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ABSTRACT
When it comes to robotic agents operating in an uncertain world,

a major concern in knowledge representation is to better relate

high-level logical accounts of beliefs and actions to the low-level

probabilistic sensorimotor data. Perhaps themost general formalism

for dealing with degrees of belief in formulas, and in particular, with

how that should evolve in the presence of noisy sensing and acting

is the first-order logical account by Bacchus, Halpern, and Levesque.

The main advantage of such a logical account is that it allows a

specification of beliefs that can be partial or incomplete, in keeping

with whatever information is available about the domain, making

it particularly attractive for general-purpose cognitive robotics.

Recently, this model was extended to handle continuous probability

distributions. However, it is limited to finitely many nullary fluents

and defines beliefs and integration axiomatically, the latter making

semantic proofs about beliefs and meta-beliefs difficult.

In this paper, we revisit the continuous model and cast it in a

modal language.Wewill go beyond nullary fluents and allow fluents

of arbitrary arity as is usual in the standard situation calculus. This

necessitates a new and general treatment of probabilities on possible

worlds, where we define measures on uncountably many worlds

that interpret infinitely many fluents. We then show how this leads

to a fairly simple definition of knowing, degrees of belief, and only-

knowing. Properties thereof will also be analyzed. In this paper,

we focus on the static setting and conclude with some thoughts

about extending this account to actions as the next step and what

challenges might arise.
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1 INTRODUCTION
When it comes to robotic agents operating in an uncertain world,

a major concern in knowledge representation is to better relate

high-level logical accounts of beliefs and actions to the low-level

probabilistic sensorimotor data. In these and other applications, it

is often not sufficient to say that a formula 𝜙 is unknown: we may

need to say which of 𝜙 or ¬𝜙 is more likely, and by how much.

Motivated by such concerns, the unification of logic and probability

has received much attention in recent years [34].

Perhaps the most general formalism for dealing with degrees

of belief in formulas is the first-order logical account by Bacchus,

Halpern, and Levesque (BHL) [1]. The main advantage of a logical

account like BHL is that it allows a specification of beliefs that can

be partial or incomplete, in keeping with whatever information is

available about the domain, making it particularly attractive for

general-purpose high-level programming [24]. It does not require

specifying a prior distribution over some random variables from

which posterior distributions are then calculated, as in Kalman

filters, for example, [40]. Nor does it require specifying the con-

ditional independences among random variables and how these

dependencies change as the result of actions, as in the temporal

extensions to Bayesian networks [40]. In the BHL model, some

logical constraints are imposed on the initial state of belief. These

constraints may be compatible with one or very many initial distri-

butions and sets of independence assumptions. All the properties

of belief will then follow at a corresponding level of specificity.

The BHL account is an extension to Reiter’s reworking of the

situation calculus [33]. The situation calculus and its counterparts,

such as dynamic epistemic logic [42] and the fluent calculus [39],

have enjoyed numerous extensions for time, processes, concurrency,

exogenous events, reactivity, sensing, and knowledge [33]. The

BHL account is a surprisingly simple extension to the epistemic

situation calculus [36]: Instead of a categorical knowledge operator

that says whether a formula 𝜙 is known or not, defined in terms of

accessible situations satisfying said formula 𝜙 , it specifies a weight

on situations. We quantify the degree to which 𝜙 is believed by

summing the weights of those situations where 𝜙 is true.

The simplicity of the BHL model has led to two major classes

of extensions. Owing to its limitation to discrete distributions and
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the lack of a solution for the projection problem (determining what

holds after actions), recent results have demonstrated how it can be

extended to continuous distributions (BL henceforth) [6, 9], as well

as how a notion of regression and progression [10] can be defined

for both the discrete and the continuous model [7, 8].

But perhaps the more major extension is owing to the fact that

it is defined axiomatically, as is usual in the situation calculus [33].

Even in the non-probabilistic case of knowledge and actions, an

axiomatic definition makes semantic proofs about modalities diffi-

cult [23]. The situation is far worse with probabilities: degrees of

belief in BHL are defined by summing the weights of situations, but

these weights themselves are provided by a successor state axiom

that stitches together action executability, unobservable outcomes

and likelihoods of actions in one formula. This makes it difficult

to unpack, even informally, how degrees of beliefs change over

actions and sensing. This motivated a new logical language, the

logicDS [4], which casts the BHL framework in a modal language,

allowing a semantical apparatus to reason about actions, beliefs,

meta-beliefs (including introspection) and only knowing [25] in a

single logical framework. Extensions to DS [27, 28] further con-

sidered adapting the regression and progression results from the

BHL model.

In this work, we wish to continue and combine these two strands

of work. However, one major limitation of the (continuous) BL ex-

tension [6, 9] to BHL is that it only allows finitely many nullary

fluents. This is because unlike the discrete case (both BHL andDS),
where we can sum over situations (and worlds, respectively), there

does not seem to be a feasible way to integrate over situations or

worlds. So in the BL model, they define belief in terms of the values

of fluents initially and then “project" how the weights of these situa-

tions change after actions. This makes the model only applicable to

finitely many absolutely continuous fluents. Working with mixed

discrete-continuous or mixing discrete and continuous needs to be

done meta-linguistically by swapping the integration with sums or

some other operators, which is further defined axiomatically in BL.

In this paper, we will consider the full first-order fragment (i.e.,

going beyond nullary fluents and allowing fluents of arbitrary arity

as is usual in the standard situation calculus) but allow combina-

tions of discrete and continuous probabilities. This necessitates

a new and general treatment of probabilities on possible worlds,

different from DS and BHL, where one used summing, and from

BL, where one integrated over fluent values. Going back to early

work on probabilistic logic [15, 16], but now in a first-order setting,

we define measures on uncountably many worlds that interpret

infinitely many fluents. We then show how this leads to a fairly

simple definition of knowing, believing, and only-knowing. Proper-

ties thereof will also be analyzed. We conclude with some thoughts

about how to extend this logic to actions at the next step and what

challenges might arise.

2 THE LOGIC OBL𝑐

The logicOBL𝑐 of only-believing with continuous degree of beliefs

is a second-order many-sorted epistemic modal logic. For simplicity,

we only consider functions with equality (=) and omit predicates.

There are two sorts: object and real number R. Second-order quan-
tification is only used when talking about numbers.

2.1 The Language
The vocabulary consists of standard names, variables, and func-
tion symbols. Standard names can be viewed as a fixed count-

able domain with the unique names assumption. Conventionally,
we use 𝑛 with (sub-)superscripts for object standard names, e.g.

𝑛1, 𝑛2, . . . 𝑛
′, 𝑛′′, . . . etc. We use Arabic numbers both decimals and

fractions for number standard names, e.g. 0.8,
1

2
, . . ., etc. First-order

(FO) variables are denoted by 𝑥,𝑦,𝑢, 𝑣 . . ., etc. We use𝑉 ,𝑉 ′, . . . , etc.
for second-order variables. Function symbols include

• rigid function symbols of every arity including mathematical

functions like +,×, 𝑒𝑥 .
• fluent function symbols of every arity, such as distanceTo(x),
heightOf(y),salaryInYear(x,y), GDPInMonthYear(x,y,z).

Here, we use the terminology from the situation calculus [33], and

by rigid, we mean the meaning of the function is fixed, while by

fluent, we mean the meaning of the function might vary.

Besides, standard FO connectives ∧, ¬, ∀ and modal operators

{𝐵,𝑂}, are used to construct formulas.

Terms (for respective sort) of the language are the least set of
expressions such that

(1) every standard name and first-order variable is a term;

(2) If 𝑡1, ..., 𝑡𝑘 are terms and 𝑓 is a 𝑘-ary function symbol, then

𝑓 (𝑡1, ..., 𝑡𝑘 ) is a term of the same sort as 𝑓 .

(3) If 𝑡1, ..., 𝑡𝑘 are terms and 𝐹 is a 𝑘-ary second-order variable,

then 𝐹 (𝑡1, ..., 𝑡𝑘 ) is a term of the same sort as 𝐹 .

A term is said to be rigid if and only if it does not contain fluents.

Ground terms are terms without variables.

