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ABSTRACT
Real-world economies can be modeled as a network with many
heterogeneous and strategic agents. In this setting, it is very chal-
lenging to find optimal mechanisms, e.g., taxes, 1) when taking
strategic best responses into account and 2) even when using re-
strictive assumptions, e.g., that supply always meets demand. Deep
multi-agent reinforcement learning (MARL) is a natural framework
to learn mechanisms and model strategic best responses, but in-
dependent MARL often collapses to trivial solutions (e.g., where
nobody works) as joint exploration severely distorts rewards and
constraints. Here, we show how to use structured learning curric-
ula and GPU-accelerated simulations to find non-trivial solutions
in networks with many heterogeneous agents. We validate our
approach in models with 100 worker-consumers, 10 firms, and a
social planner who taxes and redistributes. We use empirical best-
response analyses across agent types to show that it is difficult
for agents to benefit by deviating from the learned solutions. In
particular, we find income and corporate taxes that achieve 15%
higher social welfare compared to baselines.
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1 INTRODUCTION
In many (dynamic) general equilibrium (DGE) models of economic
systems, consumers and firms engage in production and trade, and
a social planner (the government) sets policies in order to achieve a
(set of) desired social outcome(s). Since such economic systems can
be seen as general-sum sequential imperfect-information games
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with many heterogeneous agents [25], it can be challenging for the
social planner to find good public policies in the face of strategic
behavior by the economic agents.

Our goal. Here, we aim to find a social planner (tax) policy that
empirically achieves higher social welfare than fixed baselines, and
where the other agents play an (approximate) best response. In
particular, we focus on the methodological challenge of using multi-
agent RL for finding empirical solutions in complex economic systems.

In particular, we analyze models with a large number of hetero-
geneous agents. To make this feasible, we 1) run behavioral models
and simulation on the GPU using WarpDrive [23], and 2) generalize
the curriculum learning approach from Zheng et al. [46].

This approach overcomes significant limitations of existing the-
oretical and computational methods [21, 36]. Moreover, to make
models tractable, many strong simplifying assumptions have to be
made, e.g., that there are a small number of representative agents
or goods [20, 35]. As such, our work is a step towards real-world
economic modeling which requires analyzing a wide spectrum of
possible outcomes and solutions in diverse simulations [13].

2 RELATEDWORK
DGE models describe the relationships and behavior of aggregate
economic variables, such as productivity, consumption, savings, etc.
Mathematically, they are akin to a system of temporal (partial) dif-
ferential equations. Microfoundations research bases such models
on individual agents: consumers, firms, and governments [24, 35].
Solving the stochastic game defined by a DGE is very difficult in
general. Such models thus may represent the various interactions
and context of agents well, but have to make many unrealistic
assumptions to become tractable.

Another approach to economic modeling is agent-based mod-
eling [5], which studies emergent phenomena in simulations of
populations of interacting agents. Often, though such agent-based
models use relatively simple (sub-optimal) behavioral rules. Thus,
although the environmental simulation might have more realis-
tic features, and there is no need to make representative agent
assumptions, the agents themselves may not behave realistically.

Ideally, one could preserve some advantages of agent-based mod-
eling when studying DGE models, while also allowing agents to
adapt strategically and rationally. Multi-agent RL is a natural con-
ceptual fit for this goal, because it allows for agents to learn to
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Figure 1: RBC model with consumers, firms, and governments. Arrows represent money flow. Consumer-workers earn wages
through work and consume goods from firms. They also strategically choose which firm to work for and which basket of goods
to buy, but this is not explicitly visualized. Firms produce goods, pay wages, and set a price for their goods. They also invest
a fixed fraction of profits to increase capital. The government taxes labor income and firm profits, and redistribute the tax
revenue to the consumer-workers. Firms can also sell goods to an external export market, which acts as a price-taker that is
willing to consume goods at any price.

interact in potentially very complicated environments, while op-
timizing their behavior. This has been observed by economists
also [13]. There is some previous work in this direction [7, 15, 34].
For example, the AI Economist used two-level RL to design opti-
mal taxes to improve social welfare in spatiotemporal simulations,
where both agents and governments use RL policies, and to find in-
terpretable public health policies in pandemic simulations [40, 46].
For an extensive review of related work across ML, game theory,
and economic modeling, see the Appendix of the full paper.

