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ABSTRACT
Efficiently allocating heterogeneous tasks to agents that arrive dy-

namically and have diverse skills is a central problem in multi-agent

systems called online task allocation. In many cases, a single agent

does not meet the skill levels required by a particular task, which

incentivizes the agents to form coalitions for handling it. In this pa-

per, we propose a new framework, termed as online coalitional skill

formation (OCSF), for handling online task allocation via coalition

formation, where tasks require different skills for being successfully

fulfilled, and each agent has different levels at mastering each skill.

The goal of the organizer is therefore to assign agents that arrive

online to a coalition responsible for performing some task, so as to

optimally approach the desired skill levels of all tasks. Focusing on

the case in which the set of possible mastering levels for each skill

is discrete, we suggest different assignment algorithms based on the

knowledge the organizer has on the arriving agents. When agents

arrive i.i.d. according to some unknown distribution, we propose a

greedy and adaptive scheme that assigns an agent to a task, proving

a tight bound on the system’s performance. If the distribution is

known, we devise a novel correlation to Constrained Markov Deci-

sion Processes whose goal is maximizing the rate at which agents

are assigned to each task while respecting their requirements. We

then construct a non-adaptive approach that terminates when all

the tasks’ requirements are met. Finally, if the distribution is un-

known, we provide two algorithms that learn it online. We have

fully implemented the algorithms, showing that in many cases a

higher diversity in skills may yield poor assignments.
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1 INTRODUCTION
In various multi-agent applications such as crowdsourcing [29, 46]

and rescue operations [54], agents with diverse skills emerge dy-

namically and are then assigned to tasks with heterogeneous re-

quirements. Such scenarios can be framed as a special case of the

notorious multi-agent task allocation problem [43] that attracts

extensive attention–online task allocation [18, 48]. For instance,
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crowdsourcing markets allow task requesters to inexpensively ac-

cess a large manpower of workers with multiple diverse skills that

sequentially arrive one by one [28]. The workers then solve prob-

lems like participatory sensing [56] and human computation [27].

The most desirable goal of online task allocation is to assign the

most suitable agents to tasks [41, 58]. Namely, an agent with the skill

level required by a certain task or at least a sufficient experience

should be ideally assigned to that task. It is often the case that

a single agent does not have the skill level needed to achieve a

particular task, thus it is necessary for the agents to form real-time

coalitions for completing certain tasks. In coalitions, agents can

collaboratively complete tasks more efficiently or accurately by

cooperating to meet those requirements [52]. However, adequately

modeling multiple skills of agents, their correlations, the uncertainty

about their conditional dependencies and their contributions to the

formed coalitions is difficult, since different agents usually possess

different skills and diverse degree of proficiency in the same skill

[38]. Further, improperly measuring the coalitions’ suitability (i.e.,

meeting the tasks’ requirements as much as possible) may hinder

the quality of a task’s execution [29].

Against this background, in this paper we develop a novel frame-

work termed as online coalitional skill formation (OCSF), for han-
dling online task allocation from a standpoint of coalition formation.

In our formalization, there is a set of𝑚 skills and each agent has a

skill vector that expresses her level at mastering each skill. Addi-

tionally, an organizer has a fixed set of 𝑘 tasks, each with certain

requirements reflecting the desired skill levels essential to complete

the task, and the number of agents assigned to each task is limited

by some budget. Agents arrive online, and must immediately and

irrevocably be assigned to a coalition attending a task upon arrival,

if at all. We propose a new skill model for online task allocation,

where the set of possible mastering levels for each skill is discrete,

and a coalition is evaluated by the extent each skill level is covered

by the coalition. We discuss the efficiencies in considering discrete

skill domains instead of continuous (Section 7), where the latter can

be transferred into the former by standard discretization tools.

Accordingly, we suggest different assignment algorithms based

on the knowledge the organizer has on the arriving agents. As a first

step, we propose a greedy algorithm that assigns an agent to a task

as long as the task’s requirements and budget are not violated, and

regardless of the (known or unknown) agent distribution. However,

we show that due to its adaptivity and the need to simultaneously

consider multiple skills and tasks, the expected number of agent

screened may be arbitrarily large. Hence, we show that the con-

straints incurred by the tasks’ requirements allows us to formulate

the system as constrained MDPs (CMDPs) [3, 20]. When the agents’

distribution is known, we prove that our goal is maximizing the

rate at which agents are assigned to each task while respecting

their requirements. Based on the CMDP’s optimal and stationary
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policy, we devise an algorithm that assigns agents to tasks until

their budgets are reached. Finally, if the distribution is unknown, we

provide two algorithms that learn it online. We empirically evaluate

our algorithms on a synthetic dataset, showing that surprisingly, in

many cases that heterogeneity in the agents’ skills is a vulnerability

which yields poor assignments to tasks.

