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ABSTRACT
Empirical game-theoretic analysis (EGTA) is primarily concerned

with learning equilibria of simulation-based games. Recent sta-

tistical approaches have tackled this problem by first learning a

uniform approximation of the game’s utilities, and then applying

precision-recall theorems: i.e., all equilibria of the true game are

approximate equilibria in the estimated game, and vice-versa. In

this work, we generalize this approach to all game properties that

are well-behaved (i.e., Lipschitz continuous in utilities), including

regret (which defines Nash and correlated equilibria), adversarial

values, power-mean welfare, and Gini social welfare. We show that,

given a well-behaved welfare function, while optimal welfare is

well-behaved, the welfare of optimal (i.e., welfare-maximizing or

minimizing) equilibria is not well behaved. We thus define a re-

lated property based on a Lagrangian relaxation of the equilibrium

constraints that is well behaved. We call this property Λ-stable
welfare. As determining the welfare of an optimal equilibrium is

an essential step in computing the price of anarchy, we conclude

with a discussion of an alternative, more stable notion of anarchy

based on Λ-stable welfare, which we call the anarchy gap.
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1 INTRODUCTION
In recent years, empirical game-theoretic analysis (EGTA) has

emerged as a powerful tool by which to analyze multiagent sys-

tems [2, 22, 23, 28], particularly when only a simulator of the game

is available, rather than a precise description of the system, per-

haps because of complicated stochastic dynamics. Such systems

are called simulation-based games, or black-box games, and their

empirical counterparts, which are derived from simulation data,

are called empirical games.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Some properties of interest in traditional game-theoretic analysis

include the set of equilibria,
1
the maximal welfare, the price of

anarchy, etc. EGTA is concerned with characterizing the properties

of simulation-based games, which is typically done by learning

those properties in the corresponding empirical games. Statistical

EGTA [2, 3, 22, 26, 30] is intended to give practitioners tools by

which they can then test hypotheses like, the set of equilibria of

an empirical game Γ̂ coincides with the set of equilibria of the

corresponding simulation-based game Γ.
Simulation-based games are noisy by their very nature. Indeed,

multiple simulation queries are necessary before a practitioner can

feel confident they have produced an accurate empirical game: i.e.,

accurate estimates of the players’ utilities at all strategy profiles.

Even when a game itself is well-estimated (e.g., in the sense of

PAC-learning [24]), it is still not obvious how to derive a guarantee

for a game property from one about the game’s accuracy, as game

properties are complex, non-linear functions of a game’s utilities.

Areyan, et al. [2] and Tuyls, et al. [22] provide finite-sample

guarantees on the estimated equilibria of simulation-based games,

starting from the notion of a uniform approximation. A uniform
approximation of a game is one in which all utilities are estimated

to within the same error, simultaneously. Building on the work

of Vorobeychik [26], who established guarantees in the case of

infinitely many samples, the aforementioned authors prove that

when an empirical game Γ̂ uniformly approximates a (true) game Γ,
all equilibria in Γ are approximate equilibria in Γ̂, and all equilibria

in Γ̂ are approximate equilibria in Γ. They then develop various

sampling algorithms based on standard concentration inequalities

(e.g., Hoeffding [14], Bennett [7]) to learn uniform approximations

of simulation-based games, and thereby estimate the equilibria of

these games with finite sample guarantees.

In this paper, we seek methods to learn properties of simulation-

based games beyond equilibria. Following the techniques developed

in Areyan Viqueira et al. [2], we ask: what other game-theoretic

properties of interest can be well-approximated given only a uni-

form approximation? We begin by studying a few focal game-

theoretic properties: power-mean welfare, Gini-social welfare, ad-

versarial value, and regret. We are specifically interested in the

extremal values of these properties, e.g., best (optimal) and worst

(pessimal) welfare values, and the outcomes that realize them, both

of which we show are amenable to statistical EGTA methodology:

i.e., can be estimated with finite-sample guarantees.

1
All mention of equilibria in this paper refer to Nash equilibria.
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We then give several examples of properties—extreme equilibria

(i.e., optimal and pessimal), the price of anarchy [15], and the price

of stability [1, 21]—which are not amenable to statistical EGTA

methodology. Indeed, naïve estimation of extreme equilibria via a

uniform approximation can be arbitrarily incorrect. The prices of

anarchy and stability are likewise inapproximable, because they are

functions of extreme equilibria. In light of these observations, we

introduce a relaxation of extreme equilibria, which we call Λ-stable
outcomes. These outcomes are defined based on an extreme value

of welfare discounted by the distance from an equilibrium, i.e., Λ
acts like a Lagrangian. Unlike extreme equilibria, this new concept

is amenable to statistical EGTA methodology.

To illustrate the utility of Λ-stable outcomes, we investigate the

price of anarchy, i.e., the ratio between the best and worst welfare,

the latter restricted to values at equilibria. We argue that even if the

worst equilibrium were replaced by a pessimal Λ-stable outcome,

we still could not estimate the price of anarchy, because, if the

worst equilibrium welfare is near zero, the sensitivity to the best

welfare outcome becomes infinite. We thus define an alternative

concept, the anarchy gap, which instead measures the difference
between the best welfare and the maximally dissonant Λ-stable
outcome (a relaxation of a worst welfare equilibrium). This new

concept is amenable to statistical EGTA methodology, as we show

experimentally. An analogous story holds for the price of stability.

2 LEARNING EXTREMAL PROPERTIES
We begin by presenting our framework for approximating game-

theoretic properties in simulation-based games. Doing so requires

two pieces of technical machinery: the notion of uniform approxi-

mation and that of Lipschitz continuity. Given this machinery, it

is immediate that if a game property is Lipschitz continuous in

utilities, then it is well behaved, meaning it can be learned by any

algorithm that produces a uniform approximation of the game.

In this work, we emphasize extremal game properties, such as the

optimal or pessimal welfare (the latter being relevant, for example,

when considering the price of anarchy [8]). We are interested in

learning not only the values of these extremal properties, but further

the strategy profiles that generate those values: i.e., the arguments

that realize the solutions to the optimization problems that extremal

properties define. We refer to these arguments as witnesses of the
corresponding property. For example, an equilibrium is a witness

of the regret property: i.e., it is a strategy profile that minimizes

regret (and thereby attains an extremum).

Given an approximation of one game by another, there is not

necessarily a connection between their extremal properties. For ex-

ample, there may be equilibria in one game with no corresponding

equilibria in the other, as small changes to the game can add or

remove equilibria. Nonetheless, finding the equilibria of a uniform

approximation of a game is sufficient for finding the approximate

equilibria of the game itself [4]. The main result of this section is to

generalize this result beyond regret, which defines equilibria, to all

well-behaved game properties. We thus explain the aforementioned

result as a consequence of a more general theory.

2.1 Standard Game Theory
We begin by defining games and several focal properties of games.

Definition 2.1 (Normal-Form Game). A normal-form game (NFG)
Γ � ⟨𝑃, {𝑆𝑝 }𝑝∈𝑃 , 𝒖⟩ consists of a set of players 𝑃 , with pure strategy
set 𝑆𝑝 available to player 𝑝 ∈ 𝑃 . We define 𝑺 � 𝑆1 × · · · × 𝑆 |𝑃 | to
be the pure strategy profile space, and then 𝒖 : 𝑺 → R |𝑃 | is a vector-
valued utility function (equivalently, a vector of |𝑃 | scalar utility
functions 𝒖𝑝 ).