The epistemic expression 𝐵(𝛼 : 𝑟 ) should be read as “𝛼 is be-

lieved with a degree 𝑟”.𝐾𝛼 means “𝛼 is known” and is an abbre-

viation for𝐵(𝛼 : 1).𝑂(𝛼1 : 𝑟1, . . . 𝛼𝑘 : 𝑟𝑘 ) may be read as “all that

believed are conjunctively 𝛼𝑖 with degree 𝑟𝑖 ”. Similarly, 𝑂𝛼 means

“𝛼 is only known” and is an abbreviation for 𝑂(𝛼 : 1).
As usual, we treat 𝛼 ∨ 𝛽 , 𝛼 ⊃ 𝛽 , 𝛼 ≡ 𝛽 , and ∃𝑣 .𝛼 as abbreviations.

A sentence is a formula without free variables. We use True as an

abbreviation for ∀𝑥 (𝑥 = 𝑥), and False for its negation. A formula

without 𝐵 and 𝑂 is called objective. A formula with no fluent

outside𝐵 or𝑂 is called subjective. An objective formula without

fluent functions is called a rigid formula.

2.2 The Semantics
The semantics is given in terms of possible worlds, where a world
is a Tarski-like structure (Recall that we only consider static case

in this paper). Formally, we assume a fixed domain of discourse

D = D𝑜𝑏 𝑗 ∪ R where D𝑜𝑏 𝑗 is a countable infinite set of objects, R
the real numbers. The set of standard names N = N𝑜𝑏 𝑗 ∪ N𝑛𝑢𝑚 is

a countable subset of D andN𝑜𝑏 𝑗 = D𝑜𝑏 𝑗 .
1
Lastly, we fixN𝑛𝑢𝑚 to

the set of computable numbers [41] which is a countable subset of

R but still includes important irrational numbers such as 𝜋, 𝑒 .

2.2.1 Objective Formulas. A world is a mapping from all function

symbols to functions of the corresponding sorts.

1
Even if the domain is uncountable, we can only assign standard names to a countable

subset of it.
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Formally, a world 𝑤 maps every 𝑘-ary object function symbol

𝑓𝑜𝑏 𝑗 and number function symbol 𝑓𝑛𝑢𝑚 to a function of the corre-

sponding sort, i.e.𝑤 [𝑓𝑜𝑏 𝑗 ] : (D)𝑘 → D𝑜𝑏 𝑗 and𝑤 [𝑓𝑛𝑢𝑚] : (D)𝑘 →
D𝑛𝑢𝑚 satisfying the following constraints:

(1) Rigidity: if 𝑓 is a rigid function symbol, then for all𝑤,𝑤 ′
,

𝑤 [𝑓 ] = 𝑤 ′ [𝑓 ];
(2) Arithmetical Correctness: arithmetical function symbol

(e.g. +,×, 𝑒𝑥 ) are interpreted in the usual sense. For example,

𝑤 [+] (1, 1) = 2 for any𝑤 .
2

Let𝑊 be the set of all such worlds. We denote the set of all

first-order variables and second-order variables asV𝐹𝑂 andV𝑆𝑂

respectively. A variable map 𝜆 maps each element inV𝐹𝑂 to D
of the right sort and maps each element in V𝑆𝑂 to a function of

the corresponding sorts. We write 𝜆 ∼𝑣 𝜆
′
to mean 𝜆 and 𝜆′ agree

excepts perhaps on variable 𝑣 and 𝜆 ∼𝑉 𝜆′ to mean 𝜆 and 𝜆′ agree
excepts perhaps on SO variable𝑉 . The denotation of terms is defined

recursively:

Definition 2.1. the denotation of a term 𝑡 under a pair of world

and variable map ⟨𝑤, 𝜆⟩ is defined as: (assuming 𝑡𝑖 are terms)

• ∥𝑡 ∥𝑤,𝜆 = 𝑡 if 𝑡 ∈ N ;

• ∥𝑡 ∥𝑤,𝜆 = 𝜆(𝑡) if 𝑡 ∈ V𝐹𝑂 ;

• ∥𝑡 ∥𝑤,𝜆 = 𝑤 [𝑓 ] (∥𝑡1∥𝑤,𝜆, ..., ∥𝑡𝑘 ∥𝑤,𝜆) if 𝑡 is of the form
𝑓 (𝑡1, ..., 𝑡𝑘 ) where 𝑓 is a function symbol.

• ∥𝑡 ∥𝑤,𝜆 = 𝜆(𝑉 ) (∥𝑡1∥𝑤,𝜆, ..., ∥𝑡𝑘 ∥𝑤,𝜆) if 𝑡 is of the form
𝑉 (𝑡1, ..., 𝑡𝑘 ) where 𝑉 is a SO variable.

For simplicity, we write ∥𝑡 ∥𝜆 when 𝑡 is rigid, ∥𝑡 ∥𝑤 when 𝑡 does

not contain variables, and ∥𝑡 ∥ when 𝑡 is both rigid and ground. By

a model we mean a pair ⟨𝑤, 𝜆⟩. Truth of objective formulas is then

given as:

• 𝑤, 𝜆 |= 𝑡1 = 𝑡2 iff ∥𝑡1∥𝑤,𝜆 and ∥𝑡2∥𝑤,𝜆 are identical;

• 𝑤, 𝜆 |= ¬𝛼 iff𝑤, 𝜆 ̸ |= 𝛼 ;

• 𝑤, 𝜆 |= 𝛼 ∧ 𝛽 iff𝑤, 𝜆 |= 𝛼 and𝑤, 𝜆 |= 𝛽 ;

• 𝑤, 𝜆 |= ∀𝑣 .𝛼 iff𝑤, 𝜆′ |= 𝛼 for all 𝜆′ ∼𝑣 𝜆;

• 𝑤, 𝜆 |= ∀𝑉 .𝛼 iff𝑤, 𝜆′ |= 𝛼 for all 𝜆′ ∼𝑉 𝜆;

2.2.2 Beliefs. To give the semantics of 𝐵 and 𝑂, we need the no-

tion of epistemic state. We begin with a brief recap of some key

concepts of probability theory. A measure space is a tuple ⟨𝑋,X, 𝜇⟩
where𝑋 is a set ,X is a 𝜎-algebra on the set𝑋 (i.e. a non-empty col-

lection of subsets closed under complements and countable unions),

and 𝜇 : X ↦→ [0, +∞] is a measure. More concretely, X is a non-

empty subset of 2
𝑋
such that:

• for all 𝑋1, 𝑋2, . . . ∈ X, it holds

⋃
𝑖 𝑋𝑖 ∈ X (closed under

countable unions); and

• for all 𝑋 ′ ∈ X, 𝑋 ′
𝑐 = 𝑋\𝑋 ′ ∈ X (closed under complements).

Moreover, 𝜇 is a mapping 𝜇 : X ↦→ [0, +∞] that satisfies:
• 𝜇 (∅) = 0;

• for all pairwise disjoint 𝑋1, 𝑋2, . . . ∈ X, it holds 𝜇 (⋃𝑖 𝑋𝑖 ) =∑
𝑖 𝜇 (𝑋𝑖 ).

Typical measure spaces include the Lebesgue measure spaces

⟨R𝑘 ,M,𝑚⟩ where R𝑘 is a 𝑘-dimensional Euclidean space,M is a

2
Sometime, one might also wish to use the predicate ‘<’ (similarly for ‘≤’) in formulas,

this can be done by assuming a rigid function 𝑙𝑒𝑠𝑠𝑡ℎ𝑎𝑛 which takes values from two

reserved standard names {⊤,⊥}, additionally, for all worlds 𝑤 and real number 𝑥, 𝑦,

𝑤 [𝑙𝑒𝑠𝑠𝑡ℎ𝑎𝑛] (𝑥, 𝑦) = ⊤ iff 𝑥 < 𝑦.

𝜎-algebra on R𝑘 , and 𝑚 is the Lebesgue measure. A probability

space is a special measure space whose measure is normalized, i.e.

𝜇 (𝑋 ) = 1. For probability spaces, usually 𝑋 is called the sample
space,X the event set, 𝜇 the probability measure. A probability space

⟨𝑋,X, 𝜇⟩ is said to be complete if for all 𝐵 ∈ X with 𝜇 (𝐵) = 0 and

all 𝐴 ⊆ 𝐵, one has 𝐴 ∈ X and 𝜇 (𝐴) = 0. Intuitively, completeness

means that if an event has zero probability, any subset of it is also an

event and has zero probability; likewise, if an event has probability

1, all its supersets are events and have probability 1. We restrict

ourselves to complete probability spaces since each probability

space can be uniquely extended to a complete probability space.