2 RELATEDWORK
The online task allocation problem arises in several multi-agent

problems that have been studied in the literature (e.g., multi-robot

systems [23], crowdsourcing [24, 31]). Several common arrival as-

sumptions on the online agents exist (e.g., adversarial order [4],

random arrival order [47, 55]), yet we consider the following two

models: agents arrive i.i.d. according to either a known [2, 18, 45]

or unknown distribution [17]. For motivating their consideration,

when the distribution is known, competitive ratios for certain prob-

lems can be improved such as Submodular Welfare Maximization

(SWM) [2] and stochastic matching [37]. Additionally, when it is

unknown, there is a (1 − 1/𝑒)-competitive algorithm for SWM [16].

By making the simplifying assumption that the set of agents is

known upfront, our problem becomes the well-studied offline task

allocation problem, which can be solved either optimally via the

Hungarian algorithm in a centralized manner [33], or almost opti-

mally using a distributed auction-based scheme [9, 36]. In the online

regime, even the simplest version is NP-hard [23]. Further, greedy

algorithms used in certain multi-robot systems have a competitive

ratio of 1/3 [22, 40], but they exponentially depend on the number

of agents. In contrast, our greedy algorithm only depends on the

maximum mastering level among all skills and each budget.

For allocating diverse tasks to the most suitable agents, one

needs to reason about the tasks’ requirements and the agents’ skills.

Though hierarchical skill models [38, 49] attempt to reflect corre-

lations among multiple skills opposed to others [7, 12, 21], some

cannot quantitatively capture multiple skills. For example, Mavridis

et al. [38] can only cope with tasks related to a single skill and can-

not reflect proficiency degree. Despite that previous studies strive

to overcome these issues [49], they fail to quantify the uncertainty

about the conditional dependencies. For instance, a person’s abil-

ity of speaking English increases the possibility that he can also

read English, but he is not certainly capable of doing so. Moreover,

those models assume a finite set of agents, which is unrealistic in

numerous applications where the number of agents is unbounded

and unknown upfront. Such assumption becomes even more prob-

lematic in offline task allocation [9] as the set of agents is unknown

beforehand andmay demand contacting a large population. Our pro-

posed model addresses the above challenges, whereas incorporating

a Bayesian network whose nodes represent skills for generating

the agents’ distribution produces probabilistic relations.

Our work is closely related to online learning approaches, which

have also been adapted in crowdsourcing [25, 29, 50]. [29] analyze a

scenario similar to ours and propose an online primal-dual scheme

that is competitive with respect to the offline optimal algorithm in

certain settings. In contrast, we capture multiple skills, allowing us

to address a wider heterogeneity in both tasks and agents. Different

from our work, [25, 50] consider online arrivals of tasks instead

of agents. Further, [25] neglect the agents’ skills. Thus, due to the

stochastic nature of the arrivals, contextual multi-armed bandits

(CMABs) [35] are often ysed as a formulation for capturing the

agents’ skills as their contexts [26, 39]. Unlike CMABs, we must

deal with constraints imposed by both the budgets and the tasks’

requirements, whereas traditional CMABs focus on different sorts

of constraints (e.g., knapsack constraints [1]). As such, opposed

to prior research, we propose to leverage a novel correlation to

constrained MDPs (CMDPs) [3]. Specifically, if the distribution

is known, then the problem boils down to solving only a linear

program [3, 57]. Otherwise, following [20], we devise model-based

algorithms that can learn the distribution from collected samples.

3 ONLINE COALITIONAL SKILL FORMATION
In this section, we introduce our online coalitional skill formation

(OCSF) framework, for assigning agents to coalitions that attend

given tasks, where the agents arrive online. Since the set of agents

may not be known beforehand, we hereafter assume that the num-

ber of agents is infinite. The agents’ goal is achieving 𝑘 tasks

Γ = {𝜏1, . . . , 𝜏𝑘 }. We refer to𝑚 skills within our model, where each

task requires the agents to have certain levels at mastering each

skill. For instance, in the cooperative object transport problem in

multi-robot systems [32, 51], robots cooperatively transport objects

from a starting position to a final destination via exerting pushing

forces. A task is then described by a physically grounded object,

whose weight determines the required maximal weight a robot can

push and its location yields the engine power needed by the robot

for traveling to the object and transporting it.