Given an NFG Γ with finite 𝑆𝑝 for all 𝑝 ∈ 𝑃 , we denote by

𝑆⋄𝑝 the set of distributions over 𝑆𝑝 . This set is called player 𝑝’s

mixed strategy set. We define 𝑺⋄ = 𝑆⋄
1
× · · · × 𝑆⋄|𝑃 | to be the mixed

strategy profile space, and then, overloading notation, we write 𝒖 (𝒔)
to denote the expected utility of a mixed strategy profile 𝒔 ∈ 𝑺⋄ . We

denote the mixed game that comprises mixed strategies 𝑺⋄ by Γ⋄ .
We call two NFGs with the same player sets and strategy profile

spaces compatible. In this paper, we focus on uniform approxima-

tions of one NFG by another compatible one, by which we mean

approximating one game’s utilities by another’s. Thus, we define the
game properties of interest in terms of 𝒖 rather than Γ, as the play-
ers and their strategy sets are usually clear from context. Likewise,

we write 𝒖⋄ , rather than Γ⋄ . We assume a NFG 𝒖 in the definitions

that follow.

Definition 2.2 (Property). A property of a game 𝒖 is a functional

mapping an index set X and utilities 𝒖 to real values: i.e., 𝑓 : X ×
(𝑺 → R |𝑃 | ) → R.

In this work, two common choices for X are the set of pure and

mixed strategy profiles 𝑺 and 𝑺⋄ , respectively. Another plausible
choice is the set of pure strategies for just one player 𝑝 , namely 𝑆𝑝 .

In this section, we focus on four properties, which we find to be

well behaved: power-mean welfare, Gini social welfare, adversarial

values, and regret.

Definition 2.3 (Power-Mean Welfare). Given strategy profile 𝒔,
power 𝜌 ∈ R, and stochastic weight vector 𝒘 ∈ △ |𝑃 |

, i.e., 𝒘 ∈
R
|𝑃 |
0+ s.t. ∥𝒘 ∥ 1 = 1, the 𝜌-power-mean welfare2 at 𝒔 is defined as

W𝜌,𝒘 (𝒔; 𝒖) � 𝜌
√︁
𝒘 · 𝒖 (𝒔)𝜌 .When𝒘 is left unspecified (i.e.,W𝜌 (𝒔; 𝒖)),

we use as default values𝒘 �
(

1

|𝑃 | , . . . ,
1

|𝑃 |
)
.

A few special cases of 𝜌-power mean welfare are worth mention-

ing. When 𝜌 = 1, power-mean welfare corresponds to utilitarian

welfare, while when 𝜌 = −∞, power-mean welfare corresponds

to egalitarian welfare. Finally, when 𝜌 = 0, taking limits yields

W0 (𝒔; 𝒖) � |𝑃 |
√︃∏

𝑝∈𝑃 𝒖𝑝 (𝒔), which defines Nash social welfare [16].

Definition 2.4 (Gini Social Welfare [29]). Given a strategy profile

𝒔 and a decreasing stochastic weight vector 𝒘↓ ∈ △ |𝑃 |
, the Gini

social welfare at 𝒔 is defined as W𝒘↓ (𝒔; 𝒖) � 𝒘↓ ·𝒖↑ (𝒔), where 𝒖↑ (𝒔)
denotes the entries in 𝒖 (𝒔) in ascending sorted order.

In this definition, the weight vector 𝒘↓
controls the trade-off

between society’s attitude towards well-off and impoverished play-

ers. We recover utilitarian welfare with𝒘↓ = ( 1

|𝑃 | ,
1

|𝑃 | , . . . ,
1

|𝑃 | ), and
egalitarian welfare with𝒘↓ = (1, 0, . . . , 0).

The last two properties we consider, adversarial values and regret,

relate to solution concepts. A player’s adversarial value for playing
a strategy is the value they obtain assuming worst-case behavior

2
Power-mean welfare is more precisely defined as lim𝜌′→𝜌

𝜌′√︁𝒘 · 𝒖 (𝒔 )𝜌′ , to handle

the special cases when 𝜌 is 0 or ±∞.
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on the part of the other players: i.e., assuming all the other players

were out to get them. A player’s regret for playing one strategy

measures how much they regret not playing another, fixing all the

other players’ strategies.

Definition 2.5 (Adversarial Values). A player 𝑝’s adversarial value
at strategy 𝑠 ∈ 𝑆⋄𝑝 is defined as A𝑝 (𝑠; 𝒖) � inf𝒔∈𝑺 |𝒔𝑝=𝑠 𝒖𝑝 (𝒔).3 A
player 𝑝’smaximin value is given byMM𝑝 (𝒖) � sup𝑠∈𝑆⋄

𝑝
A𝑝 (𝑠 ; 𝒖) =

sup𝑠∈𝑆⋄
𝑝

inf𝒔∈𝑺 |𝒔𝑝=𝑠 𝒖𝑝 (𝒔). A strategy 𝑠 is 𝜀-maximin optimal for
player 𝑝 if A𝑝 (𝑠; 𝒖) ≥ MM𝑝 (𝒖) − 𝜀.

Definition 2.6 (Regret). Fixing a player 𝑝 and a strategy profile

𝒔 ∈ 𝑺 , we define Adj𝑝,𝒔 � {𝒕 ∈ 𝑺 | 𝒕𝑞 = 𝒔𝑞,∀𝑞 ≠ 𝑝}: i.e., the set
of adjacent strategy profiles, meaning those in which the strate-

gies of all players 𝑞 ≠ 𝑝 are fixed at 𝒔𝑞 , while 𝑝’s strategy may

vary. Player 𝑝’s regret at 𝒔 ∈ 𝑺 is then defined as Reg𝑝 (𝒔; 𝒖) �
sup𝒔′∈Adj𝑝,𝒔

𝒖𝑝 (𝒔′) − 𝒖𝑝 (𝒔), with Reg(𝒔; 𝒖) � max𝑝∈𝑃 Reg𝑝 (𝒔; 𝒖).

Note that Reg𝑝 (𝒔; 𝒖) ≥ 0, since player 𝑝 can deviate to any

strategy, including 𝒔𝑝 itself. Hence, Reg(𝒔; 𝒖) ≥ 0. A strategy pro-

file 𝒔 ∈ 𝑺 that has regret at most 𝜀 ≥ 0 is a called an 𝜀-Nash
equilibrium [17]: i.e., 𝒔 is an 𝜀-Nash equilibrium if and only if

0 ≤ Reg(𝒔; 𝒖) ≤ 𝜀.

2.2 Lipschitz Continuous Game Properties
Next, we define Lipschitz continuity, and show that the aforemen-

tioned game properties are all Lipschitz continuous in utilities.

