
Model-based Sparse Communication in Multi-agent
Reinforcement Learning

Shuai Han
Utrecht University

Utrecht, the Netherland
s.han@uu.nl

Mehdi Dastani
Utrecht University

Utrecht, the Netherland
m.m.dastani@uu.nl

Shihan Wang
Utrecht University

Utrecht, the Netherland
s.wang2@uu.nl

ABSTRACT
Learning to communicate efficiently is central to multi-agent rein-
forcement learning (MARL). Existing methods often require agents
to exchange messages intensively, which abuses communication
channels and leads to high communication overhead. Only a few
methods target on learning sparse communication, but they allow
limited information to be shared, which affects the efficiency of pol-
icy learning. In this work, we propose model-based communication
(MBC), a learning framework with a decentralized communication
scheduling process. The MBC framework enables multiple agents to
make decisions with sparse communication. In particular, the MBC
framework introduces a model-based message estimator to estimate
the up-to-date global messages using past local data. A decentral-
ized message scheduling mechanism is also proposed to determine
whether a message shall be sent based on the estimation. We eval-
uated our method in a variety of mixed cooperative-competitive
environments. The experiment results show that the MBC method
shows better performance and lower channel overhead than the
state-of-art baselines.

KEYWORDS
Multi-Agent Reinforcement Learning; Multi-Agent System; Com-
munication Learning; Message Scheduling

ACM Reference Format:
Shuai Han, Mehdi Dastani, and Shihan Wang. 2023. Model-based Sparse
Communication in Multi-agent Reinforcement Learning. In Proc. of the 22nd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS,
9 pages.

1 INTRODUCTION
Multi-agent reinforcement learning (MARL) provides powerful ap-
proaches for agents to develop effective cooperative and compet-
itive policies. Recently these approaches have been applied in a
variety of complex environments, such as traffic light control [37],
robotics [9] and autonomous driving [36]. Communication allows
agents to share observations and intentions, thus greatly improv-
ing the efficiency and success rate for completing specific tasks
[18, 23, 32]. In communication MARL, agents communicate with
each other before taking action and learn message encoding and de-
coding protocol with backpropagation [33]. In addition to encoding
and decoding messages, agents need to learn ‘when’ and ‘whom’

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

to send their messages. This is known as communication sched-
uling [15, 23]. For example, IC3Net [32] learns when to broadcast
messages, and I2C [4] and ACML [20] introduce gate mechanisms
to decide whether to send messages to specific agents. Moreover,
FlowComm [5] and MAGIC [23] learn to dynamically generate
communication graphs to schedule messages.

However, most communicationMARLmethods require intensive
communication among agents, which leads to high communication
overhead. This issue is crucial for the real-world application of
MARL methods where communication is costly [39]. For example,
in some practical scenarios, such as unmanned aerial vehicles, re-
ducing communication overhead is a fundamental concern due to
the low-power property of the sensors [10]. The existing communi-
cation MARL algorithms rarely consider the cost during training
and execution, resulting in excessive and redundant communication
[5, 40, 42]. On the other hand, a few existing methods for reducing
communication overhead [15, 18, 42] do not allow agents to utilize
enough information about the observations and intentions of other
agents, resulting in uncompetitive performance. To our knowledge,
reducing communication overhead while enabling agents to use as
much information as possible to learn optimal policies is a problem
that has rarely been studied.

In order to deal with this problem, we propose a novel frame-
work in communication MARL, which we will call model-based
communication (MBC). The basic idea of MBC is to enable agents
to utilize the previously exchanged messages to estimate current
messages that agents may exchange. The estimated messages, ac-
cessible to all individual agents, can be used by individual agents to
decide whether it is needed to send a message (in case the message
deviates significantly from the estimated message) or if the other
agents can use their estimated message. The latter case will reduce
communication overhead.

In the MBC framework, this is realized by a message estimator
that is designed to be trained in a supervised manner to model
the dynamics of global messages, so that agents can estimate the
current messages of other agents using their previous messages. In
addition, a decentralized message scheduling mechanism is intro-
duced, which eliminates the necessity of additional communication
to a central scheduler and is therefore conducive to distributed
deployment. According to the scheduling in the MBC framework,
each agent will send its messages only when other agents cannot
estimate its messages within an error threshold. In this way, MARL
agents can correct the estimation error of the global message by
sending real messages with each other.

This paper makes the following contributions. 1) We propose
to reduce the communication overhead by replacing receiving
messages from other agents with estimating others’ messages. To

Session 2A: Multiagent Reinforcement Learning II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

439

the best of our knowledge, this is the first work to use a model-
based method to reduce the communication overhead in MARL
approaches. 2) We design a decentralized message scheduling mech-
anism for multi-agents to correct erroneous message estimations by
communicating the real messages when they cannot estimate the
message accurately. 3) We verified the performance of our approach
in a series of mixed cooperative-competitive environments. Our ap-
proach shows around 5.16% better performance on average than the
state-of-the-art methods, around 22.33% lower communication over-
head on average than the previous most communication-efficient
method, and less dependence on the number of channels.

2 RELATEDWORK
MARL is dedicated to learning joint policies capable of accomplish-
ing specific tasks in dynamic and complex environments. Among
the plethora of work on MARL [8, 31, 44], we summarize the lit-
erature in three subfields, which our approach either builds on or
closely relates to.

Communication scheduling inMARL.This subfield addresses
the problems of when to communicate and whom to address mes-
sages to. As the early works, IC3Net [32] and SchedNet [15] learn to
decide when to broadcast individual messages. In other approaches
based on the importance of individual messages to the system deci-
sions, I2C [4] and ACML [20] introduce gate mechanisms to decide
whether to sendmessages for individual agents. Graphs are also use-
ful utilities for portraying the communication relationships among
agents. Agent-Entity Graph [1] and G2ANet [18] schedule com-
munication among agents via a pretrained graph. Most recently,
FlowComm [5] and MAGIC [23] learn to dynamically generate
graphs to determine when to communicate with whom. Commu-
nication scheduling can reduce the communication overhead in
multi-agent systems, which is significant for deployment of MARL
for real-world scenarios [18, 23, 42].

In line with these works, our scheduling approach further re-
duces communication load while maintaining collaboration among
agents. Our method is different from these methods in terms of the
concepts used by the message scheduling mechanism. The above
methods schedule messages based on the impact of individual in-
formation on the reward function or on the decisions of other
agents [15, 20, 23]. Our approach, in contrast, schedules messages
to control the errors of individual estimations on global informa-
tion. Methods that schedule messages based on message errors
also include VBC [41] and TMC [42]. However, with the sparse
communication of these methods, there are very few messages that
agents can utilize. Unlike these methods, our approach enables
agents to make estimations on the current global messages and
makes decisions based on these estimated global messages.

Message aggregation in MARL. The approaches in this area
address how to learn to effectively extract information from the
received messages. Earlier approaches mostly average [32, 33, 41]
or concatenate [15] the received messages to aggregate them. This
linear aggregation approach works but cannot differentiate valu-
able information that helps decision making when there is a large
number of agents. Some practices, such as pruning the incoming
messages [5, 18] or adding attention mechanisms to them [3, 14],
can alleviate this problem. A recent popular approach is to use the

powerful representation learning capability of Graph Neural Net-
works (GNNs) to learn embeddings from system communication
topology [23, 29, 43]. Our approach builds on and adopts the multi-
layer nonlinear aggregation methods on received messages using
the Graph Attention Networks (GATs) [2, 23] or attention mecha-
nisms [3]. In particular, to overcome the problem of numerous input
messages, our approach uses GATs to aggregate the information
from estimated global messages.