Formally, let S = ×𝑚
𝑖=1
S𝑖 denote the product space of 𝑚 skill

domains. Then for each agent ℓ , 𝑠𝑖
ℓ
∈ S𝑖 constitutes agent ℓ’s level

at mastering skill 𝑖 , and her mastering level at each regarded skill

is encompassed by a skill vector sℓ ∈ S. We restrict our analy-

sis to OCSF with finite possible mastering levels for each skill,

which model practical applications where there is only a limited

access to resources. For instance, in our cooperative object trans-

port example, one may consider robots having certain predefined

maximal weight. Concerning the continuous skill domains discussed

in Section 7, standard discretization tools can be also utilized for

transferring them into finite ones. For example, instead of allow-

ing for all maximal weights in the interval [1, 10], we may solely

consider integer weights within it. This is reflected by S𝑖 being
finite, i.e., S𝑖 = {1, . . . , 𝛼𝑖 } for some integer 𝛼𝑖 ∈ N. For brevity, we
hereafter denote [𝑓 ] := {1, . . . , 𝑓 } for an integer 𝑓 > 0.

The skill levels required for achieving a certain task cannot

necessarily be possessed by one agent individually (e.g., pushing an

object on its own). Thus, the agents are motivated to form coalitions

for attending a task, aggregating their skill vectors. Evaluating

coalitions directly via agents’ skill vectors when considering finite

number of mastering levels becomes quite problematic, as their

sum might yield mastering levels outside the skill domain. Let G =

{𝑔𝜏𝑞 }𝜏𝑞 ∈Γ be the goals, describing the desired skill levels for the

tasks. Each task 𝜏𝑞 ’s individual goal, 𝑔
𝜏𝑞
, consists of 𝑔

𝑖,𝜏
𝑗

( 𝑗 ∈ [𝛼𝑖 ])
indicating the fraction of agents with a level of 𝑗 at mastering

skill 𝑖 that is required for establishing 𝜏𝑞 . Hence, 𝑔
𝜏𝑞

satisfies 𝑔𝑖,𝜏𝑞 ∈
[0, 1]𝛼𝑖 with ∑𝛼𝑖𝑗=1 𝑔

𝑖,𝜏𝑞
𝑗

= 1. For a coalition C, x(C) denotes C’s skill
coverage that depicts to what extent each skill level is covered by the
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coalition, i.e., x(C) ∈ ∏
𝑖∈[𝑚] [0, 1]𝛼𝑖 with x𝑖

𝑗
(C) = | {ℓ∈C:𝑠𝑖ℓ=𝑗 } |

|C |
being the fraction of agents with a level of 𝑗 at mastering skill 𝑖 .

Thereby, the goal of a coalition assigned to a task 𝜏𝑞 is to (jointly)

reach a certain level of skills whose distance from the task’s goal is

as close as possible so as to attain 𝜏𝑞 . For any task 𝜏𝑞 , the distance

𝑑 (x(C), 𝑔𝜏𝑞 ) is measured in the 𝐿∞-norm, where 𝑑 (x(C), 𝑔𝜏𝑞 ) =
∥x(C) − 𝑔𝜏𝑞 ∥∞ = max𝑖∈[𝑚], 𝑗 ∈[𝛼𝑖 ] |x𝑖𝑗 (C) − 𝑔

𝑖,𝜏𝑞
𝑗
|. We also denote

the value of a coalition C as 𝑑 (x(C),G) = min𝑔∈G 𝑑 (x(C), 𝑔), i.e.,
the distance of s(C) from G. We measure the distance under the 𝐿∞-
norm rather than the 𝐿1- and 𝐿2-norms since the 𝐿∞-norm yields

coalition structures that approach the skill levels required by each

task closer than the other two norms. This property of the 𝐿∞-norm
can be attributed to the inequality ∥𝑥 ∥∞ ≤ ∥𝑥 ∥2 ≤ ∥𝑥 ∥1 ≤ 𝑚∥𝑥 ∥∞
for any𝑥 ∈ R𝑚 , as it will be later confirmed theoretically. Intuitively,

our setup induces a (soft) proportional fairness constraint [8], i.e., the

number of agents having a level of 𝑗 at mastering skill 𝑖 should be

fairly represented in the coalition C𝑞 assigned to task 𝜏𝑞 such that

their proportion in C𝑞 is as close as possible to 𝑔
𝑖,𝜏𝑞
𝑗

. Particularly,

coalitions should be neither over- nor under-qualified.

