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ABSTRACT

Ensuring fairness in machine learning algorithms is a challenging

and essential task. We consider the problem of clustering a set

of points while satisfying fairness constraints. While there have

been several attempts to capture group fairness in the 𝑘-clustering

problem, fairness at an individual level is not so well-studied. We

introduce a new notion of individual fairness in 𝑘-clustering based

on features not necessarily used for clustering. The problem is NP-

hard and does not admit a constant factor approximation. Therefore,

we design a randomized heuristic algorithm. Our experimental

results against six competing baselines validate that our algorithm

produces individually fairer clusters than the fairest baseline.

KEYWORDS

Individual Fairness, Randomized Algorithms, Clustering

ACM Reference Format:

Debajyoti Kar, Mert Kosan, Debmalya Mandal, Sourav Medya, Arlei Silva,

Palash Dey, and Swagato Sanyal. 2023. Feature-based Individual Fairness in

k-clustering: Extended Abstract. In Proc. of the 22nd International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2023), London,
United Kingdom, May 29 – June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION

Machine learning systems are increasingly being used in various so-

cietal decision-making, including predicting recidivism [2, 8], decid-

ing interest rates [10], and even allocating healthcare resources [17].

However, beginning with the report on bias in recidivism risk pre-

diction [2], it has been known that such systems are often biased

against certain groups of people. This paper focuses on fairness in

unsupervised learning, particularly in clustering. There has been

an increasing interest in designing clustering algorithms that are

fair with respect to different subgroups [1, 3, 4, 7].

Compared to group fairness, individually fair clustering has

received significantly less attention. Individually fair clustering is

motivated by the facility location problem where the goal is to open
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𝑘 facilities while minimizing the total transportation cost between

individuals and their nearest facility. If we choose 𝑘 facilities (or

centers) uniformly at random, then each point 𝑥 could expect one

of its nearest 𝑛/𝑘 neighbors to be one of such facilities. This led a

few studies [6, 13, 15] to consider the following notion of individual

fairness in clustering. For a point 𝑥 , let 𝑟 (𝑥) be the radius such that

the ball of radius 𝑟 (𝑥) centered at 𝑥 has at least 𝑛/𝑘 points. An

individually fair clustering guarantees that, for every 𝑥 , a cluster

center is chosen from the 𝑟 (𝑥)-neighborhood of 𝑥 .

Proposed Definition of Individual Fairness. Motivated by

the original definition of individual fairness in supervised learning

[9], we introduce a feature-based notion of individual fairness. We

say that two individuals are similar if their features match signifi-

cantly (parameterized by 𝛾 in Definition 1). For each individual 𝑣 ,

let 𝐶 (𝑣) denote the cluster 𝑣 is assigned to. Then our feature-based

individually fair clustering requires that 𝐶 (𝑣) also contains at least

𝑚𝑣 individuals that are similar to 𝑣 . This guarantees that a point 𝑣

is not isolated in its own cluster but that the cluster has a desired

representation (or participation) from points similar to it. Note that,

the features that are used to compute similarity for individual fair-

ness might not necessarily be used for clustering. Our notion of

individual fairness guarantees that feature-wise similar individuals

often share similar clusters. If one converts the cluster centers into

representations for downstream tasks, then similar individuals get

similar representations and hence similar decisions.

2 PRELIMINARIES

Let 𝑉 be a set of 𝑛 points. We denote the tuple of 𝑞 features of

the point 𝑖 by 𝑋𝑖 = (𝑋 ℓ
𝑖
)ℓ∈[𝑞 ] . We write 𝐶 = (𝐶𝑖 )𝑖∈[ℓ ] to denote a

clustering of the set 𝑉 . Given a clustering 𝐶 and a point 𝑣 , 𝜙 (𝑣,𝐶)
assigns the cluster center to the point 𝑣 . We are also given a distance

function 𝑑 : 𝑉 ×𝑉 → R. The clustering cost is defined as follows:

Cost(𝐶,𝜙) = ∑
𝑣∈𝑉 𝑑 (𝑣, 𝜙 (𝐶, 𝑣))

