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ABSTRACT
Learning communication strategies in cooperative multi-agent rein-
forcement learning (MARL) has recently attracted intensive atten-
tion. Early studies typically assumed a fully-connected communica-
tion topology among agents, which induces high communication
costs and may not be feasible. Some recent works have developed
adaptive communication strategies to reduce communication over-
head, but these methods cannot effectively obtain valuable informa-
tion from agents that are beyond the communication range. In this
paper, we consider a realistic communication model where each
agent has a limited communication range, and the communication
topology dynamically changes. To facilitate effective agent com-
munication, we propose a novel communication protocol called
Adaptively Controlled Two-Hop Communication (AC2C). After an
initial local communication round, AC2C employs an adaptive two-
hop communication strategy to enable long-range information ex-
change among agents to boost performance, which is implemented
by a communication controller. This controller determines whether
each agent should ask for two-hop messages and thus helps to
reduce the communication overhead during distributed execution.
We evaluate AC2C on three cooperative multi-agent tasks, and the
experimental results show that it outperforms relevant baselines
with lower communication costs.
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1 INTRODUCTION
Cooperative multi-agent reinforcement learning (MARL) [1] has
recently led to promising results in many real-world applications,
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such as robot control [8] and autonomous driving [25]. For example,
in the path-finding task, MARL achieves similar performance as
classic operation research algorithms but with much lower com-
putational complexity [24]. In the domain of games, well-trained
agents have reached the master-level performance [23] and even
won the game against professional players. In these applications,
centralized training decentralized execution (CTDE) is a widely
adopted paradigm due to its scalability potential and ability to deal
with non-stationarity.

Classic CTDE architectures usually employ a centralized value
network that leverages global information to guide agents’ local
policy training [14]. During execution, each agent utilizes its local
information to make decisions without centralized coordination.
In practice, however, the partial observation and stochastic nature
of MARL environments make it difficult for agents to accurately
predict others’ actions in such communication-free CTDE schemes,
and thus miscoordination often happens.

To address this limitation, many recent studies on MARL enable
communication to exchange information among agents in CTDE
[5, 14]. These methods achieve superior performance compared
with communication-free CTDE systems. Nevertheless, they often
assume simplified communication models with a fully connected
topology [22], i.e., each agent is able to receive a message from any
other agent via point-to-point communication. In real systems, an
agent’s communication range is limited, e.g., when communicating
over a wireless channel, and thus the communication topology
among agents should be partially connected. Moreover, this topol-
ogy will dynamically change as agents move. On the other hand,
long-range information is desirable in MARL systems. As an exam-
ple, consider a traffic junction task illustrated in Figure 1, where
three cars need to pass through a traffic junction following prede-
fined routes. In this case, obtaining long-range information helps
agents plan ahead of time and avoid myopic decisions. Consider-
ing the realistic communication range constraint and the value of
obtaining long-range information, an effective multi-hop commu-
nication mechanism is needed, which motivates our work.

In this paper, we consider a cooperative MARL system, where
agents are assumed to have limited communication ranges. To
facilitate effective communication, we propose a novel communica-
tion protocol called Adaptively Controlled Two-Hop Communication
(AC2C). Enabled by an attention-based communication module
and a multi-layer perceptron (MLP)-based controller, agents learn
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I'll keep going.
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Case 1: Short-Range Communication

Agent 2 will not collide
with me, but agent 3

will, I'll stop here.

Now I can go.

Case 1-1 Case 1-2

Case 2-1 Case 2-1

Case 2: Long-Range Communication

Figure 1: A didactic example in traffic junction environment.
Consider agent 1’s decision-making. In case 1, with only
short-range communication, agent 1 only receives messages
from agent 2, then it will enter the intersection and may
collide with agent 3. In case 2, with both short-range and
long-range communication, agent 1 is able to know agent
3’s information in advance, therefore, it can make a better
decision, i.e., waiting before entering the intersection.

to adaptively engage in two-hop communication to balance the
cooperative task performance and the communication overhead.

The main contributions of this paper are summarized as follows:
• We consider a realistic MARL system with communication
range constraints and propose a novel two-hop communica-
tion protocol, i.e., AC2C, to enable long-range information
exchange.

• Inspired by the gating mechanism [15], we introduce an
adaptive controller. This local controller adaptively deter-
mines whether the ego agent should ask for a subsequent
communication round to obtain two-hop messages. In this
way, expensive two-hop communication is only established
whenever necessary.

• We conduct experiments on three benchmark tasks, namely
traffic junction, cooperative navigation, and predator prey.
The superior performance compared with baselines demon-
strates the effectiveness of our proposed method. We further
analyze the communication costs in our experiments and
show that AC2C achieves a good trade-off between commu-
nication cost and cooperative task performance.

