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ABSTRACT
In this paper, we propose to enhance the state-of-the-art quantal
cognitive hierarchy (QCH) model with iterative population learning
(IPL) to estimate the empirical distribution of agents’ reasoning lev-
els and fit human agents’ behavioral data. We apply our approach
to a real-world dataset from the Swedish lowest unique positive
integer (LUPI) game and show that our proposed approach outper-
forms the theoretical Poisson Nash equilibrium predictions and the
QCH approach by 49.8% and 46.6% in Wasserstein distance respec-
tively. Our approach also allows us to explicitly measure an agent’s
reasoning level distribution, which is not previously possible.
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1 INTRODUCTION
When a strategic scenario is modeled using game theory, Nash
equilibrium is a well-known solution concept for predicting how
agents would behave. However, when agents are only partially
rational, Nash equilibrium would provide poor outcome predictions
[2]. To address this issue, the field of behavioral game theory aims
to explicitly model human agents’ limited rationality, and come up
with refined equilibrium concepts that would be more suitable for
games with human agents.

One popular behavioral game-theoretic model is the “cognitive
hierarchy” (CH) framework introduced by Camerer et al. [1], which
allows us to explicitly specify different rationality levels for agents
in a game. In the CH framework, non-strategic agents are regarded
as level-0, and their strategies are generated irrespective of other
agents (e.g., uniformly randomly or greedily). For strategic agents
at level-𝑘 (𝑘 ≥ 1), they would assume that other agents would
be behaving at level- 𝑗 , where 𝑗 < 𝑘 , and compute best responses.
Camerer et al. [1] assume that an agent with level-𝑘 believes that
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its opponent’s reasoning levels would follow a Poisson distribution
with parameter 𝜏 between 0 and 𝑘 − 1. Based on the CH model,
the quantal CH (QCH) model allows human decision errors to be
captured by a soft-max function and is shown to be the state of the
art in matching data involving human subjects [5, 6].

In this paper, we further improve the QCH model by introduc-
ing Iterative Population Learning (IPL) for learning the reasoning
level distribution (previously assumed to be a Poisson distribution),
which plays a vital role in computing quantal best responses. We
formally define the determination of the reasoning level distribution
as a fixed point-seeking problem and prove that a fixed point exists
in the population dynamics that we define. We then propose an
iterative process that could efficiently identify a stable population
reasoning level distribution. Finally, we test our approach on the
lowest unique positive integer game dataset collected from a series
of laboratory experiments. We demonstrate that (1) Our model can
fit agents’ behavioral traces much better (in Wasserstein distance,
our approach outperforms the QCH model by close to 50%). (2) Our
approach is capable of estimating individual agents’ reasoning level
distributions. (3) Combined with personal-level observations, our
approach is shown to be more accurate in measuring the strategic
reasoning level of the population.

2 ITERATIVE POPULATION LEARNING
Let 𝐿 = {0, 1, . . . ,𝑚} be the set of reasoning levels to be considered.
Let 𝑝 = (𝑝0, . . . , 𝑝𝑚) = Δ(𝐿) be the reasoning level estimation at the
population level, and 𝑝𝑙,𝑖 be the probability that agent 𝑖 belonging
to level 𝑙 . Naturally,

∑
𝑙 ∈𝐿 𝑝𝑙,𝑖 = 1,∀𝑖 ∈ 𝑁 . The QCH-IPL approach

is defined by the iterative steps below:
(1) Initialization: Let 𝑡 ← 1 be the current iteration. Initialize
(𝑝𝑡0, . . . , 𝑝

𝑡
𝑚) uniformly randomly.

(2) Compute QBRs for all levels: Assume that the game is
symmetric; let𝐴0 be the common action space and 𝜋𝑡

𝑘
be the

QBR for level-𝑘 agent in iteration 𝑡 .

𝜋𝑡+10 (𝑎0) = |𝐴0 |−1,∀𝑎0 ∈ 𝐴0; 𝜋𝑡+10:𝑘 =

∑𝑘
𝑙=0 𝑝

𝑡
𝑙
𝜋𝑡+1
𝑙∑𝑘

𝑙 ′=0 𝑝
𝑡
𝑙 ′

,∀𝑘 ∈ 𝐿 (1)

𝜋𝑡+1
𝑘

= 𝑄𝐵𝑅

(
𝜋𝑡+1−𝑖,0:𝑘−1; 𝜆

)
,∀𝑘 = 1, . . . ,𝑚. (2)

(3) Fit each agent’s behaviors to QBRs:(
𝑝𝑡+10,𝑖 , . . . , 𝑝

𝑡+1
𝑚,𝑖

)
= 𝐶𝐿𝑅

(
(𝜋𝑡+10 , . . . , 𝜋𝑡+1𝑚 ), 𝑡𝑟𝑖

)
,∀𝑖 ∈ 𝑁, (3)
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where agent 𝑖’s behavioral traces are denoted as 𝑡𝑟𝑖 and𝐶𝐿𝑅
refers to constrained linear regression. CLR is a regular linear
regression with 𝑡𝑟𝑖 as the dependent variable, 𝜋𝑡+10 , . . . , 𝜋𝑡+1𝑚

as independent variables, but with constraints that all coeffi-
cients are non-negative and sum to 1.