3 RESULTS
Model. We focus on a real-business cycle model, an instance of

a DGE model. It involves 3 agent types: consumer-workers, firms
that set prices and wages and use labor to produce different types of
goods, and a government social planner that taxes and redistributes;
all use learned RL policies (see Figure 1). Unlike approaches such as
that of Hill et al. [15], we do not enforce the assumption thatmarkets
clear successfully. Firms can accumulate stocks of produced goods,
and goods may be over-demanded. A more detailed and formal
description of this model is in the full paper.

Experiments. We study variations of our RBC model with 100
consumers and 10 firms. The key empirical challenge is that joint
learning using independent multi-agent RL is highly unstable in our
setting. A key idea of our approach is using structured multi-agent
curricula as a meta-algorithm to stabilize joint learning, extending
the approach used by Zheng et al. [47]. These curricula consist
of staged training, annealing of allowed actions, and annealing of
penalty coefficients. They help to prevent the agents from learning
trivial, uninteresting behavior, e.g., a situation where no production
or consumption takes place.

We compare policies trained using policy gradient [43] or PPO
[22, 32], with both simulation and RL agents on a GPU [23]. The
learned agent behaviors are economically plausible – see Figure 2
for a characteristic run from the environment. There may be many
possible DGE solutions that our approach may converge to; with
neural network training, it is also hard to guarantee more than
local convergence. We test the quality of our learned solutions by
allowing each agent type to train separately, with other policies
frozen. Using this empirical best-response analysis, we find that

Figure 2: Sample roll-out; open RBC model. We observe that
firms have different strategies: some set prices high and rely
on exporting goods (e.g. firm 3); others set prices lower and
also sell to consumers (for example, firm 0). Consumers re-
spond sensibly, only consuming when prices are low and
mainly working when wages are not 0. Firms have different
levels of starting capital and production technology.

agent types are not able to improve their reward much, suggesting
that at least a local, approximate equilibrium has been reached. For
further experimental results and details of the training procedure
and best-response analysis, see the full paper.

4 DISCUSSION AND FUTUREWORK
Economic models often assume the existence of a small number
of representative agents whose behavior is simple and analytically
tractable. Meanwhile, agent-based modeling tools do incorporate
more complexity and heterogeneity, but often fail to model optimal
behavior by the agents. In this work, we adapt multi-agent RL to
enable economic analysis in models with more complexity and at
larger scales than were previously possible. Future work might
involve taking advantage of the flexibility of our framework to
expand the realism of the economic models considered, further
analyzing the behavior of non-equilibrium solutions, or trying to
establish convergence guarantees for special cases.

Poster Session III
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2761



ACKNOWLEDGMENTS
This paper is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (Grant agree-
ment No. 805542).

REFERENCES
[1] G.C. Archibald, E.S. Phelps, A.A. Alchian, and C.C. Holt. 1970. Microeconomic

Foundations of Employment and Inflation Theory. Norton.
[2] Manoj Atolia, Santanu Chatterjee, and Stephen J Turnovsky. 2010. How mislead-

ing is linearization? Evaluating the dynamics of the neoclassical growth model.
Journal of Economic Dynamics and Control 34, 9 (2010), 1550–1571.

[3] Yu Bai, Chi Jin, HuanWang, and Caiming Xiong. 2021. Sample-Efficient Learning
of Stackelberg Equilibria in General-Sum Games. arXiv preprint arXiv:2102.11494
(2021).

[4] David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls,
and Thore Graepel. 2018. The Mechanics of N-Player Differentiable Games. arXiv
preprint arXiv:1802.05642 (Feb. 2018).

[5] Eric Bonabeau. 2002. Agent-Based Modeling: Methods and Techniques for Simu-
lating Human Systems. Proceedings of the National Academy of Sciences 99, suppl
3 (May 2002), 7280–7287. https://doi.org/10.1073/pnas.082080899

[6] Lena Mareen Boneva, R. Anton Braun, and Yuichiro Waki. 2016. Some un-
pleasant properties of loglinearized solutions when the nominal rate is zero.
Journal of Monetary Economics 84 (2016), 216–232. https://doi.org/10.1016/
j.jmoneco.2016.10.012

[7] Shu-Heng Chen, Bin-Tzong, Chie, Ying-Fang Kao, Ragupathy, and Kartik Venkat-
achalam. 2017. Agent-Based Modeling of a Non-Tâtonnement Process for the
Scarf Economy The Role of Learning.