In our online model, as the number of agents is unknown and

thus modeled as infinite, the time horizon is also infinite. Further,
we consider two models for agents’ appearance: they arrive i.i.d. ac-

cording to either a known [2] or unknown distribution [17]. At each

time 𝑡 ≥ 1, a central authority (hereafter, the organizer) observes a

single agent that is drawn i.i.d. from a stationary distribution P over

S, i.e., s𝑡 ∼ P. The organizer must immediately and irrevocably

decide to which task 𝜏𝑞 the agent should be assigned, if at all.

The organizer’s goal: Selecting a coalition structure CS =

(C𝑞)𝑘
𝑞=1

where C𝑞 will be assigned to perform task 𝜏𝑞 , s.t. C𝑞 ∩
C𝑞′ = ∅ for all 𝑞 ≠ 𝑞′ and C𝑞 ’s skill vector is as close as possible
to the goals G with 𝑞 ∈ argmin𝑞′ 𝑑 (s(C𝑞), 𝑔𝜏𝑞

′ ) being satisfied.

Additionally, two properties shall be satisfied due to the infinite

horizon: (1) |C𝑞 | ≤ 𝐵𝑞 for a budget 𝐵𝑞 > 0 that limits the number

of agents assigned to each task; and (2) the total number of agents

that have arrived until the organizer stops should be minimized.

Put differently, let C𝑞𝑡 = {s𝑡 ′ : 𝑡 ′ ≤ 𝑡 ∧ 𝑎𝑡 ′ = 𝑞} be the set of all
agents assigned to task 𝜏𝑞 until time 𝑡 ≥ 0. Since a single agent

arrives at each time 𝑡 , the first time when each task 𝜏𝑘 is assigned

with 𝐵𝑞 agents equals to number of agents that have arrived until

the organizer stops. It is thus denoted by T . Hence, the organizer
follows a possibly randomized algorithmA for selecting a coalition

structure as above while minimizing the sample complexity EAP [T ].

3.1 A Simple and Adaptive Greedy Algorithm
In this section, we consider Greedy (Algorithm 1) that outputs a

coalition structure that satisfies a variant of flexible proportionality

known as upper quota [13, 34]. If 𝛼𝑖 ≥ 2, we denote 𝛼𝑖 =
𝜖𝐵𝑞

𝛼𝑖−1
for some tolerance 𝜖 > 0; otherwise, 𝛼𝑖 = 0. Due to the budget

constraint on each coalition, once an agent with a skill vector s𝑡
arrives, Greedy adds her to a coalition C𝑞

𝑡−1 assigned to task 𝜏𝑞 if

and only if the number of agents ℓ ∈ C𝑞
𝑡−1 ∪ {s𝑡 } with 𝑠𝑖

ℓ
= 𝑗 is at

most the upper quota ⌈𝑔𝑖,𝜏𝑞
𝑗

𝐵𝑞⌉ + 𝛼𝑖 ∀𝑖, 𝑗 . Otherwise, the organizer
will not assign s𝑡 to any task. Given the output CS = (C𝑞)𝑘

𝑞=1
of

Greedy, we upper bound the distance 𝑑 (x(C𝑞), 𝑔𝜏𝑞 ) ∀𝑞:

Algorithm 1 Greedy

Input: Budgets 𝐵𝑞 > 0, Goals 𝑔𝜏𝑞 , Tolerance 𝜖 > 0

1: C𝑞
0
← ∅ ∀𝑞; 𝑡 ← 0; If 𝛼𝑖 ≥ 2, let 𝛼𝑖 =

𝜖𝐵𝑞

𝛼𝑖−1 ; otherwise, 𝛼𝑖 = 0.