An epistemic state 𝑒 is then defined as a set of ⟨W, 𝜇⟩ pairs
s.t. ⟨𝑊,W, 𝜇⟩ forms a complete probability space (henceforth, we

call such ⟨W, 𝜇⟩ pairs probability spaces directly). 3 We expand the

model with the epistemic state. Namely, a model is now a triple

⟨𝑒,𝑤, 𝜆⟩. For objective formulas, truth is given the same as before

since the epistemic state 𝑒 plays no role.

Let𝑊
𝑒,𝜆
𝛼 = {𝑤 ′ | 𝑒,𝑤 ′, 𝜆 |= 𝛼}. Specifically, when 𝑒 contains

only one element, i.e. 𝑒 = {⟨W, 𝜇⟩}, we write𝑊 ⟨W,𝜇⟩,𝜆
𝛼 instead of

𝑊
{⟨W,𝜇⟩},𝜆
𝛼 . In case 𝛼 has no free variables, we write𝑊 𝑒

𝛼 .

Let 𝑟, 𝑟𝑖 denote rigid terms. Truth for 𝐵 and 𝑂 is given as:

• 𝑒,𝑤, 𝜆 |= 𝐵(𝛼 : 𝑟 ) iff ∀⟨W, 𝜇⟩, ⟨W, 𝜇⟩ ∈ 𝑒 implies
𝑊

⟨𝑊,𝜇⟩,𝜆
𝛼 ∈ W and 𝜇 (𝑊 ⟨𝑊,𝜇⟩,𝜆

𝛼 ) = ∥𝑟 ∥𝜆 ;
• 𝑒,𝑤, 𝜆 |= 𝑂(𝛼1 : 𝑟1, . . . , 𝛼𝑘 : 𝑟𝑘 ) iff ∀⟨W, 𝜇⟩, ⟨W, 𝜇⟩ ∈ 𝑒 iff
𝑊

⟨𝑊,𝜇⟩,𝜆
𝛼𝑖 ∈ W and 𝜇 (𝑊 ⟨𝑊,𝜇⟩,𝜆

𝛼𝑖 ) = ∥𝑟𝑖 ∥𝜆 for 𝑖 ∈ {1, . . . , 𝑘}.
Intuitively, 𝑒,𝑤, 𝜆 |= 𝐵(𝛼 : 𝑟 ) if for all ⟨W, 𝜇⟩ ∈ 𝑒 , the set of

worlds that satisfy 𝛼 under ⟨W, 𝜇⟩, i.e.𝑊 ⟨W,𝜇⟩,𝜆
𝛼 , has probability

measure ∥𝑟 ∥𝜆 . Likewise, 𝑒,𝑤, 𝜆 |= 𝑂(𝛼 : 𝑟 ) iff 𝑒 is the maximal set

of such probability spaces. Essentially, beliefs𝐵(𝛼 : 𝑟 ) defined in

this way are indeed probabilities over possible worlds.

For a sentence 𝛼 , we write 𝑒,𝑤 |= 𝛼 to mean 𝑒,𝑤, 𝜆 |= 𝛼 for all

variable maps 𝜆. When Σ is a set of sentences and 𝛼 is a sentence,

we write Σ |= 𝛼 (read: Σ logically entails 𝛼) to mean that for every

𝑒 and 𝑤 , if 𝑒,𝑤 |= 𝛼 ′ for every 𝛼 ′ ∈ Σ, then 𝑒,𝑤 |= 𝛼 . We say

that 𝛼 is valid ( |= 𝛼) if {} |= 𝛼 . Satisfiability is then defined in the

standard way. If 𝛼 is an objective sentence, we write𝑤 |= 𝛼 instead

of 𝑒,𝑤 |= 𝛼 . Similarly, we write 𝑒 |= 𝛼 instead of 𝑒,𝑤 |= 𝛼 if 𝛼 is

subjective.

3 PROPERTIES OF BELIEF
In this section, we show that our logic has many reasonable proper-

ties. As we shall see, many properties in the logic DS and its static

predecessor, the logic OBL [5], are retained.

To begin with, we have the following properties in terms of

validity and satisfiability:

• 𝐵(True : 1) is valid

Proof. This is straightforward: 1) 𝑤 |= True for all world

𝑤 ∈𝑊 ; 2) for all epistemic state 𝑒 and all probability space

⟨W, 𝜇⟩ ∈ 𝑒 , we have𝑊 ∈ W and 𝜇 (𝑊 ) = 1. Hence 𝑒 |=
𝐵(True : 1). □

3
As observed in [18], using a single probability space as an epistemic state would result

in that agents necessarily have de re knowledge about their degrees of belief, i.e. for
all 𝜙 , ∃𝑥.𝐾𝐵 (𝜙 : 𝑥 ) is valid, which is counter-intuitive.
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• for negative 𝑟 , 𝐵(𝛼 : 𝑟 ) is satisfiable only by the empty epis-

temic state ∅.

Proof. Supposing 𝑒 ≠ ∅ and 𝑒 |= 𝐵(𝛼 : 𝑟 ) with ∥𝑟 ∥ <

0, then for all ⟨W, 𝜇⟩ ∈ 𝑒 , 𝜇 (𝑊 ⟨W,𝜇⟩
𝛼 ) = ∥𝑟 ∥ < 0. This

contradicts with the definition of 𝜇. □

3.1 Additivity and Equivalence
Besides, 𝐵 entertains the properties of probability as in [15]:

• if |= 𝛼 ≡ 𝛽 , then |= 𝐵(𝛼 : 𝑟 ) ≡ 𝐵(𝛽 : 𝑟 ) for all 𝑟 .

Proof. For any 𝑒 , and every ⟨W, 𝜇⟩ ∈ 𝑒 , since𝑊
⟨W,𝜇⟩
𝛼 =

𝑊
⟨W,𝜇⟩
𝛽

, if 𝜇 (𝑊 ⟨W,𝜇⟩
𝛼 ) = ∥𝑟 ∥, then 𝜇 (𝑊 ⟨W,𝜇⟩

𝛽
) = ∥𝑟 ∥ and

vice versa. Thus 𝑒 |= 𝐵(𝛼 : 𝑟 ) = 𝐵(𝛽 : 𝑟 ). □

• |= 𝐵(𝛼 : 𝑟 ) ⊃ 𝐵(¬𝛼 : 1 − 𝑟 )
It means 𝐵 satisfies the complement law of probability.

Proof. Suppose 𝑒 |= 𝐵(𝛼 : 𝑟 ), then for all ⟨W, 𝜇⟩ ∈ 𝑒 ,

𝜇 (𝑊 ⟨W,𝜇⟩
𝛼 ) = ∥𝑟 ∥. Then 𝜇 (𝑊 ⟨W,𝜇⟩

¬𝛼 ) = 𝜇 (𝑊 \𝑊 ⟨W,𝜇⟩
𝛼 )

= 𝜇 (𝑊 ) − 𝜇 (𝑊 ⟨W,𝜇⟩
𝛼 ) = 1 − ∥𝑟 ∥. □

• |= 𝐵(𝛼 ∧ 𝛽 : 𝑟 ) ∧𝐵(𝛼 ∧ ¬𝛽 : 𝑟 ′) ⊃ 𝐵(𝛼 : 𝑟 + 𝑟 ′)

Proof. Suppose 𝑒 |= 𝐵(𝛼 ∧ 𝛽 : 𝑟 ) and 𝑒 |= 𝐵(𝛼 ∧ ¬𝛽 : 𝑟 ′),
this means for all ⟨W, 𝜇⟩ ∈ 𝑒 , 𝜇 (𝑊 ⟨W,𝜇⟩

𝛼∧𝛽 ) = ∥𝑟 ∥ and

𝜇 (𝑊 ⟨W,𝜇⟩
𝛼∧¬𝛽 ) = ∥𝑟 ′∥. Since 𝑊

⟨W,𝜇⟩
𝛼∧𝛽 ∩ 𝑊

⟨W,𝜇⟩
𝛼∧¬𝛽 = ∅ and

𝑊
⟨W,𝜇⟩
𝛼∧𝛽 ∪ 𝑊

⟨W,𝜇⟩
𝛼∧¬𝛽 = 𝑊

⟨W,𝜇⟩
𝛼 , we have 𝜇 (𝑊 ⟨W,𝜇⟩

𝛼 ) =

𝜇 (𝑊 ⟨W,𝜇⟩
𝛼∧𝛽 ∪𝑊 ⟨W,𝜇⟩

𝛼∧¬𝛽 ) = 𝜇 (𝑊 ⟨W,𝜇⟩
𝛼∧𝛽 ) + 𝜇 (𝑊 ⟨W,𝜇⟩

𝛼∧¬𝛽 ) = ∥𝑟 ∥ +
∥𝑟 ′∥. □

• |= 𝐵(𝛼 : 𝑟 )∧𝐵(𝛽 : 𝑟 ′)∧𝐵(𝛼∧𝛽 : 𝑟 ′′) ⊃ 𝐵(𝛼∨𝛽 : 𝑟+𝑟 ′−𝑟 ′′)
That is𝐵 satisfies the addition law of probability. The proof

is rather similar to the above one, hence we skip it here.