[8] Wilbur John Coleman. 1990. Solving the stochastic growth model by policy-
function iteration. Journal of Business & Economic Statistics 8, 1 (1990), 27–29.

[9] Panayiotis Danassis, Aris Filos-Ratsikas, and Boi Faltings. 2021. Achieving Di-
verse Objectives with AI-driven Prices in Deep Reinforcement Learning Multi-
agent Markets. arXiv preprint arXiv:2106.06060 (2021).

[10] Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich. 2021. Near-
optimal no-regret learning in general games. Advances in Neural Information
Processing Systems 34 (2021).

[11] Oliver De Groot, Ceyhun Bora Durdu, and Enrique G Mendoza. 2019. Approxi-
mately Right?: Global v. Local Methods for Open-Economy Models with Incomplete
Markets. Technical Report. National Bureau of Economic Research.

[12] Jakob N. Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson,
Pieter Abbeel, and Igor Mordatch. 2017. Learning With Opponent-Learning
Awareness. arXiv:1709.04326 [Cs] (Sept. 2017). http://arxiv.org/abs/1709.04326
arXiv: 1709.04326.

[13] Andrew G Haldane and Arthur E Turrell. 2019. Drawing on different disciplines:
macroeconomic agent-based models. Journal of Evolutionary Economics 29, 1
(2019), 39–66.

[14] Burkhard Heer and AlfredMaussner. 2009. Dynamic general equilibriummodeling:
computational methods and applications. Springer Science & Business Media.

[15] Edward Hill, Marco Bardoscia, and Arthur Turrell. 2021. Solving Heterogeneous
General Equilibrium Economic Models with Deep Reinforcement Learning. arXiv
preprint arXiv:2103.16977 (2021).

[16] Tom D Holden. 2017. Existence and uniqueness of solutions to dynamic models
with occasionally binding constraints. The Review of Economics and Statistics
(2017), 1–45.

[17] Kenneth L Judd. 1992. Projection methods for solving aggregate growth models.
Journal of Economic theory 58, 2 (1992), 410–452.

[18] Kenneth L Judd. 1997. Computational economics and economic theory: Substi-
tutes or complements? Journal of Economic Dynamics and Control 21, 6 (1997),
907–942.

[19] Nitin Kamra, Umang Gupta, Fei Fang, Yan Liu, and Milind Tambe. 2018. Policy
learning for continuous space security games using neural networks. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[20] Greg Kaplan, Benjamin Moll, and Giovanni L Violante. 2018. Monetary policy
according to HANK. American Economic Review 108, 3 (2018), 697–743.

[21] Alan P Kirman. 1992. Whom orwhat does the representative individual represent?
Journal of economic perspectives 6, 2 (1992), 117–136.

[22] Ilya Kostrikov. 2018. PyTorch Implementations of Reinforcement Learning Algo-
rithms. https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.

[23] Tian Lan, Sunil Srinivasa, Huan Wang, Caiming Xiong, Silvio Savarese, and
Stephan Zheng. 2021. WarpDrive: Extremely Fast End-to-End Deep Multi-Agent
Reinforcement Learning on a GPU. arXiv:2108.13976 [cs.LG]

[24] Robert E Lucas and Thomas Sargent. 1981. After keynesian macroeconomics.
Rational expectations and econometric practice 1 (1981), 295–319.

[25] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. 1995. Microeco-
nomic Theory. Oxford University Press, Oxford, New York.

[26] Enrique G Mendoza. 1991. Real business cycles in a small open economy. The
American Economic Review (1991), 797–818.

[27] Enrique G Mendoza and Sergio Villalvazo. 2020. FiPIt: A simple, fast global
method for solving models with two endogenous states & occasionally binding
constraints. Review of Economic Dynamics 37 (2020), 81–102.

[28] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. 2007. Al-
gorithmic Game Theory. Cambridge University Press. https://doi.org/10.1017/
CBO9780511800481

[29] OpenAI. 2018. OpenAI Five. https://blog.openai.com/openai-five/.
[30] Jean Pierre Danthine and John B. Donaldson. 1993. Methodological and empirical

issues in real business cycle theory. European Economic Review 37, 1 (1993), 1–35.
https://doi.org/10.1016/0014-2921(93)90068-L

[31] Dylan Radovic, Lucas Kruitwagen, Christian Schroeder de Witt, Ben Caldecott,
Shane Tomlinson, and Mark Workman. 2021. Revealing Robust Oil and Gas
Company Macro-Strategies Using Deep Multi-Agent Reinforcement Learning.
(Sept. 2021).