2: while ∃𝑞 ∈ [𝑘] s.t. |C𝑞𝑡 | < 𝐵𝑞 do
3: Set 𝑛𝑖

𝑗
(C𝑞𝑡 ) ← |{ℓ ∈ C

𝑞
𝑡 : 𝑠𝑖

ℓ
= 𝑗}| ∀𝑖, 𝑗, 𝑞

4: Set 𝑡 ← 𝑡 + 1, 𝑑𝑖𝑠𝑡 ← 0, and observe s𝑡 ∼ P
5: for each coalition C𝑞

𝑡−1 s.t. |C
𝑞

𝑡−1 | < 𝐵𝑞 do

6: if 𝑛𝑖
𝑗
(C𝑞

𝑡−1) + 1𝑠𝑖𝑡=𝑗 ≤ ⌈𝑔
𝑖,𝜏𝑞
𝑗

𝐵𝑞⌉ + 𝛼𝑖 ∀𝑖, 𝑗 then
7: Assign s𝑡 to 𝜏𝑞 (i.e., C𝑞𝑡 ← C

𝑞

𝑡−1∪{s𝑡 }) and BREAK.
return The coalition structure CS = (C𝑞)𝑘

𝑞=1

Theorem 3.1. The 𝐿∞-, 𝐿1- and 𝐿2-norms incurred by Greedy

are upper bounded by (resp.): ∥x(C𝑞
𝑇
) − 𝑔𝜏𝑞 ∥∞ ≤

max𝑖∈[𝑚] 𝛼𝑖−1
𝐵𝑞

+ 𝜖 ,
∥x(C𝑞

𝑇
) − 𝑔𝜏𝑞 ∥1 ≤ max𝑖∈[𝑚] 𝛼𝑖 ( 𝛼𝑖−1𝐵𝑞

+ 𝜖) and ∥x(C𝑞
𝑇
) − 𝑔𝜏𝑞 ∥2 ≤

(∑𝑖∈[𝑚] 𝛼𝑖 ( 𝛼𝑖−1𝐵𝑞
+𝜖)2)

1

2 (See Appendix A for a detailed proof [14]).

Theorem 3.1 indicates that the 𝐿∞-norm is harsher than the

other two since Greedy ensures a smaller upper bound with re-

spect to the 𝐿∞-norm. Thus, the 𝐿∞-norm is a suitable candidate

for measuring whether a coalition meets a certain skill level for

attaining its assigned task. Further, the upper bounds in Theorem

3.1 for the 𝐿∞- and 𝐿1-norms depend on the maximum mastering

level 𝛼𝑖 across all skills 𝑖 divided by the budget 𝐵𝑞 . Hence, allowing

for higher skill levels will negatively affect both norms.

Unfortunately, the expected number of agents contacted by

Greedy (i.e., the sample complexity EGreedyP [T ]) may be arbitrarily

large. In Appendix A.2 [14], we consider an instance of our coop-

erative object transport example that requires at least 1000 agents

(on average) to arrive until Greedy terminates. Despite Greedy’s

simplicity, we infer that a naive approach to our problem may fail.

Specifically, the challenge stems from the requirement to simultane-

ously consider multiple skills and tasks. This difficulty is entangled

with Greedy’s adaptivity, according to which assignments to tasks

aremade based on the current agent and the already assigned agents.

As a first step towards mitigating these drawbacks, in Section 4 we

initially refer to a non-adaptive approach for the case where the

agents’ distribution is known based on constrained MDPs (CMDPs),

which we then adjust to the case where P is unknown in Section 5.

4 THE AGENTS’ DISTRIBUTION IS KNOWN
In this section, we assume that the distribution P is known. In

this scenario, we formalize our online problem as a contextual

multi-armed bandit (CMAB) under the constrained MDP (CMDP)

framework (Subsection 4.1). This is made possible by considering

the case where each budget 𝐵𝑞 is unbounded (i.e., 𝐵𝑞 →∞ for each

task 𝜏𝑞 ). We show that our goal is then maximizing the rate at which

agents are assigned to each task, under the constraints imposed

by the goals G. Applying the approach to our own context, we

present an algorithm that stops when 𝐵𝑞 agents have been assigned

to each task 𝜏𝑞 (Subsection 4.2). We prove that the skill levels of

the resulting coalition structure get closer (with high probability)

to those required by each task as the budget increases.
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Remark 1. When there is a single task (i.e., 𝑘 = 1), our model

degenerates to the online diverse committee selection problem in-

troduced by Do et al. [19]. Hence, our model also generalizes [19] to

selectingmultiple diverse committees, which thus involves considering

multiple committees simultaneously. As such, next we design novel

reward and cost constraints under our CMDP that are more suitable

to our context and differ from those in [19].

4.1 A Constrained MDP Model for OCSF
Our problem can be viewed as a contextual bandit with a stochastic

context s𝑡 ∼ P at time 𝑡 and a setU = [𝑘] ∪ {0} of 𝑘 +1 actions. An
appropriate formulation of the constraints incurred by the system’s

goals G is constrained MDPs (CMDPs) [3, 20]. Formally, let 𝑀 =

(S,U, 𝑃, 𝑟, 𝜂) be a CMDP, where the set of states is the spaceS of all

𝑚-dimensional skill vectors and the set of actions isU = [𝑘] ∪ {0}.
That is, if the organizer assigns the agent arriving at time 𝑡 to task 𝜏𝑞
(𝑞 ∈ [𝑘]), his action is denoted by 𝑎𝑡 = 𝑞; otherwise, 𝑎𝑡 = 0. We also

