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ABSTRACT
Groups of autonomous robots should be resilient. They should have
the ability to cope with unknown events, long-lasting alterations
to the environment, degradation of capacities, robot losses, and
changes to communication networks. This paper presents a multia-
gent resilience formulation for goal-based agents. The formulation
applies to mixed motive groups where agent goals have commonal-
ities but are not perfectly aligned. Resilient groups must not only
be resilient to chance exogenous perturbations but also intentional
endogenous perturbations among the agents. Defining resilience
using expected utilities leads to a new way of looking at multiagent
resilience, namely the resilience game. The resilience game makes
it possible to use the notion of equilibrium from game theory to
evaluate how the intentional stances of agents determine whenmul-
tiagent algorithms are resilient. A guided diffusion of innovations
problem is used to demonstrate how the resilience game provides
insight into the effectiveness of various joint algorithms.
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1 INTRODUCTION
Robots should exhibit resilience, which is the ability to continue
successful operations even when the robots are subjected to unan-
ticipated conditions. Defining resilience for a group of autonomous
agents is challenging when the goals of the agents do not perfectly
align. When agents have mixed motives, such as when they have
different achievement goals achievement goals [24], an exogenous
perturbation can benefit some agents but not others. An agent that
is negatively affected by a perturbation might have an incentive to
change its behavior, driving the system from equilibrium.

There are limitations in previous definitions of resilience that
make them difficult to apply to multiagent groups. Engineering
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resilience defines resilience as the ability to maintain a desired prop-
erty (e.g., stability, performance threshold) or return to a desired
equilibrium state after a perturbation [2, 8, 9, 13, 14, 19, 20]. Switch-
ing resilience is the ability to (re)establish stability, perhaps around a
new equilibrium state, when a different set of operating parameters
or a new set of goals arise [10]. A viability kernel defines resilience
as a system’s ability to stay within bounded region of the state
space [1]. The viability framework assumes only that the system’s
goal is reachable and does not impose the existence of a baseline or
equilibrium condition. Ecological resilience defines resilience as the
ability to retain a system’s identity and usually applies to natural
multiagent phenomena such as predator-prey systems that do not
have fixed stable points in their dynamics [4, 5, 11, 12, 15].

2 THE RESILIENCE GAME
There is a tension among the assessments made by goal-driven
agents when their goals do not align; a joint algorithm that is good
for one agent might not be good for another. This tension leads to
a set of mathematical games collectively called the resilience game.
The resilience game accounts for how exogenous perturbations can
induce a cascade of intentional perturbations when agents have
incentives to change behaviors. Given a model of world uncertainty,
the expected utility of any joint algorithm can be obtained. Joint
algorithms include both cooperative algorithms and algorithms in
which an agent unilaterally deviates from the joint algoirthm.

A mathematical game can be used to model the incentive struc-
ture associated with whether an agent has an incentive to unilater-
ally deviate from a joint algorithm. Exogenous perturbations alter
the payoffs for the joint algorithms. The resilience game is a meta-
game that contains one game for each exogenous perturbation.
An algorithm is an equilibrium of the resilience game if it is an
equilibrium for each exogenous perturbation.

3 CASE STUDY
World Model. The world in the guided diffusion of innovations
problem is a network of nodes where each node represents an indi-
vidual who might adopt a particular technology[3, 6, 16, 17]. Each
edge in the network represents a relationship between individuals.
This paper refers to the individuals in the network as adopters to
differentiate them from agents who are coordinating their joint al-
gorithm. Experiments used an assortative network with 80 adopters
constructed using the assortativity mixing algorithm [18].
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Adopters choose to adopt a new “technology” from the abstract
set {𝑏,𝑚, 𝑐}, indicating blue, magenta, and cyan. The adopters are
influenced in their decisions by two forces: how many of their
neighbors have adopted a technology at time 𝑡 and whether or not
one of the agents is “making a sales pitch" at time 𝑡 . The state of
the world at time 𝑡 is the set of adopters, the colors of the adopters
{𝑏,𝑚, 𝑐}, and the edges connecting the adopters. The initial state
consists of all agents uncommitted and three early adopters having
chosen unique initial technologies.