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[33] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the Game of Go Without Human Knowledge. Nature 550,
7676 (2017), 354.

[34] Ekaterina Sinitskaya and Leigh Tesfatsion. 2015. Macroeconomies as construc-
tively rational games. Journal of Economic Dynamics and Control 61 (2015),
152–182.

[35] Frank Smets and Rafael Wouters. 2007. Shocks and frictions in US business cycles:
A Bayesian DSGE approach. American economic review 97, 3 (2007), 586–606.

[36] Joseph E Stiglitz. 2018. Where modern macroeconomics went wrong. Oxford
Review of Economic Policy 34, 1-2 (2018), 70–106.

[37] Nancy L. Stokey, Robert E. Lucas, and Edward C. Prescott. 1989. Recursive Methods
in Economic Dynamics. Harvard University Press. http://www.jstor.org/stable/
j.ctvjnrt76

[38] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT Press.

[39] Kristal K Trejo, Julio B Clempner, and Alexander S Poznyak. 2016. Adapting
strategies to dynamic environments in controllable stackelberg security games.
In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 5484–5489.

[40] Alexander Trott, Sunil Srinivasa, Douwe van der Wal, Sebastien Haneuse, and
Stephan Zheng. 2021. Building a Foundation for Data-Driven, Interpretable, and
Robust Policy Design using the AI Economist. arXiv preprint arXiv:2108.02904
(2021).

[41] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg, Wojciech M. Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev,
Richard Powell, Timo Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John
Agapiou, Junhyuk Oh, Valentin Dalibard, David Choi, Laurent Sifre, Yury Sul-
sky, Sasha Vezhnevets, James Molloy, Trevor Cai, David Budden, Tom Paine,
Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Yuhuai Wu, Dani
Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Tim-
othy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David
Silver. 2019. AlphaStar: Mastering the Real-Time Strategy Game StarCraft
II. https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-
starcraft-ii/.

[42] Yufei Wang, Zheyuan Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, and
Fei Fang. 2019. Deep reinforcement learning for green security games with real-
time information. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 1401–1408.

[43] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Mach. Learn. 8, 3-4 (May 1992), 229–256.
https://doi.org/10.1007/BF00992696

[44] Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, and Patrick Lucey. 2018. Gen-
erative multi-agent behavioral cloning. arXiv (2018).

[45] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021. Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms. Handbook of
Reinforcement Learning and Control (2021), 321–384.

[46] Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck,
David C Parkes, and Richard Socher. 2020. The ai economist: Improving equality
and productivity with ai-driven tax policies. arXiv preprint arXiv:2004.13332
(2020).

[47] Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C. Parkes, and
Richard Socher. 2022. The AI Economist: Taxation policy design
via two-level deep multiagent reinforcement learning. Science Ad-
vances 8, 18 (2022), eabk2607. https://doi.org/10.1126/sciadv.abk2607
arXiv:https://www.science.org/doi/pdf/10.1126/sciadv.abk2607

[48] Stephan Zheng, Yisong Yue, and Jennifer Hobbs. 2016. Generating long-term
trajectories using deep hierarchical networks. Advances in Neural Information
Processing Systems 29 (2016).

Poster Session III
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2762

https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1016/j.jmoneco.2016.10.012
https://doi.org/10.1016/j.jmoneco.2016.10.012
http://arxiv.org/abs/1709.04326
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://arxiv.org/abs/2108.13976
https://doi.org/10.1017/CBO9780511800481
https://doi.org/10.1017/CBO9780511800481
https://blog.openai.com/openai-five/
https://doi.org/10.1016/0014-2921(93)90068-L
http://www.jstor.org/stable/j.ctvjnrt76
http://www.jstor.org/stable/j.ctvjnrt76
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://doi.org/10.1007/BF00992696
https://doi.org/10.1126/sciadv.abk2607
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.abk2607

	Abstract
	1  Introduction 
	2 Related Work
	3 Results
	4  Discussion and Future Work 
	Acknowledgments
	References



