decays with time.

We propose a notion of depreciation that is inspired by traditional

discounting and is based on applying the same basic principle of

time preference to an agent’s history in addition to its future. More

precisely, we consider the situation in which an agent’s behavior

is evaluated with respect to an infinite sequence of cumulative

accrued assets, each of which is discounted in proportion to how

long ago it was obtained. That is, we propose evaluating the agent

in terms of functions on the sequence of assets

〈∑𝑛
𝑘=1

𝑟𝑘𝛾
𝑛−𝑘

〉∞
𝑛=1

,

where 𝛾 ∈ (0, 1) is a discount factor, rather than on the sequence of

rewards ⟨𝑟𝑛⟩∞𝑛=1. To motivate the study of depreciation and argue

its naturalness, we examine the following hypothetical case-study.

Example 2.1 (Used Car Dealership). Consider a used car deal-

ership with a business model involving purchasing used cars in

locations with favorable regional markets, driving them back to

their shop, and selling them for profit in their local market. Sup-

pose that our optimizing agent is an employee of this dealership,

tasked with managing capital acquisition. More specifically, this
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employee’s job is to decide the destination from which the next car

should be purchased, whenever such a choice arises. The objective

of the agent is to maximize the sum of the values of all vehicles in

stock at the dealership over a discounted time-horizon for some

discount factor 𝜆 ∈ (0, 1). Note that the discounted time-horizon

problem is equivalent to the problem of maximizing expected ter-

minal payoff of the process given a constant probability (1 − 𝜆) of
terminating operations at any point.

It has long been known [1, 22] that cars tend to continually de-

preciate in value after being sold as new, and so any reasonable

model for the value of all vehicles in the inventory should incor-

porate some notion of asset depreciation. Suppose that another

discount factor 𝛾 ∈ (0, 1) captures the rate at which automobiles

lose value per unit of time. Considering 𝛾-depreciated rewards and

𝜆-discounted horizon, the goal of our agent can be defined as a

discounted depreciating optimization problem. Alternatively, one

may seek to optimize the long run average (mean payoff) [15] of

𝛾-depreciated rewards.

3 DISCOUNTED DEPRECIATING PAYOFF
Consider a sequence 𝑥 = ⟨3, 4, 5, 3, 4, 5, . . .⟩ of (absolute) rewards
accumulated by the agent. In the presence of depreciation, the cu-

mulative asset values at various points in time follow the sequence

3, (3𝛾+4), (3𝛾2+4𝛾+5), (3𝛾3+4𝛾2+5𝛾+3), (3𝛾4+4𝛾3+5𝛾2+3𝛾+4), . . .
The 𝜆-discounted value of this sequence can be computed as follows:

3 + 𝜆(3𝛾+4) + 𝜆2 (3𝛾2+4𝛾+5) + 𝜆3 (3𝛾3+4𝛾2+5𝛾+3)+
𝜆4 (3𝛾4+4𝛾3+5𝛾2+3𝛾 + 4) + . . .

= (3+3𝜆𝛾+3𝛾2𝜆2+ · · · ) + (4𝜆+4𝜆2𝛾+4𝜆3𝛾2+ · · · )+
(5𝜆2+5𝜆3𝛾+𝜆5𝛾2+ · · · ) + (3𝜆3+3𝜆𝛾4+3𝛾2𝜆5+ · · · ) + · · ·

= 3(1+𝜆𝛾+𝛾2𝜆2+ · · · ) + 4𝜆(1+𝜆𝛾+𝜆2𝛾2+ · · · )+
5𝜆2 (1+𝜆𝛾+𝜆2𝛾2+ · · · ) + 3𝜆3 (1+𝜆𝛾+𝛾2𝜆2+ · · · ) + . . .

=
3 + 4𝜆 + 5𝜆2 + 3𝜆3 + · · ·

(1 − 𝜆𝛾) =
3 + 4𝜆 + 5𝜆2

(1 − 𝜆𝛾) (1 − 𝜆3)
.

Notice that this 𝛾-depreciated sum is equal to the 𝜆-discounted sum

when immediate rewards are scaled by a factor
1

1−𝜆𝛾 . We show that

this is not a mere coincidence, and prove that this equality holds

also in the context of general MDPs.

Theorem 3.1. Over any finite MDP with 𝜆-discounted value 𝑉𝜆
and 𝜆-discounted 𝛾-depreciating value 𝑉𝛾

𝜆
, it holds that 𝑉𝛾

𝜆
=

𝑉𝜆
1−𝛾𝜆 .

