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ABSTRACT

We consider many-to-one matching problems, where one side con-
sists of students and the other side of schools with capacity con-
straints. We study how to optimally increase the capacities of the
schools so as to obtain a stable and perfect matching (i.e., every
student is matched) or a matching that is stable and Pareto-efficient
for the students. We consider two common optimality criteria, one
aiming to minimize the sum of capacity increases of all schools
(abbrv. asMinSum) and the other aiming to minimize the maximum
capacity increase of any school (abbrv. asMinMax). We obtain a
complete picture in terms of computational complexity: Except for
stable and perfect matchings using theMinMax criteria which is
polynomial-time solvable, all three remaining problems are NP-
hard. We further investigate the parameterized complexity and
approximability and find that achieving stable and Pareto-efficient
matchings via minimal capacity increases is much harder than
achieving stable and perfect matchings.

KEYWORDS

School choice; Stable matching; Pareto-efficient matching; Parame-
terized complexity; Approximation algorithms

ACM Reference Format:

Jiehua Chen and Gergely Csáji. 2023. Optimal Capacity Modification for
Many-To-One Matching Problems: Extended Abstract. In Proc. of the 22nd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS,
3 pages.

1 INTRODUCTION

In many-to-one matching with two-sided preferences [1, 4, 11, 15,
18, 20, 21, 24–27], we are given two disjoint sets of agents,𝑈 and𝑊 ,
such that each agent has a strict preference list over some members
of the other set, and each agent in𝑊 has a capacity constraint (aka.
quota) which specifies how many agents from𝑈 can be matched to
it. The goal is to find a good matching between 𝑈 and𝑊 without
violating the capacity constraints. For school choice and university
admission, for example, the agents in 𝑈 would be students or high-
school graduates, while the agents in 𝑊 would be schools and
universities, respectively. To unify the terminology, we call the
agents in𝑈 the students and the agents in𝑊 the schools.
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As towhat defines a goodmatching, the answer varies from appli-
cation to application. The arguablymost prominent andwell-known
concept is that of stable matchings [11, 12, 16], which ensures that
no student 𝑢 and school𝑤 will form a blocking pair, that is 𝑢 is ei-
ther unmatched or prefers𝑤 to his matched school, and𝑤 is either
under-filled (i.e.𝑤 does not receive enough students) or prefers 𝑢
to one of its matched students. Stability is a key desideratum and
has been a standard criterion for many matching applications. On
the other hand, the simplest concept is to ensure that every student
is matched, and we call such matching a perfect matching. Note
that having a perfect matching is particularly important in school
choice or university admission since every student should at least
be admitted to some school/university. A Pareto-efficient (abbrv.
efficient) matching ensures that no other matching can make one
student better offwithout making another student worse off1 [1, 10].
Efficiency is very desirable for the students since it saves them from
trying to find a mutually better solution.

Stability and efficiency, even though equally desirable, are not
compatible with each other (i.e., they may not be satisfiable simul-
taneously). Neither is stability compatible with perfectness. But
what if we can modify the capacities of the schools? Clearly, if we
increase each school’s capacity to |𝑈 | so that every student is as-
signed her first choice, then we obtain a stable, efficient, and perfect
matching. However, this is certainly not cost effective, so we are
facing the following question:

How can we modify the capacities as little as possible to
obtain a stable and efficient, or stable and perfect matching?
In this paper, we aim to answer this question computationally,

and look at two common cost functions, the total and maximum
capacity increases of all schools.

2 OUR CONTRIBUTIONS

We introduce the problem and thoroughly investigate the compu-
tational complexity of determining an optimal capacity increase
vector for obtaining a stable and efficient (resp. stable and per-
fect) matching. We consider two optimality criteria: minimizing
the sum 𝑘+ of capacity increases and the maximum capacity in-
crease 𝑘max. This gives rise to four problems: MinSumSP, Min-
MaxSP, MinSumSE, and MinMaxSE. We show that except for
MinMaxSP, which is polynomial-time solvable, the other three
problems are NP-hard, and remain so even when the preference
lists have constant length. For MinSumSP, we prove a structural

1Not to be confused with Pareto-optimality which requires that no matching exists
that can make an agent (either student or school) better off without making another
agent worse off.
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Table 1: An overview of the complexity results for the

three NP-complete problems. We omit the results forMin-

MaxSP since it is polynomial-time solvable. Here, “const-

approx” means a constant-factor approximation algorithm,

and “paraNP-h” means that the problem remains NP-hard

even if the corresponding parameter (see the first column)

has constant value.

MinSumSP MinSumSE MinMaxSE

const-approx NP-h NP-h NP-h
|𝑈un |-approx P NP-h NP-h
|Δun |-approx P NP-h NP-h

𝑘+/𝑘max W[1]-h, XP W[1]-h, XP paraNP-h
|𝑈un | W[1]-h, XP paraNP-h paraNP-h

(Δst,Δsc) paraNP-h paraNP-h paraNP-h
( |𝑈un |,Δun) FPT paraNP-h paraNP-h

property about agents with justified envies which may be of inde-
pendent interest. We further search for parameterized and approxi-
mation algorithms. We are especially interested in three structural
parameters:
– Capacity bounds 𝑘+ and 𝑘max.
– Number |𝑈un | of initially unmatched students.
– Max. length Δst of the preference list of any student resp. the
maximum length Δsc of the preference list of any school.