Model-based multi-agent reinforcement learning. Model-
based MARL alleviates the issue of sample efficiency in model-free
MARL [6, 38]. These methods typically model the environment
through supervised training. After the model learns to accurately
simulate the environment, the agent interacts with this model rather
than the environment [38]. H-MARL uses models to improve per-
formance by considering equilibrium policies at each decision [30].
MAMBA applies the centralized training & decentralized execution
paradigm to model-based multi-agent reinforcement learning [6].
Inspired by the previous Model-based MARL approaches, we pro-
pose to train a model in a supervised way to estimate the environ-
mental dynamics. In particular, instead of modelling the dynamics
of the observations (in previous works), we model the dynamics of
communication messages (i.e. encoded observations). To the best of
our knowledge, this is the first work to introduce the model-based
learning into communication of MARL.

3 PRELIMINARIES
3.1 Markov Game
We follow the partially observable multi-agent Markov Game [17,
23] to study the communication in multi-agent reinforcement learn-
ing. A partially observable multi-agent Markov Game is defined as
a tuple < N ,S,A,T ,Ω, 𝑅,𝛾 >. In this tuple, N = {1, 2, ..., 𝑛} is the
set of agents, S is the set of global state, A = 𝐴1 × 𝐴2 × ... × 𝐴𝑁

is the set of joint actions where 𝐴𝑖 is the set of possible actions
of agent 𝑖 , T : S × 𝐴1 × ... × 𝐴𝑁 ↦→ S is the transition function,
Ω = Ω1 × Ω2 × ... × Ω𝑛 is the set of joint observations where Ω𝑖 is
the possible observations of agent 𝑖 , 𝑅 is the reward function, and
𝛾 ∈ [0, 1] is a discounted factor. At each time step 𝑡 , agent 𝑖 executes
an action 𝑎𝑡

𝑖
∈ 𝐴𝑖 based on its observation 𝑜𝑡

𝑖
∈ Ω𝑖 , and receives an

individual reward 𝑟𝑖 . Agent 𝑖 is dedicated to adjust its policy 𝜋𝑖 to
maximize the individual rewards: 𝑅𝑖 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡
𝑖
, where 𝑇 is the

terminal time step.

3.2 MARL with Communication
When the above Markov game has been solved using multi-agent
reinforcement learning with communication, agent 𝑖 makes de-
cisions based on individual policy 𝜋𝑖 : Ω𝑖 × 𝐴𝑀𝑖 × 𝐴𝑖 ↦→ [0, 1],
where 𝐴𝑀𝑖 is the set of aggregated messages received by the 𝑖-
th agent. Individual agent 𝑖 uses 𝑓𝑎𝑔𝑔𝑖 : 𝑀1, 𝑀2, ..., 𝑀𝑁 ↦→ 𝐴𝑀𝑖

to aggregate received messages 𝑎𝑚𝑖 where 𝑀𝑗 represents the set
of agent 𝑗 ’s possible sending messages. Moreover, agent 𝑗 who
sends message uses 𝑓𝑒𝑛𝑐 𝑗 : Ω 𝑗 ↦→ 𝑀𝑗 to encode local observation
into message𝑚 𝑗 . 𝜋𝑖 , 𝑓𝑎𝑔𝑔𝑖 and 𝑓𝑒𝑛𝑐 𝑗 are jointly parameterized by
𝜃𝑖, 𝑗 = [𝜃𝜋𝑖 , 𝜃 𝑓𝑎𝑔𝑔𝑖 , 𝜃 𝑓𝑒𝑛𝑐 𝑗], where 𝜃𝜋𝑖 is the parameters of 𝜋𝑖 , 𝜃 𝑓𝑎𝑔𝑔𝑖
is the parameters of 𝑓𝑎𝑔𝑔𝑖 , and 𝜃

𝑓𝑒𝑛𝑐 𝑗 is the parameters of 𝑓𝑒𝑛𝑐 𝑗 .

Session 2A: Multiagent Reinforcement Learning II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

440

In this work, we follow the previous policy gradient methods
[21, 23, 28] to train policy 𝜋𝑖 , 𝑓𝑎𝑔𝑔𝑖 and 𝑓𝑒𝑛𝑐 𝑗 jointly by maximizing
the objective 𝐽 (𝜃𝑖, 𝑗) = E𝑠∼𝜌,𝑎𝑖∼𝜋𝑖 [𝑅𝑡𝑖], where 𝜌 is the initial state
distribution and 𝑅𝑡

𝑖
=
∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟𝑡
′

𝑖
is the discounted total rewards

of agent 𝑖 from the time step 𝑡 ∈ [0,𝑇]. This method performs
gradient ascent on 𝜃𝑖, 𝑗 .

∇𝜃𝑖,𝑗 𝐽 (𝜃𝑖, 𝑗) = E𝑠∼𝜌,𝑎𝑖∼𝜋𝑖 [
𝑇∑
𝑡=1
∇𝜃𝑖,𝑗 log𝜋 (𝑎

𝑡
𝑖 |𝑜

𝑡
𝑖 , 𝑎𝑚

𝑡
𝑖) · 𝑅

𝑡
𝑖] (1)

where 𝑎𝑚𝑡
𝑖
= 𝑓𝑎𝑔𝑔𝑖 (𝑚1, ...,𝑚 𝑗 , ...,𝑚𝑁) and 𝑚 𝑗 = 𝑓𝑒𝑛𝑐 𝑗 (𝑜𝑡𝑗). To re-

duce the variance, we adopt the advantage function 𝐴𝑖 (𝑜𝑡𝑖 , 𝑎
𝑡
𝑖
) =

𝑅𝑡
𝑖
− 𝑉𝑖 (𝑜𝑡𝑖) in place of 𝑅𝑡

𝑖
, where 𝑉𝑖 is the expected cumulative

reward estimated by agent 𝑖 .

3.3 Centralized Training & Decentralized
Execution.

Centralized training & decentralized execution (CTDE) is a com-
mon paradigm in MARL [13, 25, 34]. In this paradigm, all global
information is available in training, but in execution, agents are
only allowed to utilize local or received information. The existing
approaches mostly use centralized value function and decentralized
policies [7, 26, 27]. When it comes to communication, the encoding
and decoding of messages are performed decentralized in execution
[4, 32, 33]. Message scheduling has both decentralized [42] and
centralized methods [23] in execution. When a centralized mes-
sage scheduler exists in the system, it is often necessary to collect
messages from all agents first before scheduling.

Our approach follows the CTDE paradigm. During training, we
centrally train the model for estimating message dynamics in a su-
pervised manner. During execution the scheduling and aggregation
of messages are both executed in a decentralized manner.