Definition 2.7 (Lipschitz Property). Given 𝜆 ≥ 0, a 𝜆-Lipschitz
property is one that is 𝜆-Lipschitz continuous in utilities: i.e.,𝑓 (·; 𝒖) − 𝑓 (·; 𝒖′)

∞ � sup

𝑥∈X

��𝑓 (𝑥 ; 𝒖) − 𝑓 (𝑥 ; 𝒖′)
�� ≤ 𝜆

𝒖 − 𝒖′
∞ ,

for all pairs of compatible games 𝒖 and 𝒖′.

To show that the game properties of interest are Lipschitz prop-

erties, we instantiate X and the property 𝑓 in Definition 2.7 as

follows:

(1) Power-Mean Welfare: Let X = 𝑺 and 𝑓 (𝒔; 𝒖) = W𝜌,𝒘 (𝒔; 𝒖),
for some 𝜌 ∈ R and𝒘 ∈ △ |𝑃 |

.

(2) Gini Social Welfare: Let X = 𝑺 and 𝑓 (𝒔; 𝒖) = W𝒘↓ (𝒔; 𝒖), for
some𝒘↓ ∈ △ |𝑃 |

.

(3) Adversarial Values: For 𝑝 ∈ 𝑃 , let X = 𝑆𝑝 and 𝑓𝑝 = A𝑝 : i.e.,

𝑓𝑝 (𝑠; 𝒖) = A𝑝 (𝑠; 𝒖).
(4) Regret: Let X = 𝑺 and 𝑓 = Reg: i.e., 𝑓 (𝒔; 𝒖) = Reg(𝒔; 𝒖).
Results on gradients and Lipschitz constants for power-mean

welfare can be found in Beliakov et al. [6] and Cousins [10, 11, 12]. In

short, whenever 𝜌 ≥ 1, power-mean welfare is Lipschitz continuous

with 𝜆 = 1. It is also max𝑝∈𝑃 𝒘
1/𝜌
𝑝 -Lipschitz continuous for 𝜌 ∈

[−∞, 0), but it is Lipschitz discontinuous for 𝜌 ∈ [0, 1).
The Lipschitz constants of the latter three properties can be

derived using a “Lipschitz calculus,” which is a straightforward

consequence of the definition of Lipschitz continuity.

Theorem 2.8 (Lipschitz Calculus). The following rules hold:
(1) Linear Combination: If 𝑔1:𝑚 are 𝜆1:𝑚-Lipschitz, all w.r.t. the

same two norms, and𝒘 ∈ R𝑚 , then the function 𝑥 ↦→ 𝒘 ·𝑔(𝑥)
is
∑𝑚
𝑖=1

𝜆𝑖 |𝒘𝑖 | -Lipschitz.
3
Equipping players other than 𝑝 with mixed strategies affords them no added power.

(2) Composition: If ℎ : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 are 𝜆ℎ- and
𝜆𝑔-Lispchitz w.r.t. norms ∥·∥ 𝐴 , ∥·∥ 𝐵 , & ∥·∥ 𝐶 , then (𝑔 ◦ ℎ) :

𝐴 → 𝐶 is 𝜆ℎ𝜆𝑔 Lispchitz w.r.t. ∥·∥ 𝐴 and ∥·∥ 𝐶 .
(3) The infimum and supremum operations are 1-Lipschitz: i.e., if

for all 𝑥 ∈ X, 𝑓 (𝑥 ; 𝒖) is 𝜆-Lipschitz in 𝒖 then inf𝑥∈X 𝑓 (𝑥 ; 𝒖)
is also 𝜆-Lipschitz in 𝒖. Likewise, for the supremum.

By Theorem 2.8, Gini social welfare and adversarial value are

both 1-Lipschitz, while regret is 2-Lipschitz. The interested reader

is invited to consult the supplementary material for details.

The property 𝑓 that computes a convex combination of utilities

is 1-Lipschitz by the linear combination rule (Theorem 2.8), because

utilities are 1-Lipschitz in themselves. Consequently, any findings

about the Lipschitz continuity of game properties immediately

apply to games with mixed strategies, as any 𝜆-property 𝑔 of a

game 𝒖 may be composed with 𝑓 to arrive at a property 𝑔 ◦ 𝑓 of

the mixed game 𝒖⋄ , which, by the composition rule (Theorem 2.8),

remains 𝜆-Lipschitz. In sum, all four of our focal properties are

Lipschitz continuous in utilities.

Uniform Approximations of Game Properties. Next we observe
that Lipschitz properties of a game are well behaved, and thus can

be well-estimated by a uniform approximation of the game. Thus,

all four of our focal game-theoretic properties are well behaved. A

game 𝒖 is an 𝜀-uniform approximation of a compatible game 𝒖′ if𝒖 − 𝒖′
∞ � sup

𝑝∈𝑃,𝒔∈𝑺

���𝒖𝑝 (𝒔) − 𝒖′𝑝 (𝒔)
��� ≤ 𝜀 .

In other words, in a uniform approximation of one NFG by an-

other, the bound between utility deviations in the two games holds

uniformly over all players and strategy profiles.

Our first observation, which follows immediately from the defi-

nitions of Lipschitz continuity and uniform approximation, charac-

terizes well-behaved game properties:

Observation 2.1. Let 𝜆, 𝜀 ≥ 0. If 𝑓 is 𝜆-Lipschitz and ∥𝒖 − 𝒖′∥ ∞ ≤
𝜀, then ∥ 𝑓 (·; 𝒖) − 𝑓 (·; 𝒖′)∥ ∞ ≤ 𝜆𝜀. Furthermore, if X = {𝑥} is a sin-
gleton, then |𝑓 (𝑥 ; 𝒖) − 𝑓 (𝑥 ; 𝒖′) | ≤ 𝜆𝜀.

Equivalently, if 𝑓 is 𝜆-Lipschitz and ∥𝒖 − 𝒖′∥ ∞ ≤ 𝜀/𝜆, then
∥ 𝑓 (·; 𝒖) − 𝑓 (·; 𝒖′)∥ ∞ ≤ 𝜆(𝜀/𝜆) = 𝜀. For example, regret is 2-Lipschitz,

and thus can be 𝜀-approximated, given an 𝜀/2-uniform approxima-

tion. Likewise for adversarial values and variants of welfare, with

their corresponding Lipschitz constants.