All the above properties follow from the fact that𝐵 is essentially

a probability over possible worlds.

3.2 Knowledge
Recall that𝐾𝛼 is an abbreviation for𝐵(𝛼 : 1). Our modal of knowl-

edge𝐾 also satisfies many properties in the epistemic logicKL by

Levesque and Lakemeyer [26], including universal and existential

versions of the Barcan formula:

• |= 𝐾𝛼 ⊃ 𝐾 (𝛼 ∨ 𝛽)

Proof. Suppose that 𝑒 |= 𝐾𝛼 , then for all ⟨W, 𝜇⟩ ∈ 𝑒 ,

𝜇 (𝑊 ⟨W,𝜇⟩
𝛼 ) = 1. Since𝑊

⟨W,𝜇⟩
𝛼 ⊆ 𝑊

⟨W,𝜇⟩,
𝛼∨𝛽 , the complete-

ness of the probability space ⟨𝑊,W, 𝜇⟩ guarantees that
𝜇 (𝑊 ⟨W,𝜇⟩

𝛼∨𝛽 ) = 1 □

• |= 𝐾𝛼 ∧𝐾𝛽 ⊃ 𝐾 (𝛼 ∧ 𝛽)

Proof. Suppose that 𝐾𝛼 ∧𝐾𝛽 holds. By the complement

law we have𝐵(¬𝛼 : 0) ∧𝐵(¬𝛽 : 0). Further, with the first

property of knowledge and the complement law we have

𝐵(¬𝛼∧¬𝛽 : 0). According to the addition law of probability,

𝐵(¬𝛼 : 0) ∧𝐵(¬𝛽 : 0) ∧𝐵(¬𝛼 ∧¬𝛽 : 0) ⊃ 𝐵(¬𝛼 ∨¬𝛽 : 0).
Thus 𝐾 (𝛼 ∧ 𝛽) holds. □

• |= 𝐾𝛼 ∧𝐾 (𝛼 ⊃ 𝛽) ⊃ 𝐾𝛽

Proof. Suppose that 𝑒 |= 𝐾𝛼 ∧ 𝐾 (𝛼 ⊃ 𝛽). To prove 𝑒 |=
𝐾𝛽 it suffice to prove that 𝑒 |= 𝐾 ((𝛼 ∨ 𝛽) ∧ (¬𝛼 ∨ 𝛽)).
𝐾 (𝛼 ∨ 𝛽) can be proved by the first property of knowledge.

𝐾 (¬𝛼 ∨ 𝛽) is equivalent to𝐾 (𝛼 ⊃ 𝛽). Based on the second

property of knowledge 𝑒 |= 𝐾𝛽 . □

• |= ∃𝑥 .𝐾𝛼 ⊃ 𝐾∃𝑥 .𝛼

Proof. Suppose that 𝑒, 𝜆 |= ∃𝑥 .𝐾𝛼 , then there exists 𝜆′ with
𝜆 ∼𝑥 𝜆′ such that 𝑒, 𝜆′ |= 𝐾𝛼 . Namely, for all ⟨W, 𝜇⟩ ∈ 𝑒 ,

𝜇 (𝑊 ⟨W,𝜇⟩,𝜆′
𝛼 ) = 1 where by definition

𝑊
⟨W,𝜇⟩,𝜆′
𝛼 = {𝑤 |⟨W, 𝜇⟩,𝑤, 𝜆′ |= 𝛼}. On the other hand,

𝑊
⟨W,𝜇⟩,𝜆
∃𝑥.𝛼 = {𝑤 |⟨W, 𝜇⟩,𝑤, 𝜆 |= ∃𝑥 .𝛼}

=
⋃

{𝜆′′ |𝜆∼𝑥𝜆
′′ }
{𝑤 |⟨W, 𝜇⟩,𝑤, 𝜆′′ |= 𝛼}

Thus𝑊
⟨W,𝜇⟩,𝜆′
𝛼 ⊆𝑊

⟨W,𝜇⟩,𝜆
∃𝑥.𝛼 . Since 𝜇 (𝑊 ⟨W,𝜇⟩,𝜆′

𝛼 ) = 1, we

have 𝜇 (𝑊 ⟨W,𝜇⟩,𝜆
∃𝑥.𝛼 ) = 1 □

The converse of the above formula does not hold: knowing that

𝛼 holds for someone does not imply knowing that individual. For

universal quantification, we have

• |= 𝐾∀𝑥 .𝛼 ⊃ ∀𝑥 .𝐾𝛼

Proof. Suppose that 𝑒, 𝜆 |= 𝐾∀𝑥 .𝛼 . For any ⟨W, 𝜇⟩ ∈ 𝑒 ,

𝑊
⟨W,𝜇⟩,𝜆
∀𝑥.𝛼 = {𝑤 |⟨W, 𝜇⟩,𝑤, 𝜆 |= ∀𝑥 .𝛼}

= {𝑤 |∀𝜆′ .𝜆′ ∼𝑥 𝜆, ⟨W, 𝜇⟩,𝑤, 𝜆′ |= 𝛼}

=
⋂

{𝜆′ |𝜆∼𝑥𝜆
′ }
𝑊

⟨W,𝜇⟩,𝜆′
𝛼

For any 𝜆′ with 𝜆 ∼𝑥 𝜆′, 𝑊 ⟨W,𝜇⟩,𝜆
∀𝑥.𝛼 ⊆ 𝑊

⟨W,𝜇⟩,𝜆′
𝛼 . Since

𝜇 (𝑊 ⟨W,𝜇⟩,𝜆
∀𝑥.𝛼 ) = 1, for all 𝜆′ with 𝜆′ ∼𝑥 𝜆, 𝜇 (𝑊 ⟨W,𝜇⟩,𝜆′

𝛼 ) = 1.

Thus 𝑒, 𝜆′ |= 𝐾𝛼 for all 𝜆′ ∼𝑥 𝜆, i.e. 𝑒, 𝜆 |= ∀𝑥 .𝐾𝛼 □

Unfortunately, in general the converse of the above formula does

not hold as well:

• ⊭ ∀𝑥 .𝐾𝛼 ⊃ 𝐾∀𝑥 .𝛼
The reason is: in a probability space with uncountably many

samples, there could be uncountably many distinct events

where each of them has probability 1, the countable inter-

section of any of these events has probability 1, yet an un-

countable intersection does not have probability 1.

More concretely, we provide a counter-example as follows,

assuming ℎ is a nullary fluent taking values from R, then
⊭ ∀𝑥 .𝐾 (ℎ ≥ 0 ∨ ℎ ≠ 𝑥) ⊃ 𝐾∀𝑥 .(ℎ ≥ 0 ∨ ℎ ≠ 𝑥).
Informally, given an epistemic state 𝑒 = ⟨𝑊, 𝜇⟩, the fluent
ℎ can be viewed as a random variables over R. We further

assume that the distribution of ℎ is standard Gaussian in

𝑒 . For this particular 𝑒 , 𝑒 |= ∀𝑥 .𝐾 (ℎ ≥ 0 ∨ ℎ ≠ 𝑥) yet
𝑒 ⊭𝐾∀𝑥 .(ℎ ≥ 0 ∨ ℎ ≠ 𝑥).
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For the former part: for all real 𝑟 < 0, ℎ ≥ 0 ∨ ℎ ≠ 𝑟 is

equivalent to ℎ ≠ 𝑟 . The probability of this event would be

1: it leaves out a single point (ℎ = 𝑟 ) from the whole sample

space of a Gaussian distribution. The remaining samples have

a probability of 1. Additionally, for all real 𝑟 ≥ 0,ℎ ≥ 0∨ℎ ≠ 𝑟

is equivalent to True, hence the event ℎ ≥ 0 ∨ ℎ ≠ 𝑟 has

probability 1 trivially. Together, we have 𝑒 |= ∀𝑥 .𝐾 (ℎ ≥
0 ∨ ℎ ≠ 𝑥).
For the later part: ∀𝑥 .(ℎ ≥ 0 ∨ ℎ ≠ 𝑥) is equivalent to ℎ ≥ 0,

hence 𝑒 |= 𝐵(∀𝑥 .(ℎ ≥ 0 ∨ ℎ ≠ 𝑥) : 1

2
) (recall ℎ is distributed

as a standard Gaussian in 𝑒). Hence 𝑒 ⊭𝐾∀𝑥 .(ℎ ≥ 0∨ℎ ≠ 𝑥).
Nevertheless, if we only consider the countable object domain, we

still have:

• |= ∀𝑥 .𝐾𝛼 ⊃ 𝐾∀𝑥 .𝛼 if 𝑥 is a variable of sort object.