4 METHODOLOGY
In this section, we describe the detailed design of the Model-based
Communication (MBC) framework. The core idea of MBC is to esti-
mate the current global message using local historical information
to reduce the requirement of receiving messages directly from other
agents. This enables each agent to maintain an error-controlled
overview of the global information under a partial communication
setup, thus achieving high performance with low communication
overhead. We first introduce the overview structure of the MBC
framework, then present the detailed design of each module.

4.1 Overview of the MBC Framework
We start with an intuitive example about how an individual agent
makes decisions with communication (as shown in Figure 1).

To simplify the description, we demonstrate the procedure in a
four-agent setting. At time step 𝑡 − 1, agent 1 uses Decision Gener-
ator to take action 𝑎𝑡−11 based on the local encoding𝑚𝑡−1

1 as well as
the aggregated message 𝑎𝑚𝑡−1

1 . The𝑚𝑡−1
1 comes from its Message

Encoders by encoding the local observation 𝑜𝑡−11 . The 𝑎𝑚𝑡−1
1 is

computed by the Message Aggregator using the overwritten mes-
sage vector [(�̂�𝑡−1

1)1, (�̂�
𝑡−1
2)1,𝑚

𝑡−1
3 , (�̂�𝑡−1

4)1]. The components of
this vector are either estimated messages computed by local agent 1

(i.e., (�̂�𝑡−1
1)1, (�̂�

𝑡−1
2)1, (�̂�

𝑡−1
4)1), or the real messages received from

other agents (i.e.,𝑚𝑡−1
3).

To obtain this overwrittenmessage vector at 𝑡−1, agent 𝑖 first esti-
mates the current globalmessage vector [(�̂�𝑡−1

1)1, (�̂�
𝑡−1
2)1, (�̂�

𝑡−1
3)1,

(�̂�𝑡−1
4)1] via Message Estimator based on the overwritten mes-

sage vector provided from the previous time. Then, the received real
message will overwrite this estimated message vector to reduce the
error of estimation. In this example, only (�̂�𝑡−1

3)1 is overwritten,
because agent 1 only receives messages𝑚𝑡−1

3 from agent 3 at this
moment.

In addition, once Message Estimator obtains the estimated global
message vector, the self-estimation component (�̂�𝑡−1

1)1 will be
taken out. The scheduling process then compares estimated (�̂�𝑡−1

1)1
and real local message 𝑚𝑡−1

1 to decide whether to send 𝑚𝑡−1
1 to

other agents. This sending process, together with the overwriting,
constitutes the communication before the decision.

At the next time step, agent 1 will repeat the above process.
Notably, the demonstrated process in Figure 1 works on each indi-
vidual agent. In other words, all agents contain the same framework,
and each one holds its individual modules (i.e., Message Estimator,
Message Encoder, Message Aggregator, and Decision Generator)
and performs their individual scheduling and overwriting processes.
The parameters of the four modules are shared by all agents in the
system. Next, we present more details about how various modules
and corresponding processes are modeled in the MBC framework.

4.2 Decision-making with Messages
This subsection describes in detail how the Message Encoder en-
codes messages and how the Decision Generator generates actions.
Figure 2 shows the structures of Message Encoder and Decision
Generator. Agents in the system use a shared Message Encoder 𝑓𝑒𝑛𝑐
to encode the observations into messages. Specifically, the observa-
tion 𝑜𝑡

𝑖
of any agent 𝑖 is initially encoded by a fully connected layer

FC1, and then further encoded together with collected information
from previous steps by a Long Short-term Memory (LSTM) layer
[11] into𝑚𝑡

𝑖
.

Thereafter, agents use a shared individual 𝜋 to make decisions
based on the encoded observations and aggregatedmessages. Specif-
ically, the encoded observation𝑚𝑡

𝑖
is concatenated with the aggre-

gated message 𝑎𝑚𝑡
𝑖
. Then, they are input into another fully con-

nected layer FC2 to generate individual decision 𝑎𝑡
𝑖
. In summary,

agent 𝑖 generates an action through the following equation.

𝑎𝑡𝑖 = 𝑓𝐹𝐶2 (𝑚𝑡
𝑖 | |𝑎𝑚

𝑡
𝑖) (2)

where 𝑓𝐹𝐶2 represents the fully connected layer 𝐹𝐶2 and (·| |·)
represents the ‘concatenation’ operation shown in Figure 2.

4.3 Estimating Global Messages
This subsection describes how the Message Estimator is centrally
trained and how the Message Estimator uses previous global mes-
sage vector to estimate the current global messages.

Message Estimator builds up a supervised learning model to esti-
mate the up-to-date global message information based on messages
from the previous step. Since the key to our idea is to reduce the
communication channel overhead by using estimated messages as

Session 2A: Multiagent Reinforcement Learning II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

441

Figure 1: The demonstration of the proposed MBC framework, including the decision making process of one agent at time
step t-1 and t in a four-agent MARL system. In addition to the notations mentioned in Section 3, (�̂�𝑡

𝑗
)𝑖 represents agent 𝑗 ’s

message at 𝑡 estimated by agent 𝑖.

Figure 2: Network Structures of Message Encoder and Deci-
sion Generator. The ‘concatenation’ represents connecting
two vectors together.

much as possible instead of received messages, training an accurate
Message Estimator is essential.

To train an accurate Message Estimator, we seek inspiration
from model-based reinforcement learning methods [12, 22]. In the
model-based MARL methods, agents model the dynamics of the
observations. This dynamics, which determines the joint observa-
tion 𝒐𝒕 = [𝑜𝑡1, 𝑜

𝑡
2, ..., 𝑜

𝑡
𝑁
] at time 𝑡 , is modelled by the to be learned

environment model 𝑓𝑜 :

�̂�𝒕 = 𝑓𝑜 (�̂�𝒕−1, 𝒂𝒕−1) (3)

where 𝒂𝒕−1 = [𝑎𝑡−11 , 𝑎𝑡−12 , ..., 𝑎𝑡−1
𝑁
] is the action profile consisting

of the actions of all agents at time step 𝑡 − 1. Since 𝒎𝒕 is essentially
the encoding of 𝒐𝒕 , based on Equation (3), we assume that the
dynamics of the messages, which determines the joint message
𝒎𝒕 = [𝑚𝑡

1,𝑚
𝑡
2, ...,𝑚

𝑡
𝑁
] at time 𝑡 , can also be estimated by the learned

message model 𝑓𝑀 .

�̂�𝒕 = 𝑓𝑀 (𝒎𝒕−1, 𝒂𝒕−1) (4)

where �̂�𝒕 is the estimated joint message. To obtain the joint action
𝒂𝒕−1, we calculate its components separately with Equation (2),
𝑎𝑡−1
𝑖

= 𝑓𝐹𝐶2 (𝑚𝑡−1
𝑖
| |𝑎𝑚𝑡−1

𝑖
), where 𝑎𝑚𝑡−1

𝑖
= 𝑓𝑎𝑔𝑔 (𝒎𝒕−1) and 𝑓𝑎𝑔𝑔 is

the function of Message Aggregator. Therefore, since 𝒂𝒕−1 depends
on 𝒎𝒕−1, we only require 𝒎𝒕−1 to calculate �̂�𝒕 in equation (4).

In this way, we learn a model for the global dynamic in Equation
(4) instead of on individual dynamic in [16, 22]. Because in the
MBC framework, an (overwritten) global message vector is always

available for every agent, we can learn a global model to utilize
more information as well as to train a stable message model.