We visualize the above observation in the context of power-mean

welfare in Figure 1. This plot was created using GAMUT [18] to

generate a congestion game 𝒖 with 3 players, 3 facilities, and utility

range [−1, 1]. We uniformly drew 100 normal-form games from the

collection of all 0.02-uniform approximations of this congestion

game. For values of 𝜌 ∈ (−∞,∞) ∪ {±∞}, we plotted the average

across all 100 games of the supremum error across strategy profiles

𝒔 ∈ 𝑺 between the estimate of the 𝜌-power-mean welfare at 𝒔 via the
given uniform approximation 𝒖′ of 𝒖 and the true 𝜌-power-mean

welfare at 𝒔 (i.e., sup𝒔∈𝑺
��
W𝜌 (𝒔; 𝒖) − W𝜌 (𝒔; 𝒖′)

��
), using weights

𝒘𝑝 = 1/|𝑃 | for all 𝑝 ∈ 𝑃 . We also plot the upper bounds on this

supremum error implied by Observation 2.1, using the trivial upper

bound of 2 (since the utility range is [−1, 1]) in cases where 𝜌

renders W𝜌 not Lipschitz continuous. Figure 1 shows that 𝜌-power-

mean welfare is 𝜀-well-estimated for 𝜌 > 1, as expected, and is also

Session 1D: Equilibria and Complexities of Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

274



2

4 2 1 1
2

0 1
2

1 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

-P
ow

er
 M

ea
n 

W
el

fa
re

 S
up

re
m

um
 E

rro
r (

SE
) SE

Upper Bound
SE = 0.02

-Power Mean Welfare Error with || ′|| 0.02

Figure 1: Average supremum error between the true 𝜌-
power-mean welfare at each strategy profile of a conges-
tion game and the corresponding estimates via 100 random
0.02-uniform approximations of the true game, with stan-
dard deviations shaded in blue, for 𝜌 ∈ (−∞,∞). A sigmoid
transformation is applied to the 𝑥-axis yielding a domain of
(−∞,∞).

fairly well-estimated for 𝜌 < −1. Since 𝜌-power-mean welfare is

max𝑝∈𝑃 𝒘
1/𝜌
𝑝 -Lipschitz continuous for 𝜌 ∈ [−∞, 0), we expect high

error as 𝜌 → 0
−
, and as it is Lipschitz discontinuous for 𝜌 ∈ [0, 1),

we also expect high error in this region. Figure 1 is also consistent

with these expectations.

Although power means are not Lipschitz-continuous for 𝜌 ∈
[0, 1), and may consequently be more difficult to estimate than

Lipschitz-continuous properties, they are not necessarily inapprox-

imable via uniform approximations. In particular, for 𝜌 = 0, the

difficulty with estimating the power mean stems from the fact that

its derivative can grow in an unbounded fashion if even one of the

game’s utilities approaches zero. As we move away from this singu-

larity, however, power-mean estimates do converge as the accuracy

of uniform approximations increases, but the rate of convergence

may be slow. In contrast, other interesting properties of games, like

the price of anarchy and maximal welfare at an equilibrium, are

not even continuous (let alone Lipschitz continuous), and thus no

convergent estimator can exist for them.

2.3 Approximating Extremal Properties and
their Witnesses

Using Observation 2.1, we now show
4
that the extrema of Lipschitz

continuous properties (e.g., optimal and pessimal welfare) are also

well behaved, and that this result extends to their witnesses, all of

which remain approximately optimal in their approximate game

counterparts. Specifically, we derive a two-sided approximation

bound on the values of these extremal properties, and a dual con-

tainment result characterizing their witnesses. This result can be

understood as a form of recall and (approximate) precision: recall,

4
All omitted proofs can be found in the supplementary material.

because the set of witnesses of the approximate game �̂� contains all

the true positives (i.e., all the witnesses in the game 𝒖); precision,
because all false positives (witnesses in the approximate game �̂�
that are not witnesses in the game 𝒖) are nonetheless approximate

witnesses in the game 𝒖. Taking the property of interest to be regret,
so that its minima correspond to Nash equilibria, this final result

can be understood as a generalization of the precision and recall

result obtained in Areyan Viqueira et al. [4].

Theorem 2.9 (Approximating Extremal Properties of Nor-

mal-Form Games). Let 𝜀, 𝜆, 𝛼 > 0. Given a 𝜆-Lipschitz property 𝑓 ,
the following hold:
(1) Approximately-optimal values:

��sup

𝑥 ∈X
𝑓 (𝑥 ; 𝒖)− sup

𝑥 ∈X
𝑓 (𝑥 ; 𝒖′)

�� ≤ 𝜆𝜀

and
��
inf

𝑥 ∈X
𝑓 (𝑥 ; 𝒖) − inf

𝑥 ∈X
𝑓 (𝑥 ; 𝒖′)

�� ≤ 𝜆𝜀.

(2) Approximately-optimal witnesses: if some 𝑥 ∈ X is 𝛼-optimal
according to 𝒖′, then 𝑥 is 2𝜆𝜀 + 𝛼-optimal according to 𝒖: i.e., if
𝑓 (𝑥 ; 𝒖′) ≥ sup

𝑥 ∈X
𝑓 (𝑥 ; 𝒖′) − 𝛼 , then

𝑓 (𝑥 ; 𝒖) ≥ sup

𝑥 ∈X
𝑓 (𝑥 ; 𝒖) − 2𝜆𝜀 − 𝛼 ,

and if 𝑓 (𝑥 ; 𝒖′) ≤ inf

𝑥 ∈X
𝑓 (𝑥 ; 𝒖′) + 𝛼 , then

𝑓 (𝑥 ; 𝒖) ≤ inf

𝑥 ∈X
𝑓 (𝑥 ; 𝒖) + 2𝜆𝜀 + 𝛼 .

Applying this theorem to welfare and adversarial values yields

the following corollary.

Corollary 2.10. Both of the following hold:
(1) Welfare: Let W denote a 𝜆-Lipschitz welfare function. Then��sup

𝑥 ∈X
W(𝑥 ; 𝒖)− sup

𝑥 ∈X
W(𝑥 ; 𝒖′)

�� ≤ 𝜆𝜀

and
��inf

𝑥 ∈X
W(𝑥 ; 𝒖)− inf

𝑥 ∈X
W(𝑥 ; 𝒖′)

�� ≤ 𝜆𝜀 .

(2) Maximin-Optimal Strategies: If strategy 𝑠 ∈ 𝑆𝑝 is 𝛼-maximin
optimal for player 𝑝 in 𝒖′, so that A𝑝 (𝑠 ; 𝒖′) ≥ MM𝑝 (𝒖′)−𝛼 , then it is
2𝜀 −𝛼 maximin-optimal in 𝒖, meaning A𝑝 (𝑠 ; 𝒖) ≥ MM𝑝 (𝒖) − 2𝜀 −𝛼 .

If the extreme value is known, we obtain a stronger result:

Theorem 2.11 (Approximating Witnesses of Normal-Form

Games). If 𝑣∗ denotes the target value of a 𝜆-Lipschitz property 𝑓 and
𝐹𝛼 (𝒖) = {𝑥 | |𝑓 (𝑥 ; 𝒖) − 𝑣∗ | ≤ 𝛼}, then 𝐹0 (𝒖) ⊆ 𝐹𝜆𝜀 (𝒖′) ⊆ 𝐹

2𝜆𝜀 (𝒖).

By applying this theorem to regret, for which the extreme value

is known (i.e., at equilibrium, regret is 0), we recover the dual

containment theorem of Areyan Viqueira et al. [4].

Corollary 2.12 (Approximating Eqilibria inNFGs). IfE𝛼 (𝒖) �
{𝑥 ∈ 𝑺 | Reg(𝑥 ; 𝒖) ≤ 𝛼} and E

⋄
𝛼 (𝒖) � {𝑥 ∈ 𝑺⋄ | Reg(𝑥 ; 𝒖) ≤ 𝛼},

then E0 (𝒖) ⊆ E2𝜀 (𝒖′) ⊆ E4𝜀 (𝒖) and E
⋄
0
(𝒖) ⊆ E

⋄
2𝜀
(𝒖′) ⊆ E

⋄
4𝜀
(𝒖).