2 RELATEDWORK
Recent studies [7, 14, 21] have made remarkable progress in MARL
under the CTDE paradigm. Compared with its counterparts, i.e.,

independent learning [29] and centralized training centralized exe-
cution (CTCE) [2], CTDE has demonstrated significant performance
and scalability potential. Nevertheless, communication-free CTDE
exacerbates the partially observable issue and hinders effective
cooperation, leading to sub-optimal decisions. Earlier works such
as CommNet [27], DIAL [6], and BiCNet [19] attempt to support
communication in CTDE with a predefined topology. However, the
performance of those methods often falls short in complex settings
since relationships among agents constantly change in a dynamic
multi-agent system, and a rigid communication graph cannot re-
spond to such dynamics.

Subsequentworks exploit state-dependent communication graphs
to address the above shortcomings. In particular, ATOC [10], IC3Net
[26] and I2C [4] introduce individual gating mechanisms to control
the communication links among agents. The gating mechanisms
are implemented with a classifier that determines whether to trans-
mit messages based on local histories. Besides, VBC [32] proposes
a communication control unit depending on the local action confi-
dence. The dynamically pruned communication graphs produced by
these methods result in low communication costs. Nevertheless, the
aforementioned works only consider single-round communication.
In practical settings with limited communication ranges, agents
cannot access information outside this range through single-round
communication, which can severely limit the performance.

There have been some recent studies adopting multi-round com-
munication to obtain more information from other agents. For
instance, TarMAC [3] utilizes multi-layer attention blocks to imple-
ment multi-round communication. But it requires a fully-connected
communication topology, therefore causing prohibitive communi-
cation overhead. Furthermore, graph neural networks (GNNs) have
recently been incorporated with MARL, owing to their power to en-
force structural communication among agents. In particular, DICG
[11] and DGN [9] utilize graph convolutional networks (GCNs)
to enable message passing among agents, while MAGIC [17] uses
graph attention networks (GATs) to aggregate messages. None of
the above works dynamically prune the communication links (i.e.
the edges in communication graphs), therefore they can be infea-
sible in realistic systems since densely connected communication
graphs induce heavy communication overhead.

In this paper, we explicitly consider the effects of limited commu-
nication ranges on MARL systems. Our proposed method leverages
multi-hop communication to enlarge the agents’ reception fields.
To reduce the communication cost, a decentralized controller is
designed to determine whether an agent should request a sub-
sequent communication round based on the obtained single-hop
messages. In this manner, agents acquire the ability to obtain in-
formation outside their communication ranges and dynamically
prune two-hop communication, thus achieving a good performance-
communication trade-off.

3 SYSTEM MODEL
3.1 Problem Formation
We formalize the problem as a decentralized partially observable
Markov decision process (Dec-POMDP) [18]. It is modeled by a tuple
M = ⟨S, 𝐴, 𝑃, 𝑅,Ω,𝑂, 𝑁 ,𝛾⟩, where 𝑁 is the number of agents, and
𝛾 ∈ [0, 1) is the discount factor. At each timestep, the environment
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state is 𝑠 ∈ S. Each agent 𝑖 receives a local observation 𝑜𝑖 ∈ Ω
drawn from the observation function 𝑂 (𝑠, 𝑖). Then, it selects an
action 𝑎𝑖 ∈ 𝐴, forming a joint action 𝒂 ∈ 𝐴𝑁 , which leads to a
next state 𝑠′ according to the transition function 𝑃 (𝑠′ |𝑠, 𝑎). The
agents collaboratively gain a global reward according to the reward
function 𝑟 = 𝑅(𝑠, 𝒂). Each agent keeps a local action-observation
history at the current timestep 𝜏𝑖 ∈ (Ω×𝐴). The primary notations
and descriptions are listed in Table 1.

3.2 Communication Protocol
We consider a multi-agent system where agents are with limited
communication ranges. For ease of illustration, we mainly consider
distance-based communication constraints, i.e., an agent can only
establish direct communication links with the ones within a range
𝐿.

Formally, we call the neighboring agents that are located within
distance 𝐿 to agent 𝑖 its one-hop neighbors, denoted by N (1)

𝑖
. And

agents that are within the distance 𝐿 to any agent in the set N (1)
𝑖

are denoted as Ñ (2)
𝑖

. We then define the set of agents belonging
to Ñ (2)

𝑖
, excluding agent 𝑖’s one-hop neighbors and itself, as agent

𝑖’s two-hop neighbors, denoted as N (2)
𝑖

= (Ñ (2)
𝑖

\N (1)
𝑖

)\{𝑖}. For
the example in Figure 2, agents 2 and 3 are one-hop neighbors
of agent 1, while agents 4 and 5 are its two-hop neighbors. In the
following, we first describe the GNN-based communication protocol
adopted by existing studies and then introduce the proposed AC2C
communication protocol.

3.2.1 GNN-based Communication Protocol. GNN-based methods
have recently been widely used for multi-agent communication [9,
11]. Before communication, agent 𝑖 holds a local feature embedding
𝑐
(0)
𝑖

. In the first communication round, it receives messages from
its one-hop neighbors in N (1)

𝑖
and updates it local embedding as

𝑐
(1)
𝑖

. In the second communication round, it communicates with
nodes in N (1)

𝑖
again, receiving their updated embeddings after

the first communication round. In this way, each agent can obtain
partial information from its two-hop neighbors, but in an indirect
and inefficient sense. For example, in Figure 2, agent 1 can obtain
information from agents 4 and 5 after two communication rounds,
but information on agents 6 and 7 is still unavailable.