During training, we collect real global messages and actions to
train 𝑓𝑀 in a supervised way. We use the Mean Square Error (MSE)
between the true messages and the estimated messages as the loss
function.

L𝑀 (𝜃 𝑓𝑀) = E(𝒎𝑡−1,𝒎𝑡)∼D [𝒎𝑡 − 𝑓𝑀 (𝒎𝒕−1, 𝒂𝒕−1)]2 (5)

where 𝜃 𝑓𝑀 is the parameter of 𝑓𝑀 andD is a buffer that stores tuples
(𝒎𝑡−1,𝒎𝑡) for 𝑡 = 1, 2, ...,𝑇 . To better train 𝑓𝑀 , we use D similar
to [12, 22] to collect data as the training set during the interaction
of agents with the environment. During training, (𝒎𝑡−1,𝒎𝑡) will
be sampled in batches fromD to compute the gradient of Equation
5 and perform parameter updates on 𝑓𝑀 .

In execution, we deploy the same parameters of the trained 𝑓𝑀 to
each agent locally. However, since the global information in Equa-
tions (4) and (2) is not always available for agent 𝑖 , we use locally
available information to estimate global message. Considering the
general situation of Figure 1, agent 𝑖 computes its own estimation
on global message (�̂�𝒕)𝒊 = [(�̂�𝑡

1)𝑖 , (�̂�
𝑡
2)𝑖 , ..., (�̂�

𝑡
𝑁
)𝑖] with the over-

written message vector (¤𝒎𝒕−1)𝒊 = [(¤𝑚𝑡−1
1)𝑖 , (¤𝑚

𝑡−1
2)𝑖 , . . . , (¤𝑚

𝑡−1
𝑁
)𝑖]

from the last time step, where (¤𝑚𝑡−1
𝑗
)𝑖 = (�̂�𝑡−1

𝑗
)𝑖 𝑜𝑟 𝑚𝑡−1

𝑗
depend-

ing on whether agent 𝑖 has received a real message𝑚𝑡−1
𝑗

from 𝑗 .
If a message𝑚𝑡−1

𝑗
was received, it will be used to overwrite the

estimation (�̂�𝑡−1
𝑗
)𝑖 .

Therefore, in execution, agent 𝑖 obtains its estimation on global
message with the following equation.

(�̂�𝒕
)𝒊 = 𝑓𝑀

(
(¤𝒎𝒕−1

)𝒊, (𝒂
𝒕−1

)𝒊

)
(6)

where (𝒂𝒕−1)𝒊 = [(𝑎𝑡−1𝑗
)𝑖] is the joint action estimated by agent

𝑖 and (𝑎𝑡−1
𝑗
)𝑖 = 𝑓𝐹𝐶2 ((¤𝑚𝑡−1

𝑗
)𝑖 | |𝑓𝑎𝑔𝑔 ((¤𝒎𝒕−1)𝒊)). Agent 𝑖 needs to

estimate the joint action because it cannot observe the global action
at current time step in decentralized execution. Here, agent 𝑖 is
able to estimate the action of agent 𝑗 individually because in our
framework, different agents maintain similar overwritten global
message, i.e., (¤𝒎𝒕−1)𝒋 ≈ (¤𝒎𝒕−1)𝒊 , and all agents share the same

Session 2A: Multiagent Reinforcement Learning II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

442

parameters of 𝑓𝐹𝐶2 and 𝑓𝑎𝑔𝑔 . The more components of (¤𝒎𝒕−1)𝒊 are
overwritten, the more accurate this approximation is. This also
means a higher communication overhead as more messages are
received.

4.4 Scheduling Messages
This subsection describes how to schedule messages. The schedul-
ing process determines whether the current local message should
be sent to all other agents.

The local message scheduling aims to control the estimation
error within a certain boundary. This can be done by checking
whether other agents are able to properly estimate the local mes-
sage of agent 𝑖 at this moment. In other words, if other agents can
estimate the message sent by agent 𝑖 at time step 𝑡 within the error
bound, agent 𝑖 does not need to send its local encoded observation
𝑚𝑡
𝑖
. (Message Estimator is shared and accessible to all agents in

execution). Otherwise,𝑚𝑡
𝑖
needs to be sent to other agents to help

them recover from the incorrect estimation.
We propose to schedule the message in a decentralized way. This

allows the message dispatching module to be better deployed in
a distributed manner. To do this, it is necessary to use only the
local information available during the execution. As mentioned in
Subsection 4.3, each agent estimates others’ current messages using
Equation (6) during execution. Since each agent shares the same
parameters of 𝑓𝑀 , 𝑓𝐹𝐶2, as well as 𝑓𝑎𝑔𝑔 and maintains similar global
message vector inputs, we can use agent 𝑖’s estimation on itself
to approximate other agents’ estimation on 𝑖 , i.e., (�̂�𝑡

𝑖
)𝑖 ≈ (�̂�𝑡

𝑖
) 𝑗 ,

where 𝑗 ≠ 𝑖 . In other words, if agent 𝑖 cannot estimate its own
current message𝑚𝑡

𝑖
within an error range, agent 𝑖 will assume that

other agents cannot estimate𝑚𝑡
𝑖
neither. Then, agent 𝑖 should send

its message to other agents to help other agents recover from a
wrong estimation.

In summary, we design the message scheduling as the following
equation.

𝐼𝑡𝑖 =

{
1 if | | (�̂�𝑡

𝑖
)𝑖 −𝑚𝑡

𝑖
| |2 > 𝛿,

0 otherwise
(7)

where 𝐼𝑡
𝑖
is a binary value that indicates whether agent 𝑖 sends its

messages to other agents at time step 𝑡 , | | · | |2 indicates 𝐿2 norm of
a vector, 𝛿 is a hyperparameter representing the threshold value.

In addition to the scheduling approach in Equation (7), to prevent
the cumulative error in message estimation, we force agents to send
messages if they have not sent a message after a time window𝑤 .
Besides, when 𝑡 = 0, we set all agents to send their messages to
start the calculation of Equation (6).

4.5 Aggregating Messages
This subsection describes how to aggregate messages from the
current overwritten global message vector.

Since each agent needs to aggregate useful information from
𝑁 messages, we solve this high input dimensionality by following
the ideas of GATs [2, 23]. In the calculation of individual agent 𝑖 ,
the message in layer 𝑙 is computed recursively by aggregating the
messages from the last layer 𝑙 − 1:

(𝑚𝑡 (𝑙)
𝑗
)𝑖 = 𝜎 (

∑
𝑘∈N
(𝛼 𝑗𝑘)𝑖𝑊 (𝑙) (𝑚

𝑡 (𝑙−1)
𝑘

)𝑖) (8)

where (𝑚𝑡 (𝑙)
𝑗
)𝑖 is the intermediate message component on layer

𝑙 computed by agent 𝑖 locally at time step 𝑡 , 𝜎 (·) is a nonlinear
activation function (i.e. LeakyReLU [24] in our experiments), N is
the set of all agents in the system,𝑊 (𝑙) is a learnable weighting
matrix shared among all nodes at layer 𝑙 , and (𝛼 𝑗𝑘)𝑖 is the weight
coefficient of agent 𝑘’s message for agent 𝑗 , as viewed by agent 𝑖 .
(𝛼𝑖 𝑗)𝑝 is computed by the attention mechanism [2, 23].