3 LEARNING EXTREME EQUILIBRIA
In this section, we investigate extreme equilibria—the best (optimal)

or the worst (pessimal)—measured in terms of the welfare achieved.

We call the welfare-maximal equilibria maximally consonant, and
the welfare-minimizing ones, maximally dissonant.

As it turns out, even for a Lipschitz continuous welfare function,

neither the maximally consonant nor maximally dissonant equilib-

ria, nor their values, is amenable to statistical EGTA methodology,

because these properties are not Lipschitz continuous in utilities.

Consequently, we define relaxations of these properties, that we call
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𝐴 𝐵

𝐴 𝜸,−𝜸 −𝛾,𝛾
𝐵 𝛾 − 𝑐,−𝛾 𝒄 −𝜸,𝜸

Figure 2: Inapproximable extreme equilibria.

maximally consonant and maximally dissonant Λ-stable outcomes,

which are similar in spirit to their equilibrium counterparts, but

which are well behaved. Specifically, we replace the equilibrium

constraints with their Lagrangian relaxations based on a tunable

parameter Λ ≥ 0. This change in the definitions does not alter the

spirit of the properties, only the letter, because as Λ goes to infinity,

the penalty for violating the constraints becomes infinite, so they

are not violated. On the other hand, when Λ is finite, these defi-

nitions can be understood as permitting small oscillations around

extreme equilibria, thus expanding the scope of acceptable play.

For extreme Λ-stable outcomes, we obtain a positive result,

namely, for all games and for all 𝜀 > 0, there exists a sample size

𝑚 s.t. we can 𝜀-estimate them. However, having overcome what

might have appeared to be the shortcoming that was preventing the

estimation of extreme equilibria, we find ourselves facing a more

serious stumbling block. In particular, although we can now derive

a more satisfying bound on these extreme consonance and disso-

nance properties, given an 𝜀-uniform approximation of a game, this

bound grows with Λ. In other words, fixing the number of samples

and letting Λ increase so as to produce solutions closer and closer

to an extreme equilibrium yields a larger and larger confidence

interval around the property’s estimate. Alternatively, fixing 𝜀, as

Λ grows, 𝜀-accurate estimation of the property requires more and

more samples. This result is not entirely surprising, as we have

effectively interpolated between two extreme cases: 0-stable out-

comes, which are easy to estimate, and ∞-stable outcomes, which

cannot be estimated.

Observation 3.1 (Extreme Utilitarian Welfare Eqilibria

are Inapproximable). Consider the game family Γ(𝛾) parameter-
ized by 𝛾 ∈ (0, 1), for any 𝑐 ≥ 0, depicted in Figure 2. For Γ(−𝛾) and
Γ(𝛾) with corresponding utilities 𝒖−𝛾 , 𝒖𝛾 , it holds that, for all 𝜀 ≥ |𝛾 |

2
,

it holds that
𝒖−𝛾 − 𝒖𝛾

∞ ≤ 2𝛾 ≤ 𝜀, but��� sup

𝒔∈E(𝒖)
W1 (𝒔; 𝒖) − sup

𝒔∈E(𝒖𝛾 )
W1 (𝒖𝛾 , 𝒔)

��� = 𝑐

and
��� inf

𝒔∈E(𝒖)
W1 (𝒔; 𝒖) − inf

𝒔∈E(𝒖𝛾 )
W1 (𝒖𝛾 , 𝒔)

��� = 𝑐 .

Proof. By construction, Γ(−𝛾) is a 2𝛾 ≤ 𝜀-uniform approxima-

tion of Γ(𝛾). When 𝛾 < 0, the column player plays 𝐴, to which

the row player responds with 𝐴. The only, and thus both the best

and worst equilibrium of Γ is (𝐴,𝐴), with utilitarian welfare 0. For

𝛾 > 0, by similar reasoning the only equilibrium is (𝐵, 𝐵), which
has utilitarian welfare 𝑐 . The utilitarian welfare of the best (and

worst) welfare equilibria in Γ(−𝛾) and Γ(𝛾), therefore, differ by
𝑐 > 0: i.e., arbitrarily. □

Corollary 3.1. For all 𝜀 > 0, there does not exist a finite sample
size𝑚 that is sufficient to 𝜀-estimate maximally consonant and maxi-
mally dissonant w.r.t. utilitarian welfare) equilibria, or their values.

Next, we derive natural bounds on extreme equilibria, both from

above and below, albeit loosely. We then present an unnatural, yet

sufficient, condition under which the upper (lower) bound on the

maximally dissonant (consonant) equilibrium value can be tight-

ened. We write MD (𝒖) and MC (𝒖) to denote the set of maximally

dissonant and maximally consonant equilibria of the game defined

by 𝒖. As all elements of these sets have the same values, we overload

this notation, using it to denote both the set (i.e., the witnesses) and

the value of all its elements. Our intended meaning should be clear

from context.

Given a game 𝒖, the maximally dissonant equilibrium value

MD (𝒖) is upper bounded by the maximally consonant one MC (𝒖).
To obtain a lower bound on MD (𝒖), we consider the value of the
maximally dissonant 2𝜀-equilibria in an 𝜀-approximation 𝒖′ of 𝒖,
which underestimates the maximally dissonant equilibrium value

of 𝒖. Similarly, to obtain an upper bound on MC (𝒖), we consider
the value of the maximally consonant 2𝜀-equilibria in 𝒖′, which
overestimates themaximally consonant equilibrium value of 𝒖. Note
that both these bounds can be arbitrarily loose, as the extreme 2𝜀-

equilibria in 𝒖′ may not correspond to extreme equilibria in 𝒖 (see

Observation 3.1). That said, we can tighten this bound if we assume

that the welfare of every 𝛼-Nash equilibrium in 𝒖 approximates (by

𝛼𝛾 for some 𝛾 > 0) that of an exact Nash equilibrium (also in 𝒖), as
this (unreasonable) assumption enables accurate estimation of the

welfare of extreme equilibria.

We now formalize these arguments. As usual, we fix two com-

patible games characterized by utility functions 𝒖 and 𝒖′, and we

assume that 𝒖′ is an 𝜀-uniform approximation of 𝒖.

Theorem 3.2 (Approximating Extreme Eqilibria). Fix 𝜀 > 0.
Assume W : 𝑺 × (𝑺 → R |𝑃 | ) → R is monotonic non-decreasing so
that 𝒖 ⪯ 𝒗 component-wise implies W(𝒔; 𝒖) ≤ W(𝒔; 𝒗), for all 𝒔 ∈ 𝑺
and utilities 𝒖 and 𝒗. It holds that

inf

𝒔∈E2𝜀 (𝒖′ )
W(𝒔; 𝒖′−𝜀) ≤ MD (𝒖) ≤ MC (𝒖) ≤ sup

𝒔∈E2𝜀 (𝒖′ )
W(𝒔; 𝒖′+𝜀) .