consider the deterministic reward 𝑟 (s, 𝑎) = 1{𝑎∈[𝑘 ] } . The transition
function 𝑃 : S × U × S → [0, 1] determines the probability that

a skill vector s′ arrives given that the previous one was s and

the organizer took action 𝑎. We define 𝑃 as 𝑃 (s′ |𝑎, s) = P(s′)
since agents are drawn i.i.d regardless of the previous agents and

actions. As customary under CMDPs, we capture the constraints

posed by the goals G via cost constraints which restrict the set

of plausible policies. For every 𝑖, 𝑗, 𝑞, let 𝑟
𝑖,𝑞

𝑗
(s, 𝑎) = 1{s𝑖=𝑗,𝑎=𝑞 } ,

𝑟𝑞 (s, 𝑎) = 1{𝑎=𝑞 } and define a cost constraint by 𝜂
𝑖,𝑞

𝑗
= 𝑟

𝑖,𝑞

𝑗
−𝑔𝑖,𝑞

𝑗
𝑟𝑞 .

Similarly, let𝑀𝑞 = (S,U𝑞,P, 𝑟𝑞, 𝜂) be the CMDP associated with

task 𝜏𝑞 , where the set of actions is U𝑞 = {0, 𝑞}. Henceforth, we
make the following assumption:

Assumption 1. P(s) > 0 for all s ∈ S and the MDP is ergodic.

The organizer aims at deriving a policy 𝜋 : U × S → [0, 1]
with 𝜋 (𝑎 |s) specifying the probability of assigning s to task 𝜏𝑎 . 𝜋 ’s

performance is measured by its long-term average reward (gain)

J P,𝜋 (s) = lim𝑇→∞
1

𝑇
E𝜋 [∑𝑇𝑡=1 𝑟 (s𝑡 , 𝑎𝑡 ) |s0 = s], where E𝜋 [·|s0 =

s] denotes that the expectation is over 𝑎𝑡 ∼ 𝜋 (·|s𝑡 ), 𝑠𝑡+1 ∼ P(·).
When the context is clear, we simply write J𝜋 ≜ J P,𝜋 . Due
to the ergodicity of the MDP (Assumption 1), J P,𝜋 (s) is inde-
pendent of the starting state, i.e., J𝜋 (s) ≡ J𝜋 ∀s ∈ S. Equiv-
alently, let J 𝑖,𝑞

𝑗
(𝜋) = lim𝑇→∞

1

𝑇
E𝜋 [∑𝑇𝑡=1 𝜂

𝑖,𝑞

𝑗
(s𝑡 , 𝑎𝑡 )] and J𝜋

𝑞 =

lim𝑇→∞
1

𝑇
E𝜋 [∑𝑇𝑡=1 𝑟

𝑞 (s𝑡 , 𝑎𝑡 )] be the (constant) long-term average

cost and reward of task 𝜏𝑞 (resp.). For motivating the choice of

the long-term average reward as our performance measure, note

that the number of agents assigned to task 𝜏𝑞 at time 𝑇 satisfies

|C𝑞
𝑇
| = ∑𝑇𝑡=1 𝑟

𝑞 (s𝑡 , 𝑎𝑡 ). Thus, J𝜋
𝑞 = lim𝑇→∞ E𝜋 [|C

𝑞

𝑇
|]/𝑇 , which is

the expected assignment rate of agents to task 𝜏𝑞 as 𝑇 →∞.
The goal under the CMDP𝑀 and each CMDP𝑀𝑞

corresponding

to task 𝜏𝑞 is finding policies 𝜋★ and 𝜋
𝑞
★ : U𝑞 × S → [0, 1] which

are the solutions of the optimization problems (resp.):

max

𝜋
{J𝜋 |J 𝑖,𝑞

𝑗
(𝜋) = 0∀𝑖, 𝑗, 𝑞}; max

𝜋𝑞
{J𝜋𝑞

𝑞 |J 𝑖,𝑞

𝑗
(𝜋𝑞) = 0∀𝑖, 𝑗} (1)

where 𝜋𝑞 : U𝑞 × S → [0, 1] is a policy under the CMDP 𝑀𝑞
. By

Altman [3], the optimal policies 𝜋★ and 𝜋
𝑞
★ are stationary. Following

standard results pertaining CMDPs, Appendix B.1 [14] depicts that

Algorithm 2 OCSF-CMDP

Input: The stationary optimal policies 𝜋
𝑞
★ of (1), Budgets 𝐵𝑞 > 0

1: C𝑞
0
← ∅ ∀𝑞 ∈ [𝑘], 𝑡 ← 0

2: for each task 𝜏𝑞 s.t. |C𝑞𝑡 | < 𝐵𝑞 do
3: 𝑡 ← 𝑡 + 1, observe s𝑞𝑡 ∼ P and play 𝑎

𝑞
𝑡 ∼ 𝜋

𝑞
★(·|s

𝑞
𝑡 )