3.2.2 AC2C Communication Protocol. The proposed AC2C com-
munication protocol adopts a two-hop communication mechanism
to obtain information from two-hop neighbors N (2)

𝑖
, which fa-

cilitates effective communication among agents. During the first
communication round, the communication process is the same as
the GNN-based protocol, where each agent exchanges its local fea-
ture embedding 𝑐

(0)
𝑖

with its one-hop neighbors. In the second
communication round, however, agents exchange messages with
their two-hop neighbors, while their one-hop neighbors only act
as relay nodes. As illustrated in Figure 2, the AC2C protocol can
help agent 1 exploit information of agents 6 and 7 since agent 5’s
embedding (which contains partial information of agents 6 and
7) is transmitted to agent 1 directly in the second communication
round. Thus, AC2C can effectively enlarge agents’ receptive fields
compared to GNN-based communication protocol, leading to better

13

4

5

2

6

One-hop neighbor of Node 1

Two-hop neighbor of Node 1

Communication  
range

7

Figure 2: The two-hop communication model, where the
blue and red nodes correspond to the one-hop and two-hop
neighbors of node 1, respectively.

performance. This performance gain comes with higher communi-
cation overhead, as it involves two-hop communication. Therefore,
it is critical to adaptively control and reduce the frequency of evok-
ing the expensive two-hop communication.

4 PROPOSED METHOD
In this work, we follow the conventional CTDE paradigm and
augment it with the proposed AC2C communication protocol. In
the proposed framework, each agent’s local network consists of a
GRU-based feature encoder, an AC2C communication module, and
an MLP-based action policy network, as is shown in Figure 3.

At each timestep, the feature encoder first takes the local ob-
servation 𝑜𝑖 as input to update its historical representation ℎ𝑖 and
outputs an initial local embedding 𝑐 (0)

𝑖
. Then, the agent leverages

the local embedding and conducts a two-round communication pro-
cess with the AC2C modules to exchange information with other
agents, obtaining the updated local embedding 𝑐 (1)

𝑖
and 𝑐 (2)

𝑖
after

each communication round. After that, the agents feeds 𝑐 (0)
𝑖

, 𝑐 (1)
𝑖

and 𝑐 (2)
𝑖

to the action policy network to generate the local action
𝑎𝑖 .

4.1 Two-Hop Communication
4.1.1 Communication Protocol. To enable effective communication
and facilitate coordination among agents, AC2C implements a two-
round communication mechanism.

In the first communication round, agent 𝑖 broadcasts its local
embedding 𝑐 (0)

𝑖
to its one-hop neighbors N (1)

𝑖
, and it also receives

the embeddings from them. Upon receiving messages from N (1)
𝑖

in the first communication round, agent 𝑖 aggregates the messages
as well as its local embedding with an attention-based aggregation
module and obtains the updated embedding 𝑐 (1)

𝑖
:

𝑐
(1)
𝑖

= 𝑓 (1)
(
𝑐
(0)
𝑖

, 𝑐
(0)
𝑗

| 𝑗 ∈ N (1)
𝑖

)
, (1)
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Figure 3: The architecture of the proposed AC2C network.
At each timestep, agent 𝑖 receives a local observation 𝑜𝑖 and
utilizes its historical information ℎ𝑖 to generate an initial
embedding 𝑐 (0)

𝑖
and update its local historical information

as ℎ′
𝑖
. In the first communication round, agent 𝑖 receives a

message from its one-hop neighbor 𝑗 and outputs the updated
embedding 𝑐 (1)

𝑖
. Additionally, the local controller takes 𝑐 (0)

𝑖

and 𝑐
(1)
𝑖

as inputs and generates a binary signal 𝑧𝑖 . If 𝑧𝑖 = 0,
agent 𝑖 will not request the second communication round; if
𝑧𝑖 = 1, agent 𝑖 will request the second communication round.
Upon receiving information from its two-hop neighbors 𝑘
and 𝑔 in the second communication round, agent 𝑖 aggregates
messages again and produces 𝑐 (2)

𝑖
. After two communication

rounds, agent 𝑖 generates an action based on 𝑐
(0)
𝑖

, 𝑐 (1)
𝑖

and 𝑐 (2)
𝑖

(if applicable).

where 𝑓 (1) (·, ·) denotes the first round aggregation function to be
introduced in Section 4.1.2.

Then, agent 𝑖’s controller leverages 𝑐 (0)
𝑖

and 𝑐 (1)
𝑖

to locally deter-
mine whether a second communication round is needed for agent 𝑖
by outputting a binary signal 𝑧𝑖 . We will defer the implementation
details of the controller to Section 4.2.