Proof. Suppose that 𝑒, 𝜆 |= ∀𝑥 .𝐾𝛼 . By the semantics we

have 𝑒, 𝜆′ |= 𝐾𝛼 for all 𝜆′ ∼𝑥 𝜆. For all ⟨W, 𝜇⟩ ∈ 𝑒 and

𝜆′ ∼𝑥 𝜆, 𝜇 (𝑊 ⟨W,𝜇⟩,𝜆′
𝛼 ) = 1. Since 𝑥 is of sort object, the set

{𝜆′ |𝜆′ ∼𝑥 𝜆} is countable.

𝜇 (𝑊 \𝑊 ⟨W,𝜇⟩,𝜆
∀𝑥.𝛼 ) = 𝜇 (𝑊 \

⋂
{𝜆′ |𝜆′∼𝑥𝜆}

𝑊
⟨W,𝜇⟩,𝜆′
𝛼 )

= 𝜇 (
⋃

{𝜆′ |𝜆′∼𝑥𝜆}
(𝑊 \𝑊 ⟨W,𝜇⟩,𝜆′

𝛼 ))

≤
∑︁

{𝜆′ |𝜆′∼𝑥𝜆}
𝜇 (𝑊 \𝑊 ⟨W,𝜇⟩,𝜆′

𝛼 ) = 0

The inequality above is derived from the property of measure

and based on the fact that {𝜆′ |𝜆′ ∼𝑥 𝜆} is countable. Thus
𝜇 (𝑊 ⟨W,𝜇⟩,𝜆

∀𝑥.𝛼 ) = 1 for all ⟨W, 𝜇⟩ ∈ 𝑒 , i.e. 𝑒, 𝜆 |= 𝐾∀𝑥 .𝛼 . □

E.g. |= ∀𝑥 .𝐾 (father (𝑥) ≠ 𝑗𝑜𝑒) ⊃ 𝐾∀𝑥 .father (𝑥) ≠ 𝑗𝑜𝑒 .

Namely, if for all persons, it’s known that the person’s fa-

ther is not joe, as a consequence, it’s known that joe is not
anyone’s father.

3.3 Introspection
Lastly, let us turn to introspection. Formally, for positive introspec-

tion, we have:

• |= 𝐵(𝛼 : 𝑟 ) ⊃ 𝐾𝐵(𝛼 : 𝑟 )

Proof. Supposing 𝑒 |= 𝐵(𝛼 : 𝑟 ), by semantics for all ⟨W, 𝜇⟩
∈ 𝑒 , 𝜇 (𝑊 ⟨W,𝜇⟩

𝛼 ) = 𝑟 . On the other hand,𝑊
⟨W,𝜇⟩
𝐵 (𝛼 : 𝑟 ) = 𝑊 if

⟨W, 𝜇⟩ |= 𝐵(𝛼 : 𝑟 ). Hence for all ⟨W, 𝜇⟩ ∈ 𝑒 , 𝜇 (𝑊 ⟨W,𝜇⟩
𝐵 (𝛼 : 𝑟 ) )

= 𝜇 (𝑊 ) = 1. By semantics, 𝑒 |= 𝐾𝐵(𝛼 : 𝑟 ) □

We comment that the converse of the above formula holds as well,

namely, |= 𝐾𝐵(𝛼 : 𝑟 ) ⊃ 𝐵(𝛼 : 𝑟 ). The proof is in the same spirit

as above, hence we skip it. As a special case, we have the usual 𝐾
properties [17]:

• |= 𝐾𝛼 ⊃ 𝐾𝐾𝛼

Unfortunately, negative introspection does not hold:

• ⊭ ¬𝐵(𝛼 : 𝑟 ) ⊃ 𝐾¬𝐵(𝛼 : 𝑟 )

Proof. Supposing 𝑒1 |= 𝐵(𝛼 : 𝑟 ) and 𝑒2 ⊭ 𝐵(𝛼 : 𝑟 ), then let

𝑒 = 𝑒1 ∪𝑒2, clearly, 𝑒 ⊭ 𝐵(𝛼 : 𝑟 ) since there is at least one ⟨W, 𝜇⟩ ∈
𝑒2 for which ⟨W, 𝜇⟩ ⊭ 𝐵(𝛼 : 𝑟 ). Now we show, 𝑒 ⊭ 𝐾¬𝐵(𝛼 : 𝑟 ).

This amounts to show ∃⟨W′, 𝜇′⟩ ∈ 𝑒 s.t. 𝜇′ (𝑊 ⟨W′,𝜇′ ⟩
¬𝐵 (𝛼 : 𝑟 ) ) ≠ 1. It is

not hard to see this hold by just picking ⟨W′, 𝜇′⟩ from 𝑒1. Since

𝑒1 |= 𝐵(𝛼 : 𝑟 ), we have 𝜇′ (𝑊 ⟨W′,𝜇′ ⟩
𝛼 ) = 𝑟 . Then 𝑊

⟨W′,𝜇′ ⟩
¬𝐵 (𝛼 : 𝑟 ) =

{𝑤 |⟨W′, 𝜇′⟩,𝑤 |= ¬𝐵(𝛼 : 𝑟 )} = ∅, hence, 𝜇′ (𝑊 ⟨W′,𝜇′ ⟩
¬𝐵 (𝛼 : 𝑟 ) ) = 𝜇′ (∅)

= 0 ≠ 1. □

This is because in the truth of 𝐵, i.e. 𝑒 |= 𝐵(𝛼 : 𝑟 ), only indi-

viduals ⟨𝑊, 𝜇⟩ in 𝑒 are used in𝑊𝛼 , namely𝑊
⟨𝑊,𝜇⟩,𝜆
𝛼 , instead of

the whole epistemic state𝑊
𝑒,𝜆
𝛼 . The latter approach [4, 5] might

result in negative introspection. However, it also complicates the

epistemic states which satisfy𝑂(𝛼 : 𝑟 ). Our logic uses the former

idea. Consequently, we have the unique model theorem for only-

believing as shown below.

4 ONLY-BELIEVING
Another important part of our formalism lies in the notion of only-

knowing (or only-believing) [26]. Only-knowing captures the in-

tuition that the beliefs and non-beliefs of an agent are precisely

those that follow from its knowledge base. Hence it is useful to

characterize a knowledge base. Here, we show that our modality

𝑂 faithfully captures the notion of only-believing by examining its

properties.

To beginwith, the uniquemodel theoremholds for only-believing

as in the work [28].

Theorem 4.1 (UniqeModel Theorem). For any sentence 𝛼 and
rigid ground term 𝑟 , there is an unique epistemic state 𝑒 such that
𝑒 |= 𝑂(𝛼 : 𝑟 )

Proof. By the semantics of 𝑂, we have 𝑒 |= 𝑂(𝛼 : 𝑟 ) iff 𝑒 =

{⟨W, 𝜇⟩|𝜇 (𝑊 {⟨𝑊,𝜇⟩}
𝛼 ) = ∥𝑟 ∥}. Clearly, there is only one such 𝑒 . □

While only-believing is always uniquely satisfiable, it may be

the case that 𝑒 is empty. For example ∅ |= 𝑂(False : 1). Likewise,
the maximal epistemic state 𝑒True |= 𝑂(True : 1) where 𝑒True =

{⟨W, 𝜇⟩|⟨𝑊,W, 𝜇⟩ forms a probability space}.
Besides, as in the logic OL [26], only-knowing implies knowing

and not knowing about what is not entailed by the knowledge base.