Our definition of individual fairness builds upon the features of

individual points that are not necessarily used for clustering. We

convert the discrete features into one-hot encoding vectors andmin-

max normalize the continuous features. We convert the distance to

similarity: 𝑠 (𝑋𝑖 , 𝑋 𝑗 ) = 𝑒−𝑑 (𝑋𝑖 ,𝑋 𝑗 )
where 𝑠 is the similarity between

𝑋𝑖 and 𝑋 𝑗 . We say that 𝑋𝑖 and 𝑋 𝑗 are 𝑔𝑎𝑚𝑚𝑎 similar if 𝑠 > 𝛾 .
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Definition 1 (𝛾-similarity). For a parameter 𝛾 ∈ [0, 1], we
say two points 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 are 𝛾-similar if 𝑠 > 𝛾 where 𝑠 (𝑋𝑖 , 𝑋 𝑗 ) =
𝑒−𝑑 (𝑋𝑖 ,𝑋 𝑗 ) . We assume that a point is not 𝛾-matched with itself.

Definition 2 (Individual Fairness in Clustering). Given a set
𝑉 of 𝑛 points with a 𝑞-length feature vector 𝑋𝑣 for every point 𝑣 ∈ 𝑉 ,
a similarity parameter 𝛾 ∈ [0, 1], an integer tuple (𝑚𝑣)𝑣∈𝑉 , and an
integer 𝑘 , we say that a clustering (𝐶𝑖 )𝑖∈[ℓ ] (ℓ ⩽ 𝑘) is (𝑚𝑣)𝑣∈𝑉 -
individually fair if it satisfies the following constraint for all 𝑣 ∈ 𝑉 :

|{𝑢 : 𝑢 ∈ Γ(𝑣) and 𝜙 (𝑢) = 𝜙 (𝑣)}| ⩾𝑚𝑣 (1)

The fairness constraint (1) says that at least𝑚𝑣 points that are

𝛾-similar to point 𝑣 must belong to the cluster of 𝑣 . Our main goal

is to compute a clustering (𝐶𝑖 )𝑖∈[ℓ ] of 𝑉 into ℓ (⩽ 𝑘) clusters
and corresponding cluster centers (or facilities

1
) (𝑐𝑖 )𝑖∈[ℓ ] that is

individually fair for every point and minimizes the clustering cost.

Formally, we define our Individually Fair Clustering problem:

Definition 3 (Individually Fair Clustering (IFC)). The input
is a set𝑉 of 𝑛 points with a 𝑞-length feature vector 𝑋𝑣 = (𝑥1𝑣 , . . . , 𝑥

𝑞
𝑣 )

for each 𝑣 ∈ 𝑉 , a similarity parameter 𝛾 ∈ [0, 1], an integer tuple
(𝑚𝑣)𝑣∈𝑉 , a set 𝐹 of potential facilities. The objective is to open a subset
𝑆 ⊆ 𝐹 of at most 𝑘 facilities, and find an assignment 𝜙 : 𝑉 −→ 𝑆 to
minimize Cost(𝐶,𝜙) satisfying the fairness constraints (Eq. 1).

3 HARDNESS AND METHOD

Hardness Results. For hardness results, we consider the decision

version of the IFC problem. It is always possible to find a (trivial)

individually fair clustering by one cluster containing all the points.

However, the cost of such a fair clustering could be high, and we ask

whether it is possible to beat the cost of such trivially fair clustering.

Definition 4 (Trivially Fair Clustering). Given a set 𝑉 of
𝑛 points with 𝑞-length feature vector 𝑋𝑣 for every point 𝑣 ∈ 𝑉 , the
trivially fair clustering puts all points in one cluster and picks the point
as cluster center which minimizes the cost: min𝑘∈𝐹

∑
𝑣∈𝑉 𝑑 (𝑣, 𝑘)

We show that it is NP-complete to compute if there exists any

clustering better than Trivially Fair Clustering.

Definition 5 (Satisfactory-Partition). Given a graph G =

(V, E) and an integer 𝜆𝑣 for every vertex 𝑣 ∈ V , compute if there
exists a partition (V1,V2) of V such that (1) V1,V2 ≠ ∅ and (2)
For every 𝑖 ∈ [2] and every 𝑣 ∈ V𝑖 , the number of neighbors of 𝑣 in
V𝑖 is at least 𝜆𝑣 . We denote an arbitrary instance of Satisfactory-
Partition by (G, (𝜆𝑣)𝑣∈G).

Theorem 1. It is NP-complete to decide whether an instance of
Individually Fair Clustering admits a clustering of cost less than
the Trivially Fair Clustering even when there are only 2 facilities.

Given this result, we explore the possibility of approximation

for the Individually Fair Clustering (IFC) problem. However,

IFC is inapproximable within factor 𝛿 for any 𝛿 > 0.