Upon deciding that the second communication round is needed,
agent 𝑖 will inform its one-hop neighbors to initiate the second com-
munication round. In this round, agent 𝑖 receives messages from its
two-hop neighbors N (2)

𝑖
, with its one-hop neighbors only acting

as relaying nodes. After receiving messages, agent 𝑖 again aggre-
gates the messages and its local embedding 𝑐 (1)

𝑖
by the aggregation

module and obtains the updated embedding 𝑐 (2)
𝑖

:

𝑐
(2)
𝑖

= 𝑓 (2)
(
𝑐
(1)
𝑖

, 𝑐
(1)
𝑗

| 𝑗 ∈ N (2)
𝑖

)
, (2)

Table 1: Primary notations and descriptions.

Notations Description
𝑜𝑖 Agent 𝑖’s local observation
ℎ𝑖 Agent 𝑖’s historical representation
𝑐
(0)
𝑖

Agent 𝑖’s initial local embedding

𝑐
(1)
𝑖

Agent 𝑖’s local embedding
after the first communication round

𝑐
(2)
𝑖

Agent 𝑖’s local embedding
after the second communication round

𝑎𝑖 Agent 𝑖’s local action
N (1)
𝑖

The set of agent 𝑖’s one-hop neighbors
Ñ (2)
𝑖

The set of agent 𝑖’s two-hop neighbors

N (2)
𝑖

The set of agent 𝑖’s two-hop neighbors,
excluding its one-hop neighbors and itself

𝑇 The controller threshold
𝑧𝑖 Signal produced by agent 𝑖’s controller

where 𝑓 (2) (·, ·) denotes the second round aggregation function to
be described in Section 4.1.2.

After two communication rounds, each agent possesses embed-
dings 𝑐 (0)

𝑖
, 𝑐 (1)

𝑖
and 𝑐 (2)

𝑖
(if the second round communication was

executed), which will all be concatenated together and fed into the
action policy for decision making.

4.1.2 Message Aggregation Strategy. For the message aggregation
strategy, we implement an attention module for each communica-
tion round.

In the 𝑛-th communication round, we first calculate the key
𝑘
(𝑛)
𝑖

∈ R𝑑 , the query 𝑞
(𝑛)
𝑖

∈ R𝑑 and the value 𝑣 (𝑛)
𝑖

∈ R𝑑 from
𝑐
(𝑛−1)
𝑖

[30, 31] as:
𝑘
(𝑛)
𝑖

=𝑊
(𝑛)
𝑘

𝑐
(𝑛−1)
𝑖

, (3)

𝑞
(𝑛)
𝑖

=𝑊
(𝑛)
𝑞 𝑐

(𝑛−1)
𝑖

, (4)

𝑣
(𝑛)
𝑖

=𝑊
(𝑛)
𝑣 𝑐

(𝑛−1)
𝑖

, (5)

where𝑊 (𝑛)
𝑘

,𝑊 (𝑛)
𝑞 ,𝑊 (𝑛)

𝑣 are model parameters.

Then, attention weights 𝛼 (𝑛)
𝑖 𝑗

are obtained with a softmax func-
tion:

𝛼
(𝑛)
𝑖 𝑗

= softmax
(
𝑒
(𝑛)
𝑖 𝑗

)
=

exp
(
𝑒
(𝑛)
𝑖 𝑗

)
∑
𝑘∈N (𝑛)

𝑖

exp
(
𝑒
(𝑛)
𝑖𝑘

) , (6)

where 𝑒 (𝑛)
𝑖𝑘

= LeakyRelu( 𝑞
(𝑛)
𝑖

𝑇
𝑘
(𝑛)
𝑘√

𝑑
).

Finally the updated embedding 𝑐 (𝑛)
𝑖

is calculated as:

𝑐
(𝑛)
𝑖

= 𝑓 (𝑛)
(
𝑐
(𝑛−1)
𝑖

, 𝑐
(𝑛−1)
𝑗

| 𝑗 ∈ N (𝑛)
𝑖

)
(7)

= tanh


∑︁

𝑗∈N (𝑛)
𝑖

𝛼
(𝑛)
𝑖 𝑗

𝑣
(𝑛)
𝑗

 . (8)

where 𝑣 (1)
𝑗

is the value generated during the first-round commu-
nication. We summarize the communication protocol from the
receiver’s side in Algorithm 1.
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Algorithm 1 AC2C Communication Protocol at agent 𝑖

1: Inputs: Initial embedding 𝑐 (0)
𝑖

, 𝑐 (0)
𝑗

2: Receive messages from agent 𝑖’s one-hop neighbors N (1)
𝑖

⊲ The first communication round

3: Compute the local embedding 𝑐 (1)
𝑖

= 𝑓 (1)
(
𝑐
(0)
𝑖

, 𝑐
(0)
𝑗

| 𝑗 ∈ N (1)
𝑖

)
in Equation (1)

4: Compute the binary signal 𝑧𝑖 = 𝑔(𝑐 (0)
𝑖

, 𝑐
(1)
𝑖

;𝜃𝑐 ,𝑇 ) in Equation (9)
5: if 𝑧𝑖 == 1 then
6: Broadcast a request to initiate the second communication round
7: Receive messages from agent 𝑖’s two-hop neighbors N (2)