From Equation (8), it can be seen that the 𝑓𝑎𝑔𝑔 aggregates mes-
sages recursively and that the parameters of the 𝑓𝑎𝑔𝑔 consist of the
learnable𝑊 (𝑙) at each layer. In 𝐿-layer GATs, the input of GATs
first layer is (𝑚𝑡 (0)

𝑗
)𝑖 = (¤𝑚𝑡

𝑗
)𝑖 , where (¤𝑚𝑡

𝑗
)𝑖 comes from the compo-

nent of the overwritten message vector (¤𝒎𝒕−1)𝒊 . The output of the
final layer is the aggregated message of agent 𝑖: 𝑎𝑚𝑖 = (𝑚𝑡 (𝐿)

𝑖
)𝑖 .

Equation (8) differs from the previous work in that agent 𝑖 per-
forms the computation of all agents’ intermediate aggregated mes-
sages locally and aggregates higher level aggregated messages from
the local computation. This means that multi-layer message ag-
gregation no longer requires multi-round communication in our
approach, which is required in previous work [3, 23]. This allows
the communication overhead of our method to be further reduced.

4.6 Algorithms
In this subsection, we describe the implementation of MBC training
and execution by presenting our algorithms.

The training of Message Estimator is separate from the training
of the other three modules. We use Equation (5) to train theMessage
Estimator and we use the objective 𝐽 (𝜃𝑖, 𝑗) in Subsection 3.2 to
jointly train the other modules in MBC. In particular, due to the
parameter sharing in MBC, the objective is presented as following.
∇𝜃,𝜙 𝐽 (𝜃, 𝜙) =

1
𝑇

𝑁∑
𝑖=1

𝑇∑
𝑡=1

[
∇𝜃 log𝜋 (𝑎𝑡𝑖 |𝑜

𝑡
𝑖 , 𝑎𝑚

𝑡
𝑖) (𝑅

𝑡
𝑖 −𝑉𝜙 (𝑜

𝑡
𝑖)) − 𝛽∇𝜙 (𝑅

𝑡
𝑖 −𝑉𝜙 (𝑜

𝑡
𝑖))

2)
]

(9)

where 𝑎𝑚𝑡
𝑖
= 𝑓𝑎𝑔𝑔 (¤𝒎𝒕), 𝛽 is a weighting factor that determines the

updateweight of𝜃 and𝜙 , and𝑉𝜙 is the value function parameterized
by 𝜙 .

We present the training procedure of our proposed algorithm in
Algorithm 1. We start with initializing the total number of updates
𝑀 , max episode steps 𝑇 , parameters for agents and buffer D. Then
the system agents interact with the environment in Step 8∼9 and
training data is collected and sorted in Step 12, 15, and 17. Finally,
the parameters are update according the gradient in Step 19 and 20.

After training, the shared parameters 𝜃 , 𝜙 , and 𝜃 𝑓𝑀 are deployed
to individual agents for decentralized execution. The decentralized
execution procedure for every individual agent within an episode
is presented in Algorithm 2. The environment is randomly reset
in the beginning of the episode and the initial observation 𝑜0

𝑖
of

the individual agent 𝑖 is obtained in Step 1. Then the 𝑖’s estimation
message vector and the window size is initialized in Step 2 and 3.
Thereafter, 𝑡𝑛𝑜𝑡𝑐 and 𝑡 are initialized as zero, where 𝑡𝑛𝑜𝑡𝑐 records
the cumulative time steps during which agent 𝑖 do not sent its
message. Step 5 ∼ 22 describes the decision process of agent 𝑖 . The
current observation 𝑜𝑡

𝑖
is first encoded into message𝑚𝑡

𝑖
in Step 6,

corresponding to Subsection 4.2. Then the message is scheduled

Session 2A: Multiagent Reinforcement Learning II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

443

Algorithm 1 Centralized training for all agents.
1: Initialize max updates𝑀 , max episode time steps𝑇
2: Initialize shared parameters 𝜃 and 𝜙
3: Initialize shared parameters 𝜃 𝑓𝑀 and buffer D
4: for 𝑢𝑝𝑑𝑎𝑡𝑒 = 1→ 𝑀 do
5: Reset 𝐸𝑛𝑣 and obtain 𝑜0

𝑖
for each agent 𝑖

6: 𝑡 = 0
7: while 𝑡 < 𝑇 and not terminal do
8: Input 𝑜𝑡

𝑖
to each agent and obtain𝑚𝑡

𝑖
and 𝑎𝑡

𝑖

9: Execute 𝑎𝑡
𝑖
to the 𝐸𝑛𝑣 and observe 𝑜𝑡+1

𝑖
, 𝑟𝑡

𝑖

10: Merge all𝑚𝑡
𝑖
into𝒎𝒕

11: if 𝑡 > 0 then
12: Store (𝒎𝒕−1,𝒎𝒕) into D
13: end if
14: end while
15: 𝑅𝑡

𝑖
= 0 if 𝑡 is terminal else 𝑅𝑡

𝑖
= 𝑉 (𝑜𝑡

𝑖
)

16: for 𝑡 = (𝑇 − 1) → 0 do
17: 𝑅𝑡

𝑖
← 𝑟𝑡

𝑖
+ 𝛾𝑅𝑡

𝑖

18: end for
19: Calculate the gradient of the objective according to Equation (9) and update 𝜃

and 𝜙
20: Sample from D and calculate the gradient of the loss according to Equation 5

and update 𝜃 𝑓𝑀

21: end for

Algorithm 2 Decentralized execution for agent 𝑖 in an episode.
1: Reset 𝐸𝑛𝑣 and obtain 𝑜0

𝑖

2: Initialize the message vector (�̂�0)𝒊 estimated by 𝑖
3: Initialize the window size 𝑤
4: 𝑡𝑛𝑜𝑡𝑐 ← 0, 𝑡 ← 0
5: while 𝑡 < 𝑇 and not terminal do
6: Encode 𝑜𝑡

𝑖
as message𝑚𝑡

𝑖

7: if 𝑡 == 0 or 𝑡𝑛𝑜𝑡𝑐 > 𝑤 then
8: Send𝑚𝑡

𝑖
to all agents and 𝑡𝑛𝑜𝑡𝑐 ← 0

9: else
10: Estimate (�̂�𝒕)𝒊 based on (¤𝒎𝒕−1)𝒊 with Equation (6)
11: Obtain 𝐼𝑡

𝑖
based on (�̂�𝑡

𝑖
)𝑖 and𝑚𝑡

𝑖
with Equation (7)

12: if 𝐼 𝑡
𝑖
> 0 then

13: Send𝑚𝑡
𝑖
to all agents and 𝑡𝑛𝑜𝑡𝑐 ← 0

14: else
15: 𝑡𝑛𝑜𝑡𝑐 ← 𝑡𝑛𝑜𝑡𝑐 + 1
16: end if
17: end if
18: Receive {𝑚𝑡

𝑗
}

19: Overwrite the corresponding component of (�̂�𝒕)𝒊 with real messages {𝑚𝑡
𝑗
}

and obtain (¤𝒎𝒕)𝒊
20: Compute 𝑎𝑚𝑡

𝑖
= 𝑓𝑎𝑔𝑔 ((¤𝒎𝒕)𝒊)

21: Compute 𝑎𝑡
𝑖
with Equation (2)

22: end while

whether to be sent in Step 7∼17 as Subsection 4.4. After that, agent
𝑖 can receive a set of messages from system agents in Step 18. Agent
𝑖 overwrites the local estimated message vector using the received
message set and aggregates information from the overwritten mes-
sage vector as operated in Subsection 4.3. Finally the action 𝑎𝑡

𝑖
is

generated in Step 21.