Below, let 𝛼 be an arbitrary sentence and 𝜙,𝜓 objective sentences:

• |= 𝑂𝛼 ⊃ 𝐾𝛼

• |= 𝑂𝜙 ⊃ 𝐾𝜓 iff |= 𝜙 ⊃ 𝜓

Proof. Since 𝜙 is objective, for all epistemic state 𝑒 and

⟨W, 𝜇⟩ ∈ 𝑒 , the set 𝑊
⟨W,𝜇⟩
𝜙

is irrelevant to ⟨W, 𝜇⟩ and
hence we write it as𝑊𝜙 (respectively we write𝑊𝜓 ).

(⇒) Suppose that |= 𝑂𝜙 ⊃ 𝐾𝜓 , i.e. for all ⟨W, 𝜇⟩, if
𝜇 (𝑊𝜙 ) = 1, then 𝜇 (𝑊𝜓 ) = 1.

Assuming that ⊭ 𝜙 ⊃ 𝜓 , then there exists𝑤 such that𝑤 |= 𝜙

but𝑤 ⊭ 𝜓 . LetW′
be any 𝜎-algebra which contains {𝑤},𝑊𝜙

and𝑊𝜓 as elements. Let 𝜇′ be a probabilitymeasure such that

𝜇′ ({𝑤}) = 0.1 and 𝜇′ (𝑊𝜙\{𝑤}) = 0.9. Then 𝜇′ (𝑊𝜙 ) = 1 but

𝜇′ (𝑊𝜓 ) ≤ 𝜇′ (𝑊 \{𝑤}) = 0.9 which leads to contradiction.

Thus |= 𝜙 ⊃ 𝜓 .

(⇐) Suppose that |= 𝜙 ⊃ 𝜓 , for all 𝑤 ∈ 𝑊 , 𝑤 |= 𝜙 implies

𝑤 |= 𝜓 . Thus𝑊𝜙 ⊆ 𝑊𝜓 . For all ⟨W, 𝜇⟩, if 𝜇 (𝑊𝜙 ) = 1, then

𝜇 (𝑊𝜓 ) = 1. Hence |= 𝑂𝜙 ⊃ 𝐾𝜓 □
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• |= 𝑂𝜙 ⊃ ¬𝐾𝜓 iff 𝜙 ⊭ 𝜓
This is an easy consequence of the above property and the

unique model theorem.

Proof. As the negation of |= 𝑂𝜙 ⊃ 𝐾𝜓 iff |= 𝜙 ⊃ 𝜓 , we

have 𝑂𝜙 ⊭𝐾𝜓 iff 𝜙 ⊭ 𝜓 . Due to the unique model theorem,

there exists a unique model 𝑒 s.t. 𝑒 |= 𝑂𝜙 , hence𝑂𝜙 ⊭𝐾𝜓

iff 𝑂𝜙 |= ¬𝐾𝜓 . □

We note that the above statement does not hold if the 𝑂
modality is replaced with 𝐾 .

More generally, we have properties for only-believing as follows:

• |= 𝑂(𝛼 : 𝑟 ) ⊃ 𝐵(𝛼 : 𝑟 )
• |= 𝑂(𝛼 : 𝑟 ) ⊃ ¬𝐵(ℎ(®𝑛) =𝑚 : 𝑟 ′) for all 𝑟, 𝑟 ′, where ®𝑛,𝑚 are

standard names and ℎ is a fluent not in 𝛼 .

E.g. 𝑂(1.7 ≤ heightOf (𝐴) : 0.9) |= 𝐵(1.7 ≤ heightOf (𝐴) : 0.9)
and 𝑂(1.7 ≤ heightOf (𝐴) : 0.9) |= ∀𝑥 .¬𝐵(weightOf (𝐴) ≤ 50 : 𝑥)
That is, only-believing the person 𝐴’s height is greater than 1.7m

with degree 0.9 entails believing the person’s height is greater than

1.7m with degree 0.9, and also, no believing 𝐴’s weight is no more

than 50kg with any degree.

5 BELIEF DISTRIBUTIONS
Lastly, we demonstrate how to represent probability distributions

and how to reason about beliefs in our logic.

5.1 The Nullary Fluents Fragment
In the works [27, 28] (extensions to the logic DS), a formula

of the form ∀®𝑥 .𝐵( ®ℎ = ®𝑥 : 𝑓 ( ®𝑥)) is used to express a joint dis-
crete distribution, i.e. belief distribution, over a finite set of ran-

dom variables, where
®ℎ is a set of nullary fluents (of sort num-

ber)
®ℎ = {ℎ1, ℎ2, . . . ℎ𝑘 } each corresponding to a random variable,

®ℎ = ®𝑥 denotes

∧
𝑖 ℎ𝑖 = 𝑥𝑖 and 𝑓 is a rigid mathematics func-

tion s.t.

∑
®𝑥 𝑓 ( ®𝑥) = 1 describing the joint distribution.

4
In our

logic, we can use a similar formula to express such belief distri-

bution: a (potentially continuous) belief distribution over a finite

set of nullary fluents
®ℎ = {ℎ1, ℎ2, . . . ℎ𝑘 } is a formula of the form

∀®𝑥 .𝐵(∧𝑖 ℎ𝑖 ≤ 𝑥𝑖 : 𝑓 ( ®𝑥)) where 𝑓 is a rigid mathematical function

(which satisfies 𝑓 (− ®∞) = 0 and 𝑓 (+ ®∞) = 1).
5
We use 𝐵 𝑓

for

short. Intuitively, 𝑓 ( ®𝑥) represents the joint cumulative distribution

function of random variables
®ℎ.

Proposition 5.1. Given a belief distribution 𝐵 𝑓 over a finite
set of nullary fluents ®ℎ = {ℎ1, ℎ2, . . . ℎ𝑘 }, there exists a non-empty
epistemic state 𝑒 such that 𝑒 |= 𝐵 𝑓 .

The proof is based on the fact that there exists a subset𝑊R𝑘 of𝑊

such that𝑊R𝑘 is isomorphic to R𝑘 in the sense that for all ®𝑥 ∈ R𝑘
there is a unique𝑤 ®𝑥 ∈𝑊R𝑘 s.t.𝑤 ®𝑥 |= ∧

𝑖 ℎ𝑖 = 𝑥𝑖 . Likewise, one can

select a 𝜎-algebra WR𝑘 of𝑊R𝑘 such that WR𝑘 is isomorphic to

the Borel 𝜎-algebra of R𝑘 . Based on the Caratheodory’s Extension

4
It is also possible to use axioms to define such functions [27], for example,

∀𝑥∀𝑦.𝑓=1 (𝑥 ) = 𝑦 ≡ 𝑥 = 1 ∧ 𝑦 = 1 ∨ 𝑥 ≠ 1 ∧ 𝑦 = 0 defines the indicator function

𝑓=1 (𝑥 ) which checks if 𝑥 = 1.

5
Here 𝑓 (+∞) = 1 should be understand as lim𝑥→∞ 𝑓 (𝑥 ) = 1 and lim𝑥→∞ 𝑓 (𝑥 ) = 𝑦

can be defined as lim𝑥→∞ 𝑓 (𝑥 ) = 𝑦 := ∀𝑢.(𝑢 > 0 ⊃ ∃𝑚.∀𝑣.(𝑣 > 𝑚) ⊃ |𝑦 −
𝑓 (𝑣) | < 𝑢 ) .

Theorem [38], there exists a unique probability measure �̃� onWR𝑘
such that �̃� ({𝑤 ∈ 𝑊R𝑘 |

∧
𝑖 𝑤 [ℎ𝑖 ] ≤ 𝑥𝑖 }) = 𝑓 ( ®𝑥) for any ®𝑥 ∈ R𝑘 .

Lastly, ⟨WR𝑘 , �̃�⟩ can be extended to 𝜎-algebra and measure on𝑊

⟨W, 𝜇⟩ by assigning zero-measure on any subset of𝑊 \𝑊R𝑘 , and
{⟨W, 𝜇⟩} is the desired epistemic state.

Our notion of belief distribution can express both discrete and

continuous distributions.