𝑖
with one-hop neighbors acting as relaying nodes

8: ⊲ The second communication round
9: Compute the local embedding 𝑐 (2)

𝑖
= 𝑓 (2)

(
𝑐
(1)
𝑖

, 𝑐
(1)
𝑗

| 𝑗 ∈ N (2)
𝑖

)
in Equations (7) and (8)

10: else
11: Assign 𝑐 (2)

𝑖
= 0

12: end if
13: Outputs: Embedding 𝑐 (0)

𝑖
, 𝑐 (1)

𝑖
and 𝑐 (2)

𝑖

Note that while our method can easily be generalized to its multi-
round variations by stacking the communication modules for more
complicated applications, we confine it to the two-round case in
this paper since we do not observe further performance gain when
stacking more than two rounds in our experiments.

4.2 Two-Hop Controller
Since the second communication round may induce high commu-
nication costs, we propose a local two-hop controller to adaptively
prune the unnecessary two-hop communication links to reduce the
communication cost.

During execution, the agent 𝑖’s controller takes 𝑐 (0)
𝑖

and 𝑐 (1)
𝑖

as
inputs and generates a signal 𝑧𝑖 , determining whether to broadcast
a request to initiate the second communication round:

𝑧𝑖 = 1
[
ℎ

(
𝑐
(0)
𝑖

, 𝑐
(1)
𝑖

;𝜃𝑐
)
> 𝑇

]
(9)

where 𝜃𝑐 is controller’s parameters , 𝑧𝑖 ∈ {0, 1} is the binary signal,
𝑇 ∈ (0, 1) is the threshold, and 1[·] is the indicator function.

We train the controller as a binary classifier in a self-supervised
fashion. The training process for this controller is given in Algo-
rithm 2. The loss function for this auxiliary task is formulated as:

L(𝜃𝑐 ) = −E𝒐,𝒉
[
𝑦𝑖 logℎ

(
𝑐
(0)
𝑖

, 𝑐
(1)
𝑖

;𝜃𝑐
)

+(1 − 𝑦𝑖 ) log
(
1 − ℎ

(
𝑐
(0)
𝑖

, 𝑐
(1)
𝑖

;𝜃𝑐
))]

,

(10)

with
𝑎𝐼𝑖 = 𝜋

(
𝑐
(0)
𝑖

, 𝑐
(1)
𝑖

, 0;𝜃𝜋
)
, (11)

𝑎𝐼 𝐼𝑖 = 𝜋

(
𝑐
(0)
𝑖

, 𝑐
(1)
𝑖

, 𝑐
(2)
𝑖

;𝜃𝜋
)
, (12)

𝑦𝑖 = 1
[
∥𝑎𝐼𝑖 − 𝑎𝐼 𝐼𝑖 ∥ > 𝑇

]
, (13)

where 𝜋𝜃 (·) denotes the action policy, 𝑎𝐼
𝑖
and 𝑎𝐼 𝐼

𝑖
denote the logit

of agent 𝑖’s action decisions after receiving messages in the first
and the second communication round, respectively.

The underlying idea of Equation (13) is that once the second-
round messages do not contribute much to agent 𝑖’s action decision,
they would be eliminated as redundant information. Built on this

Algorithm 2 Training Procedure for the Two-Hop Controller
1: Inputs: Replay buffer D, the controller threshold 𝑇
2: Initializes: Controller network parameters 𝜃𝑐
3: Sample a batchB with |B| transitions (𝒐,𝒉, 𝒂, 𝑟 , 𝒐′) from replay

buffer D
4: for 𝑖 = 1 · · ·𝑁 do
5: Compute the embeddings 𝑐 (0)

𝑖
, 𝑐 (1)

𝑖
, 𝑐 (2)

𝑖
in Equations (1),

(7) and (8)
6: Compute local action values 𝑎𝐼

𝑖
= 𝜋𝜃 (𝑐

(0)
𝑖

, 𝑐
(1)
𝑖

, 0) and 𝑎𝐼 𝐼
𝑖

=

𝜋𝜃 (𝑐
(0)
𝑖

, 𝑐
(1)
𝑖

, 𝑐
(2)
𝑖

) in Equations (11) and (12)
7: Compute 𝑦𝑖 = 1

[
∥𝑎𝐼

𝑖
− 𝑎𝐼 𝐼

𝑖
∥ > 𝑇

]
in Equation (13)

8: Update 𝜃𝑐 to minimize L(𝜃𝑐 ) in Equation (10)
9: end for
10: Outputs: 𝜃𝑐

intuition and the training objective given by Equation (10), our
controller only exploits the second round communication when
necessary. In this way, the controller is able to cut off redundant
information while maintaining satisfactory performance.