5 EXPERIMENTS
We evaluate MBC on three mixed cooperative-competitive environ-
ments which are widely utilized tasks in previous the state-of-the-
art work [4, 19, 23, 32, 42]. These environments provide individual
rewards for agents to motivate them to complete tasks. The details
of these environments are as follows.

PP-grid. PP-grid is a predator-prey environment with grid infor-
mation as agents’ observation. In this environment, the 5 predators’

policies are to be learned to move onto the fixed location of a prey.
Each predator only has a view of the neighboring cells around it. A
predator is unaware of the location of prey unless the prey appears
in its view. Each time step every predator will receive a -0.05 reward
unless it moves to the prey position where it receives 0 reward.

CN-loc. CN-loc is a navigation environment with relative loca-
tions of landmarks and other agents as individual observations. 7
agents in this task learn to occupy 7 landmarks. Each agent obtains
partial observation of the environment. The individual reward is
based on the minimum of negative distances of all landmarks to the
individual agent. Besides, agents will receive individual -0.5 reward
if they collide with each other.

PP-loc. PP-loc is a predator-prey environment with relative
locations of preys and other predators as individual observation. 7
predators in this task learn to pursuit 3 preys. Each agent obtains
partial observation of the environment. The individual reward is
based on the minimum of negative distances of all preys to the
individual agent. Different from PP-grid, the preys in PP-loc can
move to get away from the near predators.

These three environments cover three diverse communication
learning tasks. In PP-grid, agents need to learn when to broadcast
location information of the prey. Sharing intentions with other
agents to choose the particular target without collision is specially
required in CN-loc. And PP-loc requires agents learn how to coop-
erate in capturing moving preys through communication.

To demonstrate the superiority of MBC, we have chosen a vari-
ety of state-of-art communication MARL methods as our baselines.
All of them target on solving mix cooperative-competitive tasks
like ours. These include CommNet [33] that requires all agents
to communicate with each other, IC3Net [32] for learning when
to send messages, TarMAC+IC3Net [3] for learning aggregated
messages using attention mechanism, GA-Comm [18] for learning
communication graphs, MAGIC [23] for centralized message sched-
uling, and TMC [42] for decentralized message scheduling. Among
these baselines, MAGIC is the state-of-the-art method in terms of
agent performance and TMC is the state-of-the-art method in terms
of efficient communication channel. Notably, we do not compare
with the model-based MARL methods [30] [6], since our proposed
method uses a model-free approach to learn the optimal policies
and builds the message estimation model only for communication.
Our method can be categorized as ‘model-free learning with model-
based communication’. To the best of our knowledge, our method
is the first work in this category.

We use RMSProp with learning rate 0.00025 to train the Message
Encoder, Decision Generator, and Message Aggregator jointly. We
update 160 times for each time steps and each update is with 500
batch to perform batch learning. The size of sending message𝑚𝑖

and the aggregated messages 𝑎𝑚𝑖 is 128. The neuron number in
hidden layers of FC1, FC2 and LSTM is set to be 128. We use two
layer GATs to implement the Message Aggregator. The first layer
is consistent of 32 hidden neurons and 4 heads, while the second
layer is consistent of 128 hidden neurons and 1 head. Besides, to
train the Message Estimator, we use Adam with learning rate 0.001.
The replay buffer D for Message Estimator is implemented by a
queue with length 100K . The batch for sampling in Equation (5)
is 128. The value coefficient 𝛽 is set to 0.01, 0.015 and 0.01 in PP-
grid, CN-loc and PP-loc, respectively. The discount 𝛾 is set to 1,

Session 2A: Multiagent Reinforcement Learning II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

444

0.99, 0.99 in PP-grid, CN-loc and PP-loc, respectively. The error
threshold of the scheduling message in Subsection 4.4 is set to be
0.05, 0.2 and 0.2 in PP-grid, CN-loc and PP-loc, respectively. The
window size is set to 40, as same as the maximum time step of an
episode. All evaluation results of of each algorithm are come from
10 independent experiments initialized with different random seeds
from 2022 ∼ 2031. Our code is open source1.

5.1 Performance
We first compare the performance of MBC with the baselines to
validate the superiority of MBC in solving MARL tasks. The perfor-
mance of MBC and all baselines are presented in Figure 3. The error

(a) PP-grid (b) CN-loc

(c) PP-loc

Figure 3: Learning curves of various communication MARL
algorithms in threemixed cooperative-competitive environ-
ments.
bounds (i.e., shadow shapes) indicate the upper and lower bounds
of the performance with 10 runs. In PP-grid and CN-loc, the prey
and landmarks are stationary. In these environments, our approach
achieves similar performance to the previous baselines, while our
approach shows better sample efficiency. When it comes to the
more challenging PP-loc environment in which preys are moving,
MBC significantly outperforms previous methods and exhibits a
smaller performance variance.

5.2 Communication Efficiency
We evaluate the communication efficiency of MBC in this subsec-
tion. We define the communication efficiency using the ratio of
performance to channel overhead. The larger this ratio is, the better
ability to achieve higher performance using fewer channels for the
algorithm.

Figure 4 compares the communication efficiency of the algo-
rithms. To avoid calculating negative rewards, we take the al-
1https://github.com/shan0126/Model-Based-Communication

(a) Comparison on performance
.

(b) Comparison on channels

(c) Comparison on ratio of performance
to channels

Figure 4: Communication efficiency comparison of var-
ious communication MARL algorithms in three mixed
cooperative-competitive environments.

gorithms’ reward increment over random policy and normalize
them over CommNet in the way similar to [35]: 𝑟𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑎𝑙𝑔) =

𝑟𝑎𝑙𝑔−𝑟𝑟𝑎𝑛𝑑𝑜𝑚
𝑟𝐶𝑜𝑚𝑚𝑁𝑒𝑡−𝑟𝑟𝑎𝑛𝑑𝑜𝑚 , where 𝑟𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑎𝑙𝑔) is normalized reward
for any 𝑎𝑙𝑔 method to be compared, 𝑟𝑎𝑙𝑔 is the average reward
achieved by 𝑎𝑙𝑔 method, 𝑟𝐶𝑜𝑚𝑚𝑁𝑒𝑡 and 𝑟𝑟𝑎𝑛𝑑𝑜𝑚 are the average
rewards achieved by CommNet method and by a random pol-
icy, respectively. In our experiments, we consider a message from
one agent to another as one communication channel. The nor-
malized channel 𝑐𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑎𝑙𝑔) for method 𝑎𝑙𝑔 is calculated by:
𝑐𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑎𝑙𝑔) =

𝑐𝑎𝑙𝑔

𝑁 (𝑁−1) , where 𝑐𝑎𝑙𝑔 is the average channel con-
sumed by 𝑎𝑙𝑔 method and 𝑁 is the number of agent in the system.