The proof
1
of Theorem 3.1 decomposes the defining infinite se-

ries for𝑉
𝛾

𝜆
into a Cauchy product and then uses Mertens’ Theorem

(c.f. Theorem 3.50 of Rudin [16]) from the field of real analysis to

establish convergence and characterize the limit. The following

corollary states some direct consequences of Theorem 3.1 when

combined with classic results from the literature [7, 9, 15, 18, 20].

Corollary 3.1. For any discounted depreciating payoff with
value 𝑉𝛾

𝜆
over a finite MDP𝑀 the following hold.

(1) There exists a stationary deterministic optimal policy for 𝑉𝛾

𝜆
.

1
See [6] for the full version, including precise theorem statements and complete proofs,

of the present extended abstract.

(2) Value 𝑉𝛾

𝜆
and optimal policies are computable in polynomial time.

(3) If each state-action pair in 𝑀 is encountered infinitely often and
learning rates satisfy the Robbins-Monroe convergence criteria, then
Q-learning converges asymptotically to an optimal policy for 𝑉𝛾

𝜆
.

Thus, the reduction of discounted depreciating payoffs to stan-

dard discounted payoffs achieved by Theorem 3.1 provides the

keystone for (i) proving the existence of simple optimal policies,

(ii) establishing tractability of computing optimal values and poli-

cies, and (iii) obtaining a convergent reinforcement learningmethod

with respect to discounted depreciating optimization.

4 AVERAGE DEPRECIATING PAYOFF
Next, consider the long-run average of the depreciating asset values

as the limit inferior of the sequence

3,
3𝛾+4
2

,
3𝛾2+4𝛾+5

3

,
3𝛾3+4𝛾2+5𝛾+3

4

,
3𝛾4+4𝛾3+5𝛾2+3𝛾+4

5

, . . .

Based on classical Tauberian results of Bewley and Kohlberg [3],

it is tempting to conjecture that the 𝜆-discounted, 𝛾-depreciating

value converges to this mean as 𝜆 → 1 from below, i.e.

lim

𝜆→1

(1 − 𝜆) 3 + 4𝜆 + 5𝜆2

(1 − 𝜆𝛾) (1 − 𝜆3)
= lim

𝜆→1

3 + 4𝜆 + 5𝜆2

(1 − 𝜆𝛾) (1 + 𝜆 + 𝜆2)

=
3 + 4 + 5

3(1 − 𝛾) .

Indeed, we prove that this conjecture holds for general MDPs.

Theorem 4.1. Over any finite MDP with long-run average 𝛾-
depreciating value 𝑉𝛾 and 𝜆-discounted 𝛾-depreciating value 𝑉𝛾

𝜆
,

it holds that 𝑉𝛾 = lim𝜆→1
(1 − 𝜆)𝑉𝛾

𝜆
, where 𝜆 → 1 from below.

Since Mertens’ Theorem fails to apply in this situation, the above

result is obtained from a longer argument using only basic prin-

ciples [6]. The next corollary collects and states a number of con-

sequences of Theorem 4.1 (in combination with Theorem 3.1 and

results from the aforementioned literature [7, 9, 15, 18]).

Corollary 4.1. For any long-run average depreciating payoff
with value 𝑉𝛾 over a finite MDP𝑀 the following hold.

(1) There exists a stationary deterministic optimal policy for 𝑉𝛾 .
(2) Value 𝑉𝛾 and optimal policies are computable in polynomial time.
(3) If 𝑉 is the long-run average value of𝑀 , then 𝑉𝛾 = 𝑉

1−𝛾 .
(4) There exists a discount factor 𝜆0 such that, for any 𝜆 ∈ [𝜆0, 1), any

policy optimal for 𝑉𝛾

𝜆
is also optimal for 𝑉𝛾 .

Hence, Theorem 4.1 allows us to lift the guarantees of items (1)

and (2) of Corollary 3.1 from the setting of discounted depreciating

optimization to that of long-run average depreciating optimization.

Moreover, our result enables obtaining a remarkably simple char-

acterization of the long-run average depreciating value in terms of

the traditional long-run average value (item (3) of Corollary 4.1),

mirroring the statement of Theorem 3.1. Lastly, the existence of

Blackwell optimal policies (item (4) of Corollary 4.1) for long-run

average depreciating optimization implies that Q-learning for dis-

counted depreciating payoffs with sufficiently large discount factor

𝜆 also converges asymptotically to optimal policies for the long-run

average depreciating payoff.
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