4.3 Centralized Critic
We adopt the actor-critic structure that has been wildly used for
many single-agent and multi-agent algorithms. Following previous
works [7, 14], we leverage a centralized critic network to guide the
policy optimization. The critic network shares a similar structure
with the actor, but it takes the historical information 𝒉, observations
𝒐, and additional predicted actions 𝒂 from all agents as inputs. A cen-
tralized critic network leverages all agents’ information to update
each agent’s gradient. It can greatly alleviate the non-stationary
problem. In order to make the implementation scalable, the central-
ized critic is not needed during execution.

4.4 Training
We implement the DDPG and REINFORCE algorithms for different
experiments.
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Figure 4: Three environments in the experiments: (a) traffic junction, (b) cooperative navigation, and (c) predator prey.

In the DDPG algorithm, we adopt a shared critic with a similar
structure to the actor to guide each agent to update its policy un-
der the CTDE paradigm. The centralized critic is updated by the
standard TD loss:

L(𝜃𝑄 ) = E𝝉 ,𝒉,𝒂,𝑟 ,𝝉 ′
[ (
𝑦 −𝑄

(
𝝉 , 𝒂;𝜃𝑄

) )2]
, (14)

𝑦 = 𝑟 + 𝛾𝑄 ′ (𝝉 ′, 𝜋 ′ (𝝉 ′;𝜃𝜋 ′
)
;𝜃𝑄 ′

)
, (15)

where 𝑄 ′ is the target 𝑄 network, 𝜋 ′ is the target actor network,
and 𝜃𝑄 contains the parameters of the centralized critic network.
Besides, we update the actor network parameters 𝜃𝜋 by the sampled
policy gradient:

∇𝜃𝜋 𝐽 (𝜃𝜋 ) = E𝝉 ,𝒉,𝒂,𝑟 ,𝝉 ′
[
∇𝜃𝜋 𝜋 (𝜏𝑖 ;𝜃𝜋 )∇𝑎𝑄 (𝜏𝑖 , 𝑎𝑖 ;𝜃𝑄 ) |𝑎𝑖=𝜋 (𝜏𝑖 )

]
.

(16)
In the traffic junction experiments, we adopt the REINFORCE

algorithm with baseline [28] to learn the actor policy. We update
the policy network parameters 𝜃𝜇 by the following equation:

∇𝜃𝜋 𝐽 (𝜃𝜋 ) = E𝝉 ,𝒉,𝒂,𝑟 ,𝝉 ′
[
(𝐺 − 𝑏 (𝝉 )) ∇𝜃𝜋 log𝜋 (𝜏𝑖 ;𝜃𝜋 )

]
, (17)

where 𝐺 is the episodic return and 𝑏 (·) is the counterfactual
baseline. In order to accelerate the training, we share the feature
encoder and action policy parameters across agents.

5 EXPERIMENTS
We evaluate the proposed AC2C in three environments, namely,
traffic junction, cooperative navigation and predator prey, as illus-
trated in Fig 4. Following [4, 26], our method as well as the baseline
methods are implemented on top of the REINFORCE algorithm [28]
in the traffic junction environment, and on top of the DDPG [12]
in the predator prey and cooperative navigation environments.

All presented results are average performance over five random
seeds. The shaded area in each figure is the standard deviation.

5.1 Baselines
In this work, we compare our method with baselines including Tar-
MAC [3], SARNet [20], DICG [11] and DGN [9]. TarMAC achieves
multi-round communication with a back-and-forth method [3].
SARNet leverages a memory-based mechanism to solve coopera-
tive multi-agent tasks. DICG and DGN are both typical GNN-based
methods. DICG utilizes GCN layers and attention mechanisms to
accomplish message aggregation, while DGN considers dynamic
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Figure 5: Training curves of cooperative navigation and
predator prey.

communication graphs and adopts GCN layers to conduct message
aggregation.

In our AC2C communication protocol, each agent exchanges
local information with its one-hop neighbors in the first communi-
cation round and exchanges messages with its two-hop neighbors
in the second communication round. We set a GNN-based protocol
for all baselines. Specifically, each agent communicates with its
one-hop neighbors in the first communication round. Once all the
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agents have aggregated the information of one-hop neighbors, they
will communicate again with one-hop neighbors in the next round
to obtain information from further-away agents. To quantify the
communication cost, we calculate the number of active communi-
cation links, where𝑤 bits messages are transmitted through each
link. The cost of the first communication round Cost(1) for the
GNN-based method and AC2C is calculated as:

Cost(1) =
∑︁
𝑖

|N (1)
𝑖

| ·𝑤 (18)

where the |N (1)
𝑖

| is the number of agent 𝑖’s one-hop neighbors. The
cost of the second communication round Cost(2) is computed as:

Cost(2) =

{∑
𝑖 |N

(2)
𝑖

| · 2𝑤, AC2C∑
𝑖 |N

(1)
𝑖

| ·𝑤 ,GNN-based methods
(19)

As the AC2C protocol transmits two-hop messages through a re-
laying node, the communication cost in the second round should
be doubled.