4: if 𝑎𝑞𝑡 = 𝑞 then C𝑞𝑡 ← C
𝑞
𝑡 ∪ {s

𝑞
𝑡 }

return The coalition structure CS = (C𝑞)𝑘
𝑞=1

(1) for each𝑀𝑞
can be reduced to the following linear program:

max

𝜋𝑞
∑

(s,𝑎) ∈S×U𝑞
𝜋𝑞 (𝑎 |s)P(s)𝑟𝑞 (s, 𝑎)

s.t. ∑
(s,𝑎) ∈S×U𝑞

𝜋𝑞 (𝑎 |s)P(s)𝜂𝑖,𝑞
𝑗
(s, 𝑎) = 0 ∀𝑖, 𝑗

∑
𝑎∈U𝑞

𝜋𝑞 (𝑎 |s) = 1 ∀s ∈ S

(2)

Since the CMDP is ergodic, the above linear program (LP) is

feasible by [3]. The following lemma provides us with two desirable

characteristics of the above CMDP that are induced by the LP (2):

Lemma 4.1. Let 𝜋, 𝜋𝑞 be two policies under 𝑀,𝑀𝑞
(resp.). Then,

J𝜋 ,J𝜋𝑞

𝑞 are the rate at which agents are assigned to some task and

task 𝜏𝑞 (resp.), i.e., J𝜋 = 𝑃𝑟 P,𝜋 [𝑎 ∈ [𝑘]] and J𝜋𝑞

𝑞 = 𝑃𝑟 P,𝜋
𝑞 [𝑎 =

𝑞]. If 𝜋𝑞 is feasible for𝑀𝑞
, then: 𝑔

𝑖,𝑞

𝑗
= 𝑃𝑟 P,𝜋

𝑞 [s𝑖 = 𝑗 |𝑎 = 𝑞] ∀𝑖, 𝑗, 𝑞.

The proof appears in Appendix B.2 [14]. Lemma 4.1 yields that

the optimal policies 𝜋★ and 𝜋
𝑞
★ maximize the rate at which agents

are assigned to some task and task 𝜏𝑞 (resp.). Further, the first

constraints of (2) require that 𝑔
𝑖,𝑞

𝑗
is the proportion of agents that

are assigned to 𝜏𝑞 and depicted by a skill vector s with s𝑖 = 𝑗 ∀𝑖, 𝑗 .

4.2 Analysis of a CMDP-Based Approach
In this section, we analyze a CMDP-based algorithm to OCSF that

is derived from the stationary optimal policies 𝜋
𝑞
★ (Algorithm 2).

As they are stationary, they can be parallelized so as to simultane-

ously assign an agent to each task. Namely, at time 𝑡 , the organizer

observes a skill vector s𝑞𝑡 ∼ P for each task 𝜏𝑞 . He then decides

whether to assign s𝑞𝑡 to task 𝜏𝑞 by playing 𝑎𝑡 ∼ 𝜋
𝑞
★(·|s𝑡 ). Algorithm

2 terminates when 𝐵𝑞 agents have been assigned to each task 𝜏𝑞 .

Letting A denote Algorithm 2, we derive a correlation between

J𝜋𝑞

𝑞 (𝑞 ∈ [𝑘]) and EAP [T ] while using Lemma 4.1.

Lemma 4.2. EAP [T ] ≤ ∑𝑞∈[𝑘 ]
𝐵𝑞

J𝜋𝑞

𝑞

, where 𝜋𝑞 is stationary ∀𝑞.

Proof. For each 𝑞 ∈ [𝑘], let T𝑞
be the first time when 𝐵𝑞 agents

are assigned to task 𝜏𝑘 . Clearly, T ≤ ∑𝑞∈[𝑘 ] T𝑞
. Note that T𝑞 +𝐵𝑞

follows a negative binomial distribution with 𝐵𝑞 successes and a

success probability of J𝜋𝑞

𝑞 = 𝑃𝑟 P,𝜋
𝑞 [𝑎 = 𝑞] (By Lemma 4.1). Thus,

EAP [T
𝑞 +𝐵𝑞] = 𝐵𝑞 (1−J𝜋𝑞

𝑞 )
J𝜋𝑞

𝑞

, which yields EAP [T
𝑞] = 𝐵𝑞

J𝜋𝑞

𝑞

. By the

expectation’s linearity and monotonicity, the desired follows. □

Next, we infer an important property derived from Lemma 4.2.