(4) Aggregation: We compute reasoning level estimation for
the whole agent population by simple average:

𝑝𝑡+1
𝑙

=
∑︁
𝑖∈𝑁

𝑝𝑡+1
𝑙,𝑖
/𝑛,∀𝑙 ∈ 𝐿. (4)

(5) Checking for convergence: If(𝑝𝑡+10 , . . . , 𝑝𝑡+1𝑚 ) − (𝑝𝑡0, . . . , 𝑝
𝑡
𝑚)


2 < 𝜖,

terminate; otherwise, 𝑡 ← 𝑡 + 1, repeat from 2.
By combining all the steps above, we have:

(𝜋0, . . . , 𝜋𝑚) = 𝐹

(
𝐺

( (
𝐶𝐿𝑅 ((𝜋0, . . . , 𝜋𝑚), 𝑡𝑟𝑖 )

)
𝑖∈𝑁

))
, (5)

where 𝐺 (·) is the aggregation function in Step (4), and 𝐹 (·) is the
computation of QBR (𝜋0, . . . , 𝜋𝑚) in Step (2). From above we can
see that (𝜋0, . . . , 𝜋𝑚) is a fixed point of (5). We can further prove
that a fixed point always exists for (5).

3 NUMERICAL RESULTS
We test our QCH-IPL approach in a lab LUPI game designed and
executed by Östling et al. [5]. The lab LUPI is a Poisson game [3, 4]
with the following rules: (1) the number of active players in each
round follows a Poisson distribution with a mean of 26.9, (2) players
(both active and inactive) are required to choose an integer between
1 and 99, (3) the smallest number that is uniquely chosen wins the
game round. Participants are compensated to play 49 rounds (each
round is considered a day, and we group every 7 days as a week).
For each round, the winner (if any) earns an extra bonus. The
winning number is made known to all participants after each round
concludes, but the winner is notified privately. There are in total
152 participants in the lab LUPI game.

We compare our model with two baselines: the Poisson-Nash
Equilibrium (PNE) and the QCH model, both described in detail by
Östling et al. [5]. The QCH model is constructed with the assump-
tion that the agent’s reasoning levels follow a Poisson distribution
with parameter 𝜏 estimated from a similar field game, and Östling
et al. [5] propose to search for 𝜆 using 100,000 search grids, with the
maximum likelihood estimation (MLE) as the selection criterion.

When setting up our QCH-IPL approach, we also search for 𝜆
using MLE, and we execute the main algorithm with up to 100
iterations. We return the model with the best log-likelihood value
at the end of our search.

To evaluate the performance of competing models, we look at:
(1) 𝜒2 goodness of fit test, on whether we can reject the null hy-
pothesis that the target distribution follows the given distribution
(significance is bad), (2) the log-likelihood (the larger the better),
(3) proportion below, which measures the percentage of target dis-
tribution that is covered by the given distribution (the larger the
better), and (4) the Wasserstein distance, which is a popular metric
that measures the effort to transform the target distribution into
the given distribution (the smaller the better).

For each week of the lab experiment, we have an independent
performance evaluation. In the interest of space, we only list the

Table 1: Goodness-of-fit for the lab LUPI game: Comparing
Poisson-Nash equilibrium, QCHmodel, and QCH-IPLmodel.

Week (1) (4) (7)
Poisson-Nash equilibrium
𝜒2 (for average frequency) 24.7*** 21.8** 21.4***
Proportion below (percent) 82.25 88.64 87.06
Wasserstein distance 3.362 1.323 0.896
QCH Model
Log-likelihood –210.4 –88.7 –99.4
𝜒2 (for average frequency) 24.3*** 4.6 10.1*
Proportion below (percent) 84.62 92.54 91.07
Wasserstein distance 4.972 0.688 0.590
QCH-IPL Model
Log-likelihood -185.0 -78.2 -85.3
𝜒2 (for average frequency) 16.7*** 0.6 3.3
Proportion below (percent) 86.58 95.19 93.70
Wasserstein distance 2.87 0.432 0.435

Note: Significance level: *** 1%. ** 5%. * 10%.

results fromweeks 1, 4, and 7 in Table 1. On “𝜒2 test”, PNE is rejected
as a good fit for all weeks, QCH is rejected in weeks 1, 2, and 7,
while only week 1 is rejected for QCH-IPL. On “log-likelihood”,
QCH-IPL outperforms QCH in all weeks. On “proportion below”,
QCH-IPL outperforms both PNE and QCH over all weeks, and on
average the advantage margins are 7% and 4.6% respectively. On
the “W-distance”, QCH-IPL also achieves the best (lowest) values
for all weeks, and on average the advantage margins against PNE
and QCH are 49.8% and 46.6% respectively.

Poisson-Nash Equilibrium

Quantal Cognitive Hierarchy

QCH-IPL

Legend

Figure 1: Behavioral traces against PNE, QCH, and QCH-IPL.

Finally, we also visualize players’ actual action frequencies and
all behavioral models from selected weeks in Figure 1 (as numbers
above 20 have low usage frequencies, we cut the 𝑥-axis off at 20).
From Figure 1 we can see that the PNE is mostly smooth, thus not
able to capture discontinuities in players’ action frequencies. Both
QCH and QCH-IPL models respond to discontinuities, but QCH-IPL
offers visibly better fits than the QCH model.
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