5.2 Environments
5.2.1 Traffic Junction. The simulated traffic junction environment
introduced by [27], consists of 20 cars moving along predefined
routes with one or more road junctions, as shown in Figure 4(a).
The goal for each car is to arrive at the destination while avoiding
collisions with other cars. Following [4, 26], each car’s field of
view is set to 0, but it can communicate with other cars within
its communication range. Each car has only two actions: brake
or gas (move forward). The reward for each car includes a linear
time penalty −0.01𝜏 , where 𝜏 is the number of timesteps after a car
becomes active, and a penalty of -20 induced by collisions. In the
experiments, we consider two modes of traffic junction: a medium
mode and a hard mode. Particularly, the dimension of the map is set
to 6 × 6, and the number of intersections is set as 1 in the medium
mode. In the hard mode, the dimension of the map is 9 × 9, and the
number of intersections is set as 4. In order to effectively compare
the performance, we evaluate the success rate under 20000 testing
episodes. We regard an episode as successful if no collision happens
during this episode.

5.2.2 Cooperative Navigation. The goal of cooperative navigation
[13, 16] is for several agents to cover landmarks respectively, as
shown in Figure 4(b). In our experiments, 10 agents try to occupy
10 fixed landmarks, where each agent obtains partial observation of
the environment. Specifically, an agent only knows its own position
as well as velocity, and the positions of all the landmarks. In this
environment, each agent will get a bonus when it approaches the
landmark but will receive a penalty when it collides with other
agents. All agent are initialized at random positions in every episode.
The episode length is set as 50 timesteps. We use the average reward
per timestep of each agent as the evaluation metric.

5.2.3 Predator Prey. Following previous work [4, 20], the predator
prey environment is a cooperative multi-agent task as is shown
in Figure 4(c). The goal is for the predators to capture as many
preys as possible during a given time period. The observations of
each predator include its position, velocity, the two closest preys’
positions, and two closest predators’ positions. As the preys move

Table 2: Success rates and communication overhead per
timestep of traffic junction.

Traffic junction
Medium mode Hard mode

Success rate Communication
overhead (105 bits) Success rate Communication

overhead (105 bits)
AC2C (ours) 95.33±0.21 2.972±0.636 71.85±1.45 5.030±0.701
TarMAC 93.81±0.17 3.790±0.245 49.23±1.06 6.979±0.705
SarNet 92.16±0.97 3.623±0.807 46.73±1.31 7.063±1.029
DICG 95.21±1.12 4.003±0.794 53.71±2.77 7.613±1.217
DGN 86.37±1.27 3.918±0.930 17.43±3.91 7.077±0.590

Table 3: Performance and communication cost per timestep
of cooperative navigation and predator prey.

Cooperative navigation Predator prey

Reward Communication
overhead (105 bits) Reward Communication

overhead (105 bits)
AC2C (ours) -1.573±0.221 5.636±0.614 -2.502±0.402 4.878±0.520
TarMAC -2.043±0.216 8.526±0.934 -3.654±0.679 7.780±1.354
SarNet -3.055±0.276 9.362±1.106 -4.042±0.248 6.344±1.630
DICG -5.538±0.378 7.770±1.484 -5.478±0.438 7.046±2.108
DGN -6.696±0.817 7.688±1.496 -9.250±0.956 6.664±2.318

slightly faster than the predators, the predators need to learn how
to capture the preys cooperatively. We generate an environment
with 10 agents (predators) and 10 preys, where the actions of the
preys are controlled by the bots in I2C[4]. Each predator gets a
bonus when it captures a prey while receiving a penalty when a
collision among predators happens. The evaluation metric is set
the same as cooperative navigation.

5.3 Results
We first investigate the trade-off between the performance and the
communication overhead. As illustrated in Table 2, Table 3 and Fig-
ure 5, for all three environments, our proposed AC2C significantly
outperforms all baselines while maintaining the lowest communi-
cation overhead. Detailed observations are elaborated below for
each environment.

In the traffic junction environment, we see from Table 2 that in
the medium mode, AC2C performs slightly better than other base-
lines with a lower communication overhead. We observe that, very
few communication links are constructed since the cars are scat-
tered sparsely across the map. Although agents sometimes obtain
information of more distant agents, most of the time, they can only
utilize the information of their one-hop neighbors. In the hardmode,
AC2C demonstrates a substantial performance gain compared with
all the baselines, in both the reward and communication overhead.
It illustrates the importance of the communication mechanism de-
sign in such difficult environments. For cooperative navigation and
predator prey tasks, AC2C consistently outperforms the baselines.
This is attributed to the long-range information exchange enabled
by our protocol. We discover that information belonging to farther
agents can effectively improve the current agent’s action decisions,
e.g., this information can point out where the landmarks are located.
In addition, the controller effectively prunes irrelevant messages to
make AC2C agents maintain the lowest communication cost.

We also examine the influence of the communication range 𝐿 on
the performance. In particular, we set the communication range as
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Table 4: Average test rewards and communication cost per timestep of each agent under different communication range in
cooperative navigation.