Theorem 2. Distinguishing between instances of the IFC problem
having zero and non-zero optimal costs is NP-complete even when
there are 2 facilities. Hence, for any computable function 𝛿 , there does
not exist a 𝛿-approximation algorithm for IFC unless P=NP.

1
We use cluster center and facility interchangeably.

Our Algorithm, LP-FAIR: Algorithm 1 describes our random-

ized approximation algorithm for IFA. The linear program (LP)

described in Inequality (2) is a relaxation of the IFA problem. It

has a variable 𝑥𝑣,𝑓𝑘 for each vertex 𝑣 and facility 𝑓𝑘 . In an (integral)

“solution" the variable 𝑥𝑣,𝑓𝑘 takes value 1 if and only if the point 𝑣

is assigned to the facility 𝑓𝑘 . After LP, Algorithm 1 determines the

assignment 𝜙 by assigning point 𝑣 to 𝑓𝑘 with probability 𝑥∗
𝑣,𝑓𝑘

.

Algorithm 1 LP-FAIR, Algorithm for IFA

Input: (𝑉 , (𝑋𝑣 )𝑣∈𝑉 , 𝛾, (𝑚𝑣 )𝑣∈𝑉 , 𝑘 ) , and 𝛿 .
1: for 𝑡 = 1, 2, . . . ,𝑇 = log

1+𝛿 𝑛 do

2: Solve the following LP to get solution 𝑥★𝑡 .

min

𝑥

∑︁
𝑣∈𝑉

∑︁
𝑓𝑘 ∈𝐹

𝑑 (𝑣, 𝑓𝑘 )𝑝 · 𝑥𝑣,𝑓𝑘

s.t.

∑︁
𝑢∈𝑁 (𝑣)

𝑥𝑢,𝑓𝑘 ⩾𝑚𝑣 · 𝑥𝑣,𝑓𝑘 ∀𝑣 ∈ 𝑉 , 𝑓𝑘 ∈ 𝐹∑︁
𝑓𝑘 ∈𝐹

𝑥𝑣,𝑓𝑘 = 1 ∀𝑣 ∈ 𝑉

𝑥𝑣,𝑓𝑘 ⩾ 0 ∀𝑣 ∈ 𝑉 , 𝑓𝑘 ∈ 𝐹

(2)

3: for each 𝑣 ∈ 𝑉 do

4: Set 𝜙𝑡 (𝑣) = 𝑓𝑘 with probability 𝑥★
𝑡,𝑣,𝑓𝑘

.

5: end for

6: end for

7: return Assignment 𝜙★
with the minimum cost.

4 EXPERIMENTS

Datasets and Baselines: We apply three commonly used datasets

[4, 7, 15] from the UCI repository
2
: Adult [14], Bank [16], and

Diabetes. We evaluate the following seven algorithms: our LP-

based approach (LP-FAIR), FairCenter [13], Alg-PP [5], Alg-AG [5],

P-PoF-Alg [5], Hochbaum-Shmoys (H-S) [12], Gonzalez [11]. Our

implementation
3
is available online.

Performance measures: We use Normalized Cost which mea-

sures clustering cost normalized by the cost of trivially fair clus-

tering (Def. 4). Our second metric is Fairness, which denotes the

fraction of points that satisfy individual fairness.

Performance: Table 1 shows normalized cost and fairness results.

LP-FAIR has a significantly lower cost than the baselines, with a

34.5% lower cost than the best baseline (H-S) on average. Moreover,

LP-FAIR consistently clusters points fairer.

Table 1: Normalized cost and fairness results. The best (bold)

and second-best (underlined) performances are emphasized.

Normalized Cost Fairness

Adult Bank Diabetes Adult Bank Diabetes

FairCenter 0.544 0.528 0.341 90.0 96.0 94.1

Alg-PP 0.625 0.516 0.422 86.8 91.3 88.1

Alg-AG 0.617 0.563 0.649 86.8 83.4 87.2

P-PoF-Alg 0.592 0.586 0.528 86.8 87.6 92.8

H-S 0.267 0.251 0.107 90.8 97.7 91.1

Gonzalez 0.331 0.327 0.088 88.6 90.4 89.9

LP-FAIR 0.194 0.176 0.057 92.3 96.3 97.9

2
https://archive.ics.uci.edu/ml/datasets

3
https://github.com/mertkosan/lp-fair
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