Figure 4(a) and 4(b) shows the performance and communication
channel of each algorithm. Figure 4(c) presents the ratio of perfor-
mance to channel overhead. The results show our MBC method
can achieve higher performance with less channel overhead. Figure
4(c) demonstrates the significant improvement in communication
efficiency of MBC compared to baselines.

As motivated in the introduction, achieving good performance
with fewer channels is especially important in environments where
communications are costly. Figure 5 shows the learning curves of
MBC and MAGIC for a verity of environments where the cost per
communication channel is 0.001, 0.002 and 0.005 respectively. When

(a) CN-loc (b) PP-loc

Figure 5: The learning curveswith communication overhead
is counted in the reward.

Session 2A: Multiagent Reinforcement Learning II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

445

https://github.com/shan0126/Model-Based-Communication

the cost of the channel increases, the learning curve ofMAGIC shifts
significantly downward, whereas the learning curve of MBC only
becomes slightly lower. This indicates that our approach is more
stable and more efficient in environments where communication is
costly. It further validate the feasibility of our method.

5.3 Channel Dependency
In real-world situations, agents may also need to accomplish tasks
with restricted communication channels. Thus, we further validate
the feasibility of our method by examining the influence of com-
munication channel restriction on the performance of MBC. We
compare our MBC with TMC that has the lowest communication
overhead baseline in terms of channel dependency. The perfor-
mance changes of two methods over different channels are shown
in Figure 6(a). We limit the allowed communication channels in
the training. Dense communication basically allows full commu-
nication, while sparse only allows up to 6 channels. We use these
learned models to perform the task and record how many steps
are needed to complete the task when we allow different numbers
of communication channels. The horizontal axis of Figure 6(a) is
average channel overhead per time step, and the vertical axis is
the steps required for all predators to catch the prey in the PP-grid
environment. The smaller the required steps, the more efficient the
algorithm is in completing the task.

(a) The achieved performance changes
over channels in PP-grid.

(b) Estimation error of agent with com-
munication.

Figure 6: Performance changes over channels and estima-
tion error changes over time steps.

As shown in Figure 7, with sparse communication training, TMC
always requires more steps to complete the task than MBC in exe-
cution (compare blue and green lines). With dense communication
training, TMC and MBC can achieve similar performance in the
execution when there are enough communication channels. How-
ever, when there are fewer communication channels available, the
efficiency of the TMC to complete the task becomes significantly
lower, while the performance of MBC is only slightly reduced, as
shown on the orange and red lines. In summary, MBC is more
capable of communication with constraints on channels.

5.4 Interpretation on Message Scheduling
A remarkable feature of MBC is that communication is used to
reduce estimation error on global message. Thus, we investigate
the effects of communication (i.e. received messages) on the mes-
sage estimation error. To do this, we track dynamic changes of the
estimation error on global messages in one agent and plot them in
Figure 6(b). As shown in the figure, the estimation error is decreased

when more then one messages are received from other agents. This
indicate the effectiveness of communication on correcting local
estimation on global message.

5.5 Ablation Experiment
To explore the effect of joint action on model estimation in Equation
(6), we compare the method estimating messages using Equation (6)
and that estimating messages using (�̂�𝒕)𝒊 = 𝑓𝑀

(
(¤𝒎𝒕−1)𝒊

)
with-

out actions. Overall, as shown in Figure 7 the method estimating
message with actions shows better performance. This advantage

(a) CN-loc (b) PP-loc

Figure 7: The learning curves of MBC with and without ac-
tion for estimating message.
is not obvious in CN-loc, because landmarks in the environment
are stationary and their position is not affected by agents’ actions.
However, when it comes to moving prey based on agents actions,
estimating information without action makes the method more
unstable. This means that the usage of action to estimate message
changes is more essential.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose MBC, a decentralized communication
framework in MARL with sparse communication. MBC utilizes a
message model to estimate up-to-date messages of other agents
instead of always receiving messages from them. A decentralized
message scheduling mechanism is also designed to correct the error
of the agent’s message estimation. The proposed method allows
multiple agents to make collaborative decisions with sparse com-
munication. In a variety of mixed cooperative-competitive environ-
ments, MBC shows around 5.16% better performance and around
22.33% lower communication overhead than the state-of-the-art
method. We want to continue our efforts to decrease the communi-
cation overhead of MARL methods. In this paper, we only use the
message model to estimate the observations and intentions of other
agents at this moment. In future work, we would like to extend this
model to predict the future observations and intentions of agents
for assisting their local decision making.

ACKNOWLEDGEMENTS
We sincerely thank the anonymous reviewers. This work is partly
funded by the China Scholarship Council (CSC).

Session 2A: Multiagent Reinforcement Learning II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

446

REFERENCES
[1] Akshat Agarwal, Sumit Kumar, Katia P. Sycara, andMichael Lewis. 2020. Learning

Transferable Cooperative Behavior in Multi-Agent Teams. In Proceedings of the
19th International Conference on Autonomous Agents and Multiagent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 1741–
1743.

[2] Petar Veličković Guillem Cucurull Arantxa Casanova, Adriana Romero Pietro Lio,
and Yoshua Bengio. 2018. Graph attention networks. 6th International Conference
on Learning Representations (2018).

[3] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike
Rabbat, and Joelle Pineau. 2019. TarMAC: Targeted Multi-Agent Communication.
In Proceedings of the 36th International Conference on Machine Learning, Vol. 97.
1538–1546.

[4] Ziluo Ding, Tiejun Huang, and Zongqing Lu. 2020. Learning Individually Inferred
Communication for Multi-Agent Cooperation. In Advances in Neural Information
Processing Systems.

[5] Yali Du, Bo Liu, Vincent Moens, Ziqi Liu, Zhicheng Ren, Jun Wang, Xu Chen, and
Haifeng Zhang. 2021. Learning Correlated Communication Topology in Multi-
Agent Reinforcement learning. In 20th International Conference on Autonomous
Agents and Multiagent Systems. 456–464.

[6] Vladimir Egorov and Alexey Shpilman. 2022. Scalable Multi-Agent Model-Based
Reinforcement Learning. In 21st International Conference on Autonomous Agents
and Multiagent Systems. 381–390.

[7] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. 2974–
2982.

[8] Sven Gronauer and Klaus Diepold. 2022. Multi-agent deep reinforcement learning:
a survey. Artificial Intelligence Review 55, 2 (2022), 895–943.

[9] Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine. 2017. Deep
reinforcement learning for robotic manipulation with asynchronous off-policy
updates. In 2017 IEEE International Conference on Robotics and Automation. 3389–
3396.

[10] Shushi Gu, YeWang, NiannianWang, andWenWu. 2020. Intelligent optimization
of availability and communication cost in satellite-UAV mobile edge caching
system with fault-tolerant codes. IEEE Transactions on Cognitive Communications
and Networking 6, 4 (2020), 1230–1241.

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[12] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. 2019. When to Trust
Your Model: Model-Based Policy Optimization. In Advances in Neural Information
Processing Systems 32. 12498–12509.