Example 5.2. • The belief distribution ∀𝑥 .𝐵(ℎ ≤ 𝑥 : 𝑓𝑑 (𝑥))
of the nullary fluent ℎ with

𝑓𝑑 (𝑥) =


0 𝑥 < 1

0.5 1 ≤ 𝑥 < 2

1 2 ≤ 𝑥

expresses a discrete uniform distribution over two points

{1,2} and it is equivalent to 𝐵(ℎ = 1 : 0.5) ∧𝐵(ℎ = 2 : 0.5).
• The belief distribution ∀𝑥 .𝐵(ℎ ≤ 𝑥 : 𝑓𝑐 (𝑥)) expresses a con-
tinuous distribution where 𝑓𝑐 (𝑥) =

∫ 𝑥

−∞N(𝑦; 0, 1)𝑑𝑦 and

N(𝑦;𝑢, 𝜎) represents the Gaussian distribution with mean 𝑢

and variance 𝜎 as
6 N(𝑦;𝑢, 𝜎) = 1

𝜎
√
2𝜋

𝑒
− (𝑦−𝑢)2

2𝜎2

We emphasize that our notion of belief or belief distribution is

more general than the classical notion of probability or probability

distribution in that it is possible to express uncertainty of beliefs. For

example, the following formulas 𝐵(𝛼 : 1

2
) ∨𝐵(𝛼 : 1

3
), 𝐵 𝑓𝑑 ∨𝐵 𝑓𝑐

,

∀𝑥∃𝑦∃𝑧.𝐵(ℎ ≤ 𝑥 :
∫ 𝑥

−∞N(𝑥 ′;𝑦, 𝑧)𝑑𝑥 ′) express respectively that

𝛼 is believed with a degree either
1

2
or

1

3
, ℎ is believed to distribute

either discretely as 𝑓𝑑 or continuously as 𝑓𝑐 , and ℎ is believed to be

distributed as Gaussian but with unknown mean and variance. All

of these are impossible in classical probability theory.

Besides, it is also possible to express mixture distributions via

our notion of belief distribution.

Example 5.3. • The belief distribution∀𝑥 .𝐵(ℎ ≤ 𝑥 : 𝑓𝑚 (𝑥))
of the nullary fluent ℎ with

𝑓𝑚 (𝑥) =


0 𝑥 < 0

0.2 0 ≤ 𝑥 ≤ 1

0.1 + 0.1𝑥 1 < 𝑥 ≤ 9

1 𝑥 > 9

express amixture distribution, where the pointℎ = 0 receives

probability mass 0.2 and the rest 0.8 probability mass is

distributed uniformly in the interval [1, 9].

This is different from the formula𝐵 𝑓𝑑 ∨𝐵 𝑓𝑐
, which mixes a pure

discrete with a pure continuous one. Formulas like 𝐵 𝑓𝑑 ∨𝐵 𝑓𝑐
are

possible in BL’s formalism [9]; however, they cannot handle the real

mixture distribution as our example above. The reason is that their

notion of belief extends the BHL formalism, and belief is defined in

terms of normalized sums or integral of weights of situations. Since

it is unclear how to integrate over situations, they map situations

to fluent values which are purely continuous, then belief is given

in terms of integral over the continuous values of fluents. When

the distribution is not purely continuous as Example 5.3 where the

fluent ℎ has discrete probability at the point 0 and has continuous

6
Integral is second-order definable see [9] for details. Here we simply assume it as a

rigid mathematical function just as +, ×, 𝑒𝑥 , etc.
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probability in the range [1, 9], the integral over situations is not
well-defined. Our formalism does not have such problems as we do

not have explicit integrals over possible worlds.

5.2 Beyond Nullary Fluents
As mentioned earlier, another main advantage of our account is

that the notion of belief (only-believing as well) does not restrict

possible worlds to only having finitely many nullary fluents. This,

among other things, allows us to express probabilities involving

potentially infinitely many random variables. For example:

Example 5.4. Let Σ be ∀𝑥 .𝑥 ≠ 𝐴 ⊃ ∀𝑦.𝐵(salary(𝑥) ≤ 𝑦 : 𝑓 𝑢 (𝑦))
where 𝑓 𝑢 (𝑦) expresses a uniform distribution between [1000, 2000]

𝑓 𝑢 (𝑦) =


0 𝑦 < 1000

𝑦
1000

− 1 1000 ≤ 𝑦 ≤ 2000

1 2000 < 𝑦

then, we have

• Σ is satisfiable

Intuitively, Σ says that the salary of every person except 𝐴

is distributed uniformly in [1000, 2000]. Clearly, there ex-

ists a probability space over possible worlds under which

salary(𝑛) is distributed uniformly in [1000, 2000] where 𝑛 ≠

𝐴. In the set of all such probability spaces, consider one

⟨W, 𝜇⟩, which assigns non-zero probability only to worlds

which satisfy ∀𝑥,𝑦.𝑥 ≠ 𝐴 ∧ 𝑦 ≠ 𝐴 ⊃ salary(𝑥) = salary(𝑦),
then ⟨W, 𝜇⟩ is the desired epistemic state.

One might notice that the function 𝑓 𝑢 (𝑦) is not a joint

distribution here. Hence, even if there are infinitely many

salary(𝑛𝑖 ) and each of them can be viewed as a random

variable, the probability space ⟨W, 𝜇⟩ might not be an infi-

nite dimensional one. In fact, the probability space ⟨W, 𝜇⟩
above is two dimensional: one dimension for salary(𝐴) and
another for salary(𝑛) where 𝑛 ≠ 𝐴 (since their values are

identical).

• 𝑂(Σ) |= 𝐵(1200 ≤ salary(𝐵) ≤ 1300 : 0.1) ∧ 𝐵(1800 ≤
salary(𝐶) ≤ 1900 : 0.1)
Only-knowing the uniform distribution of all person’s salary

except 𝐴 entails believing 𝐵’s salary in [1200, 1300] and 𝐶’s
salary in [1800, 1900] with the same degree 0.1;

• 𝑂(Σ) |= ¬∃𝑥 .𝐵(salary(𝐴) ≤ 2000 : 𝑥)
The agent has no knowledge of the distribution of 𝐴’s salary.

Besides the above uniform distribution example, it is possible in

our logic to express Gaussian where the underlying models could

be indeed infinite-dimensional. For example, if we use second-order

quantification, we have

Example 5.5. let Σ and Σ′ be two sentences as

Σ :=∀𝑥𝑡∀𝑦.𝐵(positionAt (𝑥𝑡 ) ≤ 𝑦 :

∫ 𝑦

−∞
N(𝑧;𝑥𝑡 , 1)𝑑𝑧)

Σ′ :=∀𝑥𝑛 .Natural(𝑥𝑛) = ⊤ ⊃ ∀𝑉∀𝑉 ′∃𝑢∃𝜎∀𝑥 .

𝐵(
𝑥𝑛∑︁
𝑚=1

𝑉 (𝑚) × positionAt (𝑉 ′ (𝑚)) ≤ 𝑥 :

∫ 𝑥

−∞
N(𝑦;𝑢, 𝜎)𝑑𝑦)

where positionAt (𝑥𝑡 ) returns the horizontal position of an particle

at time 𝑥𝑡 and 𝑥𝑛 is a natural number, then it holds that
7

• Σ and Σ′ are satisfiable
Intuitively, Σ specifies that the agent believes the position of

a particle at time 𝑥𝑡 is always distributed as Gaussian with

mean 𝑥𝑡 and variance 1, while Σ′ says the agent believes

selecting any linear combination (𝑉𝑚) of any 𝑥𝑛 time-points

position of the particle positionAt (𝑉 ′ (𝑚)) is distributed as

Gaussian. In fact, Σ′ describes that the belief of positionAt (𝑥)
forms a Gaussian process [13] and Σ is a special case. Ad-

ditionally, a Gaussian process is an infinite set of random

variables defined over an infinite-dimensional probability

space.

It is worth reflecting at this point that the proposal seems to be

the most general framework for reasoning about first-order formu-

las and continuous distributions. Indeed, we emphasise that these

examples are impossible in the logics of BHL [1], BL [9], DS [4]

and its variants [27, 28]. In their works, the nullary fluent assump-

tion is essential to ensure belief distributions are indeed probability

distributions over finite-dimensional Euclidean space R𝑘 . Belief
distribution that corresponds to probability over infinite dimen-

sional space is not well-defined in their works. Most significantly,

to the best of our knowledge, we are not aware of any work in the

literature that handles this level of generality.

6 CHALLENGES IN EXTENDING TO ACTION
In this section, we examine problems that might arise when extend-

ing the proposed formalism to account for actions.