– Max. length Δun of the preference list of any unmatched student.
We show that both MinSumSP and MinSumSE can be solved in
polynomial time if the capacity bound 𝑘+ is a constant (i.e., in XP
wrt. 𝑘+). We strengthen this by showing that it is essentially tight
since it cannot be improved to obtain an FPT algorithm, i.e., an
algorithm with running time 𝑓 (𝑘+) · ( |𝑈 | + |𝑊 |)𝑂 (1) , where 𝑓 is
a computable function solely depending on the parameter 𝑘+. On
the other hand, MinMaxSE remains NP-hard even if 𝑘max + Δst +
Δsc + |𝑈un | is a constant.

Since |𝑈un | ≤ 𝑘+ in the case of MinSumSP and MinSumSE,
the parameterized hardness result for 𝑘+ also holds for |𝑈un |. For
the combined parameter |𝑈un | and Δun, MinSumSP admits an FPT
algorithm, while MinSumSE remains NP-hard even if |𝑈un | = 0
and either Δst or Δsc is a constant. Finally, as for approximation
algorithms, while MinSumSP is in general hard to approximate
to any constant factor, it admits a Δun-approximation (resp. |𝑈un |-
approximation) algorithm. However, both MinSumSE and Min-
MaxSE cannot be approximated within a factor of ( |𝑈 | + |𝑊 |)1−𝜀
(for any constant 𝜀 > 0) even if |𝑈un | = 0 and Δst is a constant.
Table 1 summarizes our findings.

3 RELATEDWORK

Studying the trade-off and tension between stability and efficiency
has a long tradition not only in Economics [1, 2, 9, 10, 13, 22], but
also in Computer Science [4, 23]. For instance, Abdulkadiroǧlu and
Sönmez [1] examined Gale/Shapley’s student-proposing deferred
acceptance algorithm (which always yields a student-optimal stable
matching) and the simple top trading cycles algorithm (which is
efficient). Ergin [10] characterized priority structures of the schools–
the so-called acyclic structure–under which a stable and efficient

matching always exists. Kesten [13] proposed an efficiency-adjusted
deferred acceptance algorithm to obtain an unstable matching
which is efficient and Pareto superior to the student-optimal stable
matching. We are not aware of any work on achieving stable and
efficient matching via capacity increase.

Chen et al. [8] investigated the trade-off between stability and
perfectness in one-to-one matchings which is to find a perfect
matching that becomes stable after a few modification to the prefer-
ence lists. Our model differs from theirs as we do not allowmodifica-
tions to the agents’ preferences. Limaye and Nasre [14] introduced
two related matching problems, where each school has unbounded
capacity and a value that measures the cost of assigning an (ar-
bitrary) student there, and the goal is to find a stable and perfect
matching with minimum sum of costs or minimum maximum cost.
Their models are different from ours since they assume that any
place at a given school must have the same cost, whereas in our
framework each school has a capacity 𝑞 so that the first 𝑞 places are
considered free, and only the additional places have non-zero cost.
Furthermore, they allow no initial quotas, which may be interpreted
in our framework as setting each initial quota to zero.

Recently, capacity variation in many-to-one matching has been
studied, albeit for different objectives. Ríos et al. [19] proposed a
seat-extension mechanism to increase student’s welfare. Ueda et al.
[23] designed a strategy-proof mechanism to address minimum
and maximum quotas. Nguyen and Vohra [17] studied many-to-
one matching with couples and propose algorithms to find a stable
matching by perturbing the capacities. Bobbio et al. [5, 6] consid-
ered capacity variations to obtain a stable matching with minimum
average rank of the matched schools (AvgRank) or maximum cardi-
nality (CarSM). The capacity variations can be either sum of capac-
ity increases or sum of capacity decreases. Our problemMinSumSP
can be reduced to their MinSumAvgRank problem by introducing
sufficiently many dummy students and garbage collector schools
with very high ranks so to ensure that each original student is
matched. Hence, our hardness results apply toMinSumAvgRank.
They left open the complexity of MinSumCarSM, which is NP-hard
by our hardness forMinSumSP. Abe et al. [3] propose some alterna-
tive method and conduct experiments forMinSumAvgRank. Yahiro
and Yokoo [28] introduced a matching problem which combines
school matching with resource allocation where the capacity of the
schools depend on which resource is allocated to them. None of
our results follows from theirs.

4 CONCLUSION

For future work, one could investigate parameterized complexity
for other parameters such as the number 𝑛 of students and the
number𝑚 of schools. It is not very difficult to see that our problems
are FPT wrt. 𝑛 since one can upper-bound the number of relevant
schools by a function in 𝑛. For constant number𝑚 of schools, it
is easy to see that all problems are in XP wrt. 𝑚. Secondly, one
could look at stable matching with maximum cardinality instead of
perfectness. It would be interesting to see whether the algorithmic
results for MinSumSP and MinSumSP transfer to this case. Finally,
one could look at other objectives such as stable and popular match-
ing. Preliminary results show that the problem behaves similarly
to the case with stable and perfect matching.
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[1] Atila Abdulkadiroǧlu and Tayfun Sönmez. 2003. School Choice: A Mechanism
Design Approach. American Economic Review 93 (2003), 729–747.
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