Corollary 3.3. In addition to the conditions of Thm. 3.2, suppose
that there exists 𝛾 > 0 such that

∀𝛼 > 0,∀𝒔 ∈ E𝛼 (𝒖), ∃𝒔′ ∈ E(𝒖) s.t.
��
W(𝒔; 𝒖) − W(𝒔; 𝒖′)

�� ≤ 𝛼𝛾 .

We may then refine the upper bound on MD (𝒖) as
MD (𝒖) ≤ inf

𝒔∈E(𝒖′ )
W(𝒔; 𝒖′ + 𝜀) + 2𝛾𝜀 ,

and similarly, the lower bound on MC (𝒖) as
sup

𝒔∈E(𝒖′ )
W(𝒔; 𝒖′ − 𝜀) − 2𝛾𝜀 ≤ MC (𝒖) .

The condition that |W(𝒔; 𝒖) − W(𝒔; 𝒖′) | ≤ 𝛼𝛾 is essentially a

variant of the 𝜀-Δ approximate stability property introduced by

Awasthi et al. [5], who find that games with certain structures, such

as zero-sum games, satisfy these conditions. Interestingly, while

they use the condition to bound the error induced by computational
approximation, our usage demonstrates that it can also be used to

control the error due to statistical approximation.

As the condition of Corollary 3.3 is difficult to justify, we propose

an alternative quantity as a substitute measure for extreme equi-

libria, namely extreme Λ-stable outcomes, in which we replace the
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inf

𝒔∈𝑺
: 1 × (𝜆W + 2Λ)

+ : (𝜆W) + (2Λ)

W(𝒔) : 𝜆W × : (Λ) × (2)

Λ : Λ Reg(𝒔; 𝒖) : 2

Figure 3: Abstract syntax tree depicting the derivation of the
Lipschitz constant for MDΛ (𝒖).

equilibrium constraints with their Lagrangian relaxation. We now

write MDΛ (𝒖) (resp. MCΛ (𝒖)) to denote the maximally dissonant

(resp. consonant) Λ-stable outcomes of the game defined by 𝒖.

Definition 3.4. Given a game Γ with corresponding utilities 𝒖,
and Λ ≥ 0, amaximally dissonant Λ-stable outcome is an element of

MDΛ (𝒖) � inf

𝒔∈𝑺
W(𝒔; 𝒖) + ΛReg(𝒔; 𝒖) .

Similarly, a maximally consonant Λ-stable outcome is an element of

MCΛ (𝒖) � sup

𝒔∈𝑺
W(𝒔; 𝒖) − ΛReg(𝒔; 𝒖) .

These new properties are Lipschitz continuous in utilities, as we

argue next, and thus are better behaved than extreme equilibria, in

that they can be well approximated via a uniform approximation.

We also provide a proof that MD
∗
Λ (𝒖) and MC

∗
Λ (𝒖) are Lipschitz

properties. These quantities are analogous to their counterparts,

but are defined in terms of the excess regret

Reg
∗ (𝒔; 𝒖) � Reg(𝒔; 𝒖) − inf

𝒔′∈𝑺
Reg(𝒔′; 𝒖) ,

which is relevant when the smallest regret is not zero. The Lipschitz

constant of Reg
∗ (𝒔; 𝒖) is 4, as can be shown via similar techniques.

Theorem 3.5 (Approximating Extreme Λ-Stable Outcomes).
Assume W : 𝑺 × (𝑺 → R |𝑃 | ) → R is a 𝜆W-Lipschitz property. It holds
that MDΛ (𝒖) is 𝜆W + 2Λ-Lipschitz, which immediately implies that
|MDΛ (𝒖) − MDΛ (𝒖′) | ≤ (𝜆W + 2Λ)𝜀. Likewise, for MCΛ (𝒖). It also
holds that MD

∗
Λ (𝒖) is 𝜆W + 4Λ-Lipschitz, which immediately implies

that
��
MD

∗
Λ (𝒖) − MDΛ (𝒖′)

�� ≤ (𝜆W + 4Λ)𝜀. Likewise, for MC
∗
Λ (𝒖).

Proof. We prove this theorem using the Lipschitz calculus pre-

sented in Theorem 2.8. Recall that regret is 2-Lipschitz. Moreover

inf provides a 1-Lipschitz multiplicative factor. Finally, addition

requires that we add the Lipschitz constants of the corresponding

addends. We begin at the leaves in Figure 3, computing Lipschitz

constants, and back those values up the syntax tree to arrive at

2(𝜆W + Λ) Lipschitz constant for MDΛ (𝒖). The inequality then

follows via Observation 2.1.

The proofs in the remaining three cases — MCΛ (𝒖), MD
∗
Λ (𝒖),

and MC
∗
Λ (𝒖) — are analogous. □

Discussion. Not only are extreme Λ-stable outcomes mathemati-

cally preferable to extreme equilibria because of their estimation

properties, we believe they are also as, if not more, justifiable as

descriptors or predictors of the play of a game. The standard moti-

vation for considering welfare at equilibrium is that we expect ideal

players to converge to equilibrium play. On the other hand, it is rea-

sonable to expect non-ideal players to play near, but not exactly at,

equilibria. By expanding the scope of play to include approximate

equilibria, we are able to accommodate more realistic behavior. At

the same time, the parameter Λ allows us to control the extent to

which non-equilibrium play is acceptable. Taking Λ = 0 ignores

equilibrium behavior entirely, while at the other extreme, letting

Λ → ∞, MDΛ (𝒖) → MD (𝒖) (likewise, MCΛ (𝒖) → MC (𝒖)), be-
cause as Λ goes to infinity, the penalty for violating the constraints

becomes infinite, so they are not violated.

We can interpret Λ-stable outcomes that deviate from equilib-

rium play as ranging from fully cooperative to fully non-cooperative.

The welfare term is a cooperative one, where the players are collud-

ing to make the world as wonderful (or terrible) a place as possible.

The regret term, in contrast, is non-cooperative, but Λ permits some

flexibility in behavior. In the case of a maximally dissonant (collud-

ing) outcome, Λ = 0 implies the players are all playing pessimally:

i.e., they are colluding to cause as much suffering to all players

(including themselves) as possible. The opposite is true of maxi-

mally consonant (colluding) outcome, where players are colluding

to create a utopia. On the other hand, as Λ → ∞, the players move

away from cooperative behavior towards rational equilibrium (i.e.,

non-cooperative) behavior. Indeed, Λ-stability allows us to model a

range of cooperative and non-cooperative behaviors.

4 ESTIMATING THE PRICE OF ANARCHY
We now set out to investigate approximations of the price of anar-

chy [15] that follow from uniform approximations of games. The

price of anarchy is a way of comparing the best-case welfare to the

worst-case welfare at equilibrium. It is a measure of how bad things

can get when there is no centralized control over agents’ behavior,

and the alternative assumption is worst-case equilibrium play.

Our first result is negative: even given a uniform approximation

of a game, we cannot derive a satisfactory bound on its price of

anarchy, as we cannot derive a satisfactory bound on the value of

its maximally dissonant equilibria (see Obs. 3.1). Still, following

Thm. 3.2, we can bound the price of anarchy both from above and

below, albeit loosely from below, and then, under the same condi-

tions proposed in that theorem, the lower bound can be tightened.