The very first problem is how to include actions in the domain.

This task seems relatively easy at first glance. Just like object and

number, one could assume another sort for action. Since actions

might take numbers as parameters, there would be uncountably

many actions. A related problem is what action constants look

like. A possible solution is to assume action constants are tuples of

the form ⟨𝑎𝑐𝑡, 𝑑1, 𝑑2, . . . 𝑑𝑘 ⟩ and worlds give denotations for action

terms 𝑎𝑐𝑡 (𝑑1, 𝑑2, . . . 𝑑𝑘 ) to ⟨𝑎𝑐𝑡, 𝑑1, 𝑑2, . . . 𝑑𝑘 ⟩. Besides, worlds have
to be extended to include action sequences as parameters just as

the modal variants of the situation calculus [4, 23, 27, 28]. So they

behaved as tree-like structures to interpret formulas both initially

as well as after any sequence of actions.

Another problem in formalizing beliefs under uncertainty is how

to specify the non-deterministic effects of stochastic actions. Such

problem also exists when modeling discrete degree of beliefs [1,

4, 27, 28]. An existing solution is to view the stochastic action as

a set of ground actions (seen as mutual alternatives) where each
of them has a deterministic effect, and they are observationally-
indistinguishable to the agent. Formally, a special fluent 𝑎𝑙𝑡 is used

to characterize such alternatives relationship among actions. When

reasoning about actions, it is the user’s task to use an axiom with

𝑎𝑙𝑡 to specify such alternatives in the basic action theories.

The third and most important problem is how to incorporate the

low-level likelihood of stochastic actions or sensing into high-level

beliefs. In fact, two subtle problems arise here: First, how to express

actions’ likelihood. In discrete formalisms such as the BHL logic

7
The set of natural numbers is second-order definable. Namely, Natural (𝑥 ) = ⊤ can

be defined as ∀𝑉 .(𝑉 (0) = ⊤ ∧ ∀𝑦.𝑉 (𝑦) = ⊤ ⊃ 𝑉 (𝑦 + 1) = ⊤) ⊃ 𝑉 (𝑥 ) = ⊤.
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and theDS logic, actions’ likelihood is specified by a special unary

fluent 𝑙 (𝑎). Additionally, to ensure 𝑙 (𝑎) is indeed a probability dis-

tribution over actions’ alternatives, they often require that the sum

of the likelihood of all alternative actions equals 1. In continuous

domains, however, using a fluent 𝑙 (𝑎) to give a value for each action
𝑎 does not guarantee 𝑙 (𝑎) is indeed a probability as the alternatives

of a given action could be uncountably many. It is unclear what

constraints can be imposed to fulfill the requirement. Secondly,

how can we incorporate actions’ likelihood into beliefs? As belief

is most likely to be modeled as a probability over possible worlds

like in our logic, the probability over possible worlds would shift as

a consequence of actions. Therefore, the belief change after actions

has to reflect such shifting over possible worlds correctly. Inevitable

problems such as how to perform integration over possible worlds

and how such integral changes after actions need to be addressed.

7 RELATEDWORK
We review related work on probabilistic formalisms. Many works

study probabilistic reasoning such as [21, 32, 40], but our contribu-

tion is more on the representation side.

The most relevant work is the modal logic OBL by Belle, Lake-

meyer, and Levesque [5], which investigates only-believing with

discrete degrees of belief. OBL is rather similar to OBL𝑐’s first-

order fragment in syntax, except that OBL𝑐 has variables that

range over the set of real. The major difference lies in the semantics.

Since the domain of OBL is countable, OBL treats quantifiers

substitutionally. Hence no variable maps are needed. Besides, epis-

temic states in OBL are sets of weight functions over possible

worlds. Special logical devices are imposed to ensure such weight

functions are indeed discrete distributions over possible worlds. In

contrast, in our account, since the domain is uncountable, possible

worlds are Tarski-like structures. Additionally, we encapsulate all

subsets of well-defined probability spaces over possible worlds as

the epistemic state, and no additional restrictions are required. This

leads to fairly succinct semantics for beliefs and only-believing.

Consequently, the two formalisms have distinct properties: the uni-

versal quantified version of the Barcan formula does not hold in our

logic, while it does in OBL. Such a property arises from differences

between continuous and discrete phenomena. Also, we do not have

negative introspection. OBL is inspired by the model epistemic

logic OL [26] where the notion of only-knowing is proposed and

examined. In 2007, Gabaldon and Lakemeyer [18], proposed the

logic ESP, a probabilistic extension of the modal situation cal-

culus [23], where the BHL formalism [1] is re-cast to include the

notion of only-knowing. However, degrees of beliefs are confined

to finite domains. OBL has been extended to probabilistic actions

and changes [9, 27, 28]. We remark that all of the works above

either do not include the notion of only-believing (only-knowing)

or solely consider the discrete degree of beliefs.

There are also works that axiomatize the degree of beliefs. Per-

haps the most well-known work is the BHL logic [1] which extends

the epistemic situation calculus by Scherl and Levesque [36]. The

idea is to use a special fluent 𝑝 (𝑠, 𝑠′) to denote the weighted accessi-
bility relation among situations 𝑠, 𝑠′. Thereafter the degree belief of
a formula at a situation 𝑠 among to the normalized sum of weights

of all the situations that are considered to be accessible from the

situation 𝑠 , i.e. 𝑏𝑒𝑙 (𝜙, 𝑠) := 1

𝜂

∑
{𝑠′ |𝜙 [𝑠′ ] } 𝑝 (𝑠, 𝑠′). The summation

there is defined axiomatically by using second-order quantification.

The main advantage of a logical account like BHL is that it allows a

specification of beliefs that can be partial or incomplete, in keeping

with whatever information is available about the domain, making

it particularly attractive for general-purpose high-level program-

ming [24]. Note that our logic also allows a partial specification of

beliefs, though we only consider the static cases. Following the BHL

logic, Belle and Levesque [9] proposed a variant that deals with

continuous degrees of beliefs. But they impose the nullary fluent

assumption and use axioms on situations to ensure that the integral

over situations can be shifted to an integral overR𝑘 . Compared with

the modal approaches (including our OBL𝑐 logic), such axiomatic

proposal suffers when proving properties about modalities [23].

Another benefit of our modal logic OBL𝑐 is that we do not have

to perform explicit summation or integral over possible worlds.

Hence the nullary fluent assumption is unnecessary, making our

logic significantly more general.

Given the interest in unifying logic and probability, there is an ex-

tensive list of related work (see [9] for a recent review) but very few

of them are closely related to ours, apart from the works discussed

above. Probabilistic models, Kalman filters, decision-theoretic and

probabilistic planning languages are not logics of beliefs (in al-

lowing for arbitrary connectives, nested modalities, and quanti-

fiers) [35, 43, 44]. Relational probabilistic models [12] offer some

logical features (such as clausal reasoning) but are not embedded

in a general first-order modal setting, allowing one to reason about

arbitrary sequences of quantifies and modalities. The closest ones,

therefore, are from the knowledge representation literature. Early

proposals such as Nielsen Bacchus and halpern [2, 15, 31] are ei-

ther propositional or did not consider meta beliefs. Likewise works

such as probabilistic epistemic dynamic logic [22] are propositional

and discrete but they consider actions that we will investigate in

future work. Lastly, there is some interesting related work from the

machine learning community [11, 14, 20, 29, 30, 37] particularly on

defining countably infinite random variables to handle incoming

unseen data. However, these methods focus on providing a care-

ful set of conditions under which distributions can be defined and

they’re also not a logic for reasoning about mental beliefs.

8 CONCLUSION
We propose a modal logic of only-believing with continuous prob-

ability. Drawing ideas from existing works on discrete degrees of

beliefs [4, 5, 9], our logic has fairly succinct semantics that does

not impose any restriction on possible worlds going beyond exist-

ing works like [9, 27, 28]. We show that our logic has reasonable

properties. Lastly, we conclude with some thoughts about how to

extend this logic to account for actions and what challenges might

arise.

In terms of future work, as mentioned earlier, an extension to

account for stochastic actions and noisy sensing is desirable. In

this regard, the work [4, 27, 28] is relevant. Also, extending the

formalism to multi-agent scenarios is a promising venue [3, 19].

Another direction is on the reasoning side. Although reasoning in

our logic is generally undecidable, it would be desirable to find out

fragments of the logic where reasoning is tractable.
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