Adopters make decisions based both on the actions of the agents
and on prior decisions made by their neighbors. Two decision
rules from the literature are applied [3, 6]: In the absolute thresh-
old rule, an agent adopts a new technology if 𝜅fixed ∈ {1, 2, 3}
or more of its neighbors have adopted. In the fractional thresh-
old rule, an agent adopts a new technology if a portion 𝜅fraction ∈
{0.15, 0.25, 0.35, 0.45} of its neighbors have adopted. A sales agent is
considered one of the adopter’s neighbors if the agent is contacting
the adopter, but adopters can make decisions based only on their
neighbors when no agent is in contact.

Agent Model. A “sales manager” assigns each agent both a tech-
nology color and one of the four unique communities detected by
the betweenness algorithm [7]. Each early adopter resides in the
community assigned to the corresponding sales agent. Coordinat-
ing sales agents can Cooperate by “selling" to the neighbor of an
adopter with largest degree within their assigned area or TeamUp by
rotating through each others areas coordinating their “sales calls"
to convince more agents to adopt more rapidly. Each agent also has
a Defect algorithm in which the agent can sell to any adopter.

Experiment Design and Results. A series of simulation experi-
ments were performed under various conditions. The independent
variables are the set of intentional and exogenous perturbations.
The joint algorithms are Cooperate, TeamUp, all agents Defect, and
CooperateDefect and TeamUpDefect, in which the cyan agent defects
and the other agents play Cooperate or TeamUp, respectively. The
exogenous perturbation occurs when adopter agents change their
decision rules varying across the seven conditions for 𝜅fixed and
𝜅fraction.

The baseline world conditions used the FixedThreshold adopter
strategy with 𝜅fixed = 2. Figs. 1(a)–(b) show the expected utility
of the cyan agent on the 𝑥-axis and the sum of the utility of the
magenta and blue agent on the 𝑦-axis. The diagonal line repre-
sents efficiency, which occurs when all adopters select a technology.
The vertical line is a representative satisficing threshold. The fair
allocation is for each agent to receive an expected utility of 33%.

Agents seeking a Bayes-Nash [21] equilibrium always have a
unilateral incentive to defect from Cooperate and TeamUp for all
exogenous perturbations. The payoff vector is inefficient when all
agents defect. For difficult perturbations, the incentive to defect for
Bayes-Nash agents yields very inefficient results.

By contrast, agents seeking a satisficing equilibrium [22, 23] have
no unilateral incentive to defect from the Cooperate or TeamUp
joint solutions because their individual payoffs exceed the aspi-
ration level. Even when an exogenous perturbation occurs and
payoffs drop for the TeamUp strategy, satisficing agents have no
incentive to change because their payoffs are still satisficing. When

(a) Intentional deviation from baseline under condition StrongAssortative.
The WeakAssortative pattern is similar.

(b) Perturbations to the adopter strategies for the StrongAssortative condition.
The WeakAssortative pattern is similar.

Figure 1: Resilience game example.

satisficing agents are using the Cooperate joint strategy, the diffi-
cult worlds (𝜅fixed = 3 and 𝜅fraction = 0.45) induce an incentive to
change their strategies, but not by defecting since defecting does
cause the agents to obtain payoffs about the aspiration level.

4 SUMMARY
The resilience game helps make it clear that whether or not a joint
strategy is resilient to exogenous and intentional perturbations
depends on the intentional stance of the agents. The game shows
that cooperating Bayes-Nash agents are not resilient for the guided-
diffusion of innovations game because individual defections lead
to poor payoffs when exogenous perturbations are challenging.
Cooperating satisficing agents are more likely to be resilient to
both exogenous and intentional perturbations if the aspiration
level is not too high. This points to an important and interesting
tension between seeking optimal solutions versus seeking resilient
solutions.
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