But, as already noted, these conditions are difficult to justify, which

leads us to propose an alternative quantity as a substitute measure

for the traditional price of anarchy.

Our new measure of the price of anarchy alters the traditional

measure in two ways. First, we replace the value of the maximally

dissonant equilibriumwith that of themaximally dissonantΛ-stable
outcome, for some Λ ≥ 0. Second, we replace division with sub-

traction. We refer to the traditional price of anarchy measure as

the anarchy ratio, by analogy with competitive ratio, and our new

measure as the anarchy gap. Although we use the term “gap" rather

than “price," we note that price of anarchy is traditionally defined

as a ratio, dividing one quantity by another; as such, it is dimension-

less, and thus not technically a price. When you subtract the two

quantities, however, the units are preserved, so that the resulting

quantity remains measured in, say, utils, meaning units of utility,

which interpreted in monetary terms would indeed be a price.
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As in the case of extreme equilibria, the first change in the defini-

tion does not alter the spirit of the price of anarchy, only the letter.

The second change, in contrast, is more material; it can, however,

be justified mathematically. Replacing the division with a subtrac-

tion eliminates the possibility of dividing by a very small quantity.

Together with the first change, this second change renders the an-

archy gap Lipschitz continuous in utilities (Thm. 4.5). In contrast,

the anarchy ratio is not Lipschitz continuous in utilities, even when

it is defined in terms of Λ-stable outcomes. As a result, the anarchy

gap is well behaved, and thus can be well-estimated using statistical

EGTAmethodology, while the anarchy ratio is not, and thus cannot.

Additionally, the price of anarchy was originally defined for

complete-information games, so it was natural to extend the def-

inition to incomplete-information games by computing the price

of anarchy of the corresponding normal-form game, as is done in

the study of the price of anarchy in auctions [20]. Computing the

price of anarchy in this way, however, means dividing the ‘expected

value of the optimal social welfare’ by ‘the expected value of the

maximally dissonant equilibrium value’, rather than defining the

price of anarchy as the expected value of ‘the optimal social welfare

divided by the maximally dissonant equilibrium value’: i.e., taking

expectations before dividing rather than after. Because of the lin-

earity of expectations, the disparity between these two potential

definitions the price of anarchy in games of incomplete-information

disappears in a measure that is defined via subtraction rather than

division: i.e., in the anarchy gap. We start our technical discussion

by defining the price of anarchy [15].

Definition 4.1 (Anarchy Ratio). Given game Γ with utility func-

tion 𝒖, the anarchy ratio is defined as

AR(𝒖) �
sup𝒔∈𝑺 W(𝒖, 𝒔)

inf𝒔∈E(𝒖 ) W(𝒖, 𝒔) =
sup𝒔∈𝑺 W(𝒖, 𝒔)

MD (𝒖) .

Likewise, the stability ratio
5
is defined as

SR(𝒖) �
sup𝒔∈𝑺 W(𝒖, 𝒔)

sup𝒔∈E(𝒖 ) W(𝒖, 𝒔) =
sup𝒔∈𝑺 W(𝒖, 𝒔)

MC (𝒖) .

As argued above, a uniform approximation 𝒖′ of 𝒖 implies a

uniform approximation of the extreme welfare of 𝒖 — the term in

the numerator of the anarchy ratio. It does not, however, imply a

uniform approximation of the welfare of an extreme equilibrium

in 𝒖 (see Observation 3.1) — the term in the denominator. Just as

we bounded the values of extreme equilibria from above and below

in Thm. 3.2, the next theorem bounds the anarchy ratio. These

arguments are similar because the anarchy ratio is defined in terms

of the maximally dissonant equilibrium value.

Theorem 4.2 (Approximating the Prices of Anarchy and

Stability). Assume as in Thm. 3.2. Then, so long as the numerator
and denominator of each bound is positive,

max

{
1,

sup𝒔∈𝑺 W(𝒖′ − 𝜀, 𝒔)
sup𝒔∈E2𝜀 (𝒖′ ) W(𝒖′ + 𝜀, 𝒔)

}
≤ SR(𝒖) ,

and furthermore, AR(𝒖) ≤
sup𝒔∈𝑺 W(𝒖′ + 𝜀, 𝒔)

inf𝒔∈E2𝜀 (𝒖′ ) W(𝒖′ − 𝜀, 𝒔) .

5
Some define the stability ratio as the reciprocal of SR(𝒖 ) .

Corollary 4.3. Assume as in Cor. 3.3. We may then refine the
lower bound, improving the supremum (i.e., maximally consonant)
equilibrium value to an infimum (i.e., maximally dissonant), again
so long as the denominator is positive, as

sup𝒔∈𝑺 W(𝒖′ − 𝜀, 𝒔)
inf𝒔∈E(𝒖′ ) W(𝒖′ + 𝜀, 𝒔) + 2𝛾𝜀

≤ AR(𝒖) ,

and furthermore, SR(𝒖) ≤
sup𝒔∈𝑺 W(𝒖′ + 𝜀, 𝒔)

sup𝒔∈E(𝒖′ ) W(𝒖′ − 𝜀, 𝒔) − 2𝛾𝜀
.

Next, paralleling the structure of our discussion of extreme equi-

libria, where we introduced Λ-stable outcomes as an alternative to

extreme equilibria, we now introduce an alternative to the anarchy

ratio, namely the anarchy gap.

Definition 4.4 (Anarchy and Stability Gaps). Given game Γ with

utility function 𝒖, the anarchy gap is defined as

AG(𝒖) � sup

𝒔∈𝑺
W(𝒔)︸     ︷︷     ︸

Cooperative

− inf

𝒔∈E(𝒖 )
W(𝒔)︸         ︷︷         ︸

Non-Cooperative

,

and the stability gap is defined similarly.

Combining ideas, given Λ ≥ 0, the Λ-anarchy gap is defined as

the Lagrangian relaxation over the equilibrium set, i.e.,

AGΛ (𝒖) � sup

𝒔∈𝑺
W(𝒔)︸     ︷︷     ︸

Cooperative

− inf

𝒔∈𝑺
W(𝒔) + ΛReg(𝒔; 𝒖)︸                        ︷︷                        ︸
Non-Cooperative

,

and the Λ-stability gap is defined similarly.

If 𝒖 has an equilibrium, then AGΛ (𝒖) ≥ 0. However, as equilibria

are not guaranteed to exist in games without mixed strategies,

AGΛ (𝒖) can become very negative, asΛ tends toward infinity. Thus,

we also define a relaxation of this gap: given Λ ≥ 0, the Λ∗-anarchy
gap is defined as

AG
∗
Λ (𝒖) � sup

𝒔∈𝑺
W(𝒔)︸     ︷︷     ︸

Cooperative

− inf

𝒔∈𝑺
W(𝒔) + ΛReg

∗ (𝒔; 𝒖)︸                         ︷︷                         ︸
Non-Cooperative

,

where, as above,Reg
∗ (𝒔; 𝒖) is the excess regret, defined asReg

∗ (𝒖, 𝒔) �
Reg(𝒔; 𝒖) − inf𝒔′ Reg(𝒔′; 𝒖). As Reg

∗ (𝒔; 𝒖) ≥ 0 and sup

𝑥 ∈𝑋
𝑓 (𝑥) ≥ inf

𝑥 ∈𝑋

𝑓 (𝑥), it follows that AG
∗
Λ (𝒖) ≥ 0.