[13] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Çaglar Gülçehre, Pedro A.
Ortega, DJ Strouse, Joel Z. Leibo, and Nando de Freitas. 2019. Social Influence as
Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning. In Proceed-
ings of the 36th International Conference on Machine Learning, Vol. 97. 3040–3049.

[14] Jiechuan Jiang and Zongqing Lu. 2018. Learning Attentional Communication for
Multi-Agent Cooperation. In Advances in Neural Information Processing Systems.
7265–7275.

[15] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang, Taeyoung Lee,
Kyunghwan Son, and Yung Yi. 2019. Learning to Schedule Communication in
Multi-agent Reinforcement Learning. In 7th International Conference on Learning
Representations.

[16] Woojun Kim, Jongeui Park, and Youngchul Sung. 2021. Communication in Multi-
Agent Reinforcement Learning: Intention Sharing. In 9th International Conference
on Learning Representations.

[17] Michael L Littman. 1994. Markov games as a framework for multi-agent rein-
forcement learning. In Machine learning proceedings. 157–163.

[18] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and Yang Gao.
2020. Multi-Agent Game Abstraction via Graph Attention Neural Network. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence. 7211–7218.

[19] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
Advances in Neural Information Processing Systems. 6379–6390.

[20] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, and Yan Ni. 2020.
Learning Agent Communication under Limited Bandwidth by Message Pruning.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence. 5142–5149.

[21] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In Proceedings of the 33nd
International Conference on Machine Learning, Vol. 48. 1928–1937.

[22] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. 2018.
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with
Model-Free Fine-Tuning. In 2018 IEEE International Conference on Robotics and
Automation. 7559–7566.

[23] Yaru Niu, Rohan Paleja, and Matthew Gombolay. 2021. Multi-Agent Graph-
Attention Communication and Teaming. In Proceedings of the 20th International

Conference on Autonomous Agents and MultiAgent Systems. 964–973.
[24] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.

2018. Activation Functions: Comparison of trends in Practice and Research for
Deep Learning. CoRR abs/1811.03378 (2018).

[25] Georgios Papoudakis, Filippos Christianos, and Stefano V. Albrecht. 2021. Agent
Modelling under Partial Observability for Deep Reinforcement Learning. In
Advances in Neural Information Processing Systems 34. 19210–19222.

[26] Bei Peng, Tabish Rashid, Christian Schröder de Witt, Pierre-Alexandre Kamienny,
Philip H. S. Torr, Wendelin Boehmer, and Shimon Whiteson. 2021. FACMAC:
Factored Multi-Agent Centralised Policy Gradients. In Advances in Neural Infor-
mation Processing Systems. 12208–12221.

[27] Tabish Rashid, Mikayel Samvelyan, Christian Schröder deWitt, Gregory Farquhar,
Jakob N. Foerster, and ShimonWhiteson. 2018. QMIX: Monotonic Value Function
Factorisation for Deep Multi-Agent Reinforcement Learning. In Proceedings of
the 35th International Conference on Machine Learning, Vol. 80. 4292–4301.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

[29] Esmaeil Seraj, Zheyuan Wang, Rohan R. Paleja, Daniel Martin, Matthew Sklar,
Anirudh Patel, and Matthew C. Gombolay. 2022. Learning Efficient Diverse
Communication for Cooperative Heterogeneous Teaming. In 21st International
Conference on Autonomous Agents and Multiagent Systems. 1173–1182.

[30] Pier Giuseppe Sessa, Maryam Kamgarpour, and Andreas Krause. 2022. Efficient
Model-based Multi-agent Reinforcement Learning via Optimistic Equilibrium
Computation. In International Conference on Machine Learning, Vol. 162. 19580–
19597.

[31] Piyush K. Sharma, Rolando Fernandez, Erin G. Zaroukian, Michael R. Dorothy,
Anjon Basak, and Derrik E. Asher. 2021. Survey of Recent Multi-Agent Reinforce-
ment Learning Algorithms Utilizing Centralized Training. CoRR abs/2107.14316
(2021).

[32] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. 2019. Learning when
to Communicate at Scale in Multiagent Cooperative and Competitive Tasks. In
7th International Conference on Learning Representations.

[33] Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learning multiagent communica-
tion with backpropagation. Advances in Neural Information Processing Systems
29, 2244–2252.

[34] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Viní-
cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. 2018. Value-Decomposition Networks For
Cooperative Multi-Agent Learning Based On Team Reward. In Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems.
2085–2087.

[35] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. 2094–2100.

[36] Akifumi Wachi. 2019. Failure-Scenario Maker for Rule-Based Agent using Multi-
agent Adversarial Reinforcement Learning and its Application to Autonomous
Driving. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence. 6006–6012.

[37] Zixin Wang, Hanyu Zhu, Mingcheng He, Yong Zhou, Xiliang Luo, and Ning
Zhang. 2022. GAN and Multi-Agent DRL Based Decentralized Traffic Light Signal
Control. IEEE Transactions on Vehicular Technology 71, 2 (2022), 1333–1348.

[38] Daniël Willemsen, Mario Coppola, and Guido C. H. E. de Croon. 2021. MAMBPO:
Sample-efficient multi-robot reinforcement learning using learned world models.
In IEEE/RSJ International Conference on Intelligent Robots and Systems. 5635–5640.

[39] Chongjie Zhang and Victor R. Lesser. 2013. Coordinating multi-agent rein-
forcement learning with limited communication. In International conference on
Autonomous Agents and Multi-Agent Systems. 1101–1108.

[40] Sai Qian Zhang, Qi Zhang, and Jieyu Lin. 2019. Efficient Communication in
Multi-Agent Reinforcement Learning via Variance Based Control. In Advances in
Neural Information Processing Systems 32. 3230–3239.

[41] Sai Qian Zhang, Qi Zhang, and Jieyu Lin. 2019. Efficient Communication in
Multi-Agent Reinforcement Learning via Variance Based Control. In Advances
in Neural Information Processing Systems, Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.).
3230–3239.

[42] Sai Qian Zhang, Qi Zhang, and Jieyu Lin. 2020. Succinct and Robust Multi-
Agent Communication With Temporal Message Control. In Advances in Neural
Information Processing Systems, Vol. 33. 17271–17282.

[43] Weijia Zhang, Hao Liu, Jindong Han, Yong Ge, and Hui Xiong. 2022. Multi-
Agent Graph Convolutional Reinforcement Learning for Dynamic Electric Vehicle
Charging Pricing. In The 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. 2471–2481.

[44] Changxi Zhu, Mehdi Dastani, and Shihan Wang. 2022. A Survey of Multi-Agent
Reinforcement Learning with Communication. CoRR abs/2203.08975 (2022).

Session 2A: Multiagent Reinforcement Learning II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

447

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Markov Game
	3.2 MARL with communication
	3.3 Centralized Training & Decentralized Execution.

	4 Methodology
	4.1 Overview of the MBC framework
	4.2 Decision-making with messages
	4.3 Estimating global messages
	4.4 Scheduling messages
	4.5 Aggregating messages
	4.6 Algorithms

	5 Experiments
	5.1 Performance
	5.2 Communication Efficiency
	5.3 Channel Dependency
	5.4 Interpretation on message scheduling
	5.5 Ablation experiment

	6 Conclusion and future work
	References