AC2C (ours) TarMAC SARNet DICG DGN

Reward Communication
overhead (105 bits) Reward Communication

overhead (105 bits) Reward Communication
overhead (105 bits) Reward Communication

(105 bits) Reward Communication
overhead (105 bits)

0.3 -1.841±0.221 0.152±0.030 -3.588±0.353 0.198±0.022 -5.731±0.884 0.166±0.030 -6.259±0.575 0.194±0.028 -10.04±1.025 0.198±0.024
0.5 -1.623±0.357 1.084±0.256 -3.933±0.423 1.262±0.310 -5.063±0.371 1.396±0.364 -6.629±0.593 1.504±0.444 -8.166±0.732 1.424±0.334
1.0 -1.573±0.221 5.636±0.614 -2.043±0.216 8.526±0.934 -3.055±0.276 9.362±1.106 -5.538±0.378 7.770±1.484 -6.696±0.817 7.688±1.496
1.5 -1.267±0.158 7.132±0.652 -1.418±0.034 9.700±1.814 -1.500±0.054 11.47±1.198 1.700±0.344 8.492±1.036 -4.603±0.551 9.634±0.924

Table 5: Average test rewards and communication cost per timestep of each agent under different communication range in
predator prey.

AC2C (ours) TarMAC SARNet DICG DGN

Reward Communication
overhead (105 bits) Reward Communication

overhead (105 bits) Reward Communication
overhead (105 bits) Reward Communication

(105 bits) Reward Communication
overhead (105 bits)

0.3 -5.443±0.447 0.166±0.014 -7.504±1.080 0.188±0.016 -7.082±492.3 0.174±0.026 -7.130±0.952 0.19±0.022 -10.44±0.849 0.178±0.018
0.5 -3.673±0.390 0.784±0.062 -5.714±0.651 1.388±0.192 -5.343±0.404 1.346±0.382 -6.026±0.624 1.428±0.634 -9.566±1.162 1.522±0.410
1.0 -2.502±0.402 4.878±0.520 -3.654±0.679 7.780±1.354 -4.042±0.248 6.344±0.630 -5.478±0.438 7.046±2.108 -9.250±0.956 6.664±2.318
1.5 -2.034±0.211 6.944±0.638 -3.254±0.679 8.586±1.024 -2.876±0.341 7.370±0.486 4.100±0.294 8.194±0.944 -5.487±0.951 9.246±0.722

𝐿 = 0.3, 0.5, 1.0, 1.5 in the cooperative navigation and predator prey
tasks. As illustrated in Tables 4 and 5, AC2C consistently outper-
forms all the baselines and achieves low communication overhead.
For all the methods, as the communication range shrinks, both the
rewards and communication overhead are decreased, which is due
to the smaller number of one-hop and two-hop neighbors. The
results demonstrate that the controller in our method effectively
identifies and prunes the irrelevant communication links without
incurring performance degradation.

Table 6: The impact of different threshold 𝑇 in cooperative
navigation.

Reward Communication Overhead (105 bits)
𝑇 = 0 -1.579±0.195 9.546±0.878
𝑇 = 0.1 -1.546±0.100 8.650±0.524
𝑇 = 0.2 -1.539±0.195 8.072±0.622
𝑇 = 0.3 -1.565±0.207 6.672±0.724
𝑇 = 0.4 -1.553±0.199 6.362±0.842
𝑇 = 0.5 -1.573±0.221 5.636±0.614
𝑇 = 0.6 -3.855±0.648 4.462 ±0.686

Ablation Study. In order to demonstrate the effectiveness of the
AC2C protocol, we conduct the ablation study on AC2C under the
cooperative navigation environment. AC2C w/o controller refers to
AC2C without the controller, where the second-round communica-
tion always happens; AC2C-GNN adopts the GNN-based protocol
to communicate rather than ours; and AC2C one round indicates
that the second-round communication never happens. As shown in
Figure 6, AC2C achieves significant performance gains compared to
AC2C-GNN and AC2C-one round. Moreover, it shows that the con-
troller can effectively reduce the communication overhead without
performance degradation. We next test the impact of the threshold
𝑇 on the controller in Table 6. When the value of𝑇 varies from 0 to
0.5, the communication cost reduces, but the performance does not
drop significantly. It illustrates that the controller helps to prune
the irrelevant information. However, the performance dramatically
deteriorates when the threshold reaches 0.6, where the controller
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Figure 6: The performance between different AC2C versions.

cannot retain enough valuable information. In this case, the overall
performance is similar to that of AC2C-one round. In other reported
results, we did a grid search to find the optimal 𝑇 .

6 CONCLUSION
In this paper, we introduce an effective communication protocol
for cooperative multi-agent reinforcement learning systems, which
helps agents to obtain valuable messages from agents outside their
communication range. A communication controller is introduced
to reduce the communication overhead while maintaining perfor-
mance. Extensive experiments show that the proposed method
outperforms all the baselines regarding both the reward and com-
munication overhead in the three considered environments. This
study illustrates the importance of developing adaptive multi-hop
communication protocols for multi-agent reinforcement learning
systems.
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