These latter two measures of anarchy, parameterized by Λ, are
Lipschitz properties, and thus are well behaved: i.e., they can be

well approximated via a uniform approximation.

Theorem 4.5 (Approximating the Anarchy Gap). Assume
W : 𝑺 × (𝑺 → R |𝑃 | ) → R is a 𝜆W-Lipschitz property. It holds
that AGΛ (𝒖) is 2(𝜆W + Λ)-Lipschitz, which immediately implies��

AGΛ (𝒖) − AGΛ (𝒖′)
�� ≤ 2(𝜆W + Λ)𝜀 .

It also holds that AG
∗
Λ (𝒖) is 4(𝜆W + Λ)-Lipschitz, which implies��

AG
∗
Λ (𝒖) − AG

∗
Λ (𝒖

′)
�� ≤ 4(𝜆W + Λ)𝜀 .

This theorem can be applied using one’s preferred measure of

welfare together with the corresponding Lipschitz constant. When

an equilibrium is known to exist, we can use the regret property. If,

however, an equilibrium is not known to exist (e.g., a pure strategy
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Figure 4: Approximations of Λ-anarchy gap via 0.2-uniform
approximations of a randomly generated congestion game
with 3 facilities, 3 players, and utility range [−2, 2]. 600 uni-
form approximations are randomly generated for both re-
duced bias (parabolic) and biased (arcsine) noise models.

equilibrium in a normal-form game), then we resort to using the

excess regret property, and suffer a factor of two loss of accuracy.

All of the aforementioned results apply not only to the anarchy

but to stability as well, for the corresponding definitions. Further-

more, analogs of these ratios and gaps can be defined for mixed

games. As alluded to earlier, all our bounds hold, regardless of

whether the game is pure or mixed.

The Λ-anarchy gap, by design, is a measure for which we can

derive a more satisfying bound than the corresponding Λ-anarchy
ratio. However, given an 𝜀-uniform approximation of a game, this

bound, like our bound on extreme Λ-stable outcomes, grows with Λ.
Analogously, fixing the number of samples and letting Λ increase

so as to subtract a value that is closer and to that of a pessimal

equilibrium, yields a larger and larger confidence interval around

the gap’s estimate. Alternatively, fixing 𝜀, as Λ grows, 𝜀-accurate

estimation of the gap requires more and more samples. We visualize

this phenomenon in Figure 4 for utilitarian welfare.

Similar to Figure 1, this plot was created using GAMUT [18] to

generate a congestion game 𝒖 with 3 players, 3 facilities, and utility

range [−2, 2]. We uniformly drew 600 normal-form games from the

collection of 𝜀-uniform approximations of this congestion game, by

adding random noise 𝜀𝑝,𝒔 ≤ 𝜀 � 0.2 to each individual utility, i.e.,

setting 𝒖′𝑝 (𝒔) � 𝒖𝑝 (𝒔) + 𝜀𝑝,𝒔 for each (𝑝, 𝒔) ∈ 𝑃 × 𝑺 .
We experimented with two noise models: a mean-concentrated

model and a biased model. In the mean-concentrated model, for

each (𝑝, 𝒔), we draw 𝜀𝑝,𝒔 from the parabolic, i.e., 𝛽 (2, 2), distribution
scaled to [−𝜀, 𝜀], which has (relatively small) standard deviation

𝜀

4

√
5

. The goal of this model is to have the utilities of the estimated

game closer to the utilities of the ground-truth game (as one would

expect via, for example, the central limit theorem) than worst-case

tail bounds would mandate. In the biased model, for each (𝑝, 𝒔), we
draw 𝜀𝑝,𝒔 from the arcsine distribution, i.e., 𝛽 ( 1

2
, 1

2
), scaled to range

[−𝜀, 𝜀], which has the relatively large standard deviation of 𝜀/√2.

The goal of this model is to have the utilities of the estimated game

farther away from the utilities of the ground-truth game, as more

extreme games are more likely to exhibit large changes in AGΛ (·).
Figure 4 shows several violin plots, one plot for each value of

Λ ∈ {0, 0.25, 0.5, 0.75, 1.0, 1.25, 2.5, 5.0, 10.0, 25.0}. Notice that the

selection of Λ’s increases linearly in the first half, and exponentially

in the second half, so as to cover a wide range of interesting behav-

iors. Each half of each violin plot shows the distribution of AGΛ (𝒖′)
across 600 0.2-uniform approximation 𝒖′ of 𝒖 for each of reduced

bias and biased noise models. The plot also shows the upper and

lower bound of Thm. 4.5, as dashed lines, as well as a dotted line

representing an improved upper-bound on AGΛ, as this quantity

decreases monotonically in Λ (because the non-cooperative term is

monotonic in Λ, and the cooperative term is constant). Finally, the

true value of AGΛ (𝒖) for each Λ is depicted via a solid black curve,

and the true value of AG(𝒖) is represented by a blue line.

Our experiments reveal that our estimator is biased. Unsurpris-

ingly, it appears less biased in the parabolic case than in the arcsine

case, and the variance is also lower in the parabolic case. At Λ = 25,

the empirical estimates are very noisy. This result is consistent with

our observation that extreme equilibria cannot be well-estimated

(Obs. 3.1). Even a very small change in utilities can effect whether

a strategy profile is an equilibrium or not, and can thus lead to a

large change in extreme equilibrium values.

5 CONCLUSION
Recent work [19] has argued against Nash, or any other static,

equilibrium as the preferred solution concept, and in favor of al-

ternatives that take into account the dynamics of learning agents,

thereby deeming near-equilibrium behavior more acceptable than

it has been in the past. Our results are yet another argument in

this vein, with regard to optimal Nash equilibria, based not on com-

putational complexity [9, 13], but rather on statistical estimation.

In particular, there does not exist a finite 𝑚 that is sufficient to

estimate a welfare-optimizing Nash equilibrium well; on the other

hand, estimating an extreme Λ-stable outcome for any finite Λ is a

problem we solve in this paper.

Using the language of Λ-stable outcomes, the anarchy gap is

defined as the difference between the maximally consonant 0-stable

outcome and the maximally dissonant ∞-stable outcome. It is pos-

sible to imagine other gaps of interest, such as the maximally con-

sonant Λ-stable outcome vs. the maximally dissonant Λ-stable out-
come, for any finite Λ. The study of additional anarchy and stability
gaps is left for future work.

So too is empirical mechanism design [25, 27] (EMD) using the

ideas outlined in this paper. EMD is mechanism design with EGTA

at its core, rather than traditional game-theoretic analysis. In the

search for mechanisms, designers generally seek extreme solutions:

e.g., extreme equilibria. As neither extreme equilibria nor the price

of anarchy are well behaved, we suggest that EMD researchers

optimize extreme Λ-stable outcomes or some version of an anarchy

gap instead.
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