Since the event𝑎 ∈ [𝑘] is equivalent to the event∪𝑞∈[𝑘 ]𝑎 = 𝑞, using

the inclusion–exclusion principle and Lemma 4.1 one can infer that:

J𝜋 = 𝑃𝑟 P,𝜋 [𝑎 ∈ [𝑘]] = ∑𝑞∈[𝑘 ] 𝑃𝑟 P,𝜋 [𝑎 = 𝑞] = ∑𝑞∈[𝑘 ] J𝜋
𝑞 .
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Algorithm 3 OptOCSF

Input: Confidence 𝛿 ∈ (0, 1), Goals 𝑔𝜏𝑞 , Budgets 𝐵𝑞 > 0

1: C𝑞
0
← ∅ ∀𝑞; 𝑛0 (s) ← 0 ∀s; Let 𝑠0 ∼ P and 𝑛0 (s0) = 1; 𝑡 ← 1

2: for each episode 𝑒 = 1, 2, . . . do
3: 𝑇𝑒 = 𝑡 + 1, Update ˆP𝑒 (s) =

𝑛𝑇𝑒−1 (s)
𝑇𝑒−1 ∀s ∈ S

4: Compute the solution 𝜋𝑒 of (4) by the ELP (5)–(8)

5: while 𝑛𝑡 (s𝑡 ) < 2𝑛𝑇𝑒−1 (s𝑡 ) do
6: 𝑡 ← 𝑡 + 1, observe s𝑡 ∼ P and set 𝑛𝑡 (s𝑡 ) ← 𝑛𝑡 (s𝑡 ) + 1
7: Play 𝑎𝑡 ∼ 𝜋𝑒 (·|s𝑡 ), 𝑎𝑡 ∈ {𝑞 : |C𝑞𝑡 | < 𝐵𝑞 ∧ 𝜋𝑒 (𝑞 |s𝑡 ) > 0}
8: if ∃𝑞 ∈ [𝑘]:𝑎𝑡 = 𝑞 and |C𝑞𝑡 | < 𝐵𝑞 then C𝑞𝑡 ← C

𝑞
𝑡 ∪{s𝑡 }

9: if |C𝑞𝑡 | = 𝐵𝑞 ∀𝑞 then BREAK
return The coalition structure CS = (C𝑞)𝑘

𝑞=1

Hence, maximizing J𝜋
as done under the CMDP is equivalent to

maximizing ∑𝑞∈[𝑘 ] J𝜋
𝑞 , which in turn translates to minimizing

the sample complexity EAP [T ] by Lemma 4.2. Given the output

CS = (C𝑞)𝑘
𝑞=1

of Algorithm 2, we now upper bound the distance

𝑑 (x(C𝑞), 𝑔𝜏𝑞 ) induced by the 𝐿∞-norm for each 𝜏𝑞 as follows:

Theorem 4.3. Let 𝜋
𝑞
★ be the stationary optimal policies under each

𝑀𝑞
in (1). Let 𝛼 = ∑𝑖∈[𝑚] (𝛼𝑖 − 1) be the number of pairs 𝑖 ∈ [𝑚],

𝑗 ∈ [𝛼𝑖 − 1]. Let 𝛿𝑞 ∈ (0, 1), T𝑞 ≥ 𝐵𝑞 . Then, under 𝜋
𝑞
★ and P,

∥x(C𝑞T𝑞 ) − 𝑔
𝜏𝑞 ∥∞ ≤

√︁
log(2𝛼/𝛿𝑞)/(2𝐵𝑞) with probability ≥ 1 − 𝛿𝑞 .

The proof appears in Appendix B.3 [14]. For each task 𝜏𝑞 , the

high probability upper bound of𝑂 (
√︁
1/𝐵𝑞) in Theorem 4.3 decreases

with the budget. Hence, Algorithm 2 guarantees that the resulting

coalition structure satisfies the skill levels required by each task

as much as possible for higher budgets. Further, though 𝜋★ acts

independently from previously assigned agents, we infer that it

performs well for higher budgets. Intuitively, adding an agent to a

large coalition has less effect on the coalition’s current skill vector.

5 THE AGENTS’ DISTRIBUTION IS UNKNOWN
In this section, we assume that the distribution P is unknown, and

should thus be learned online. An (online) learning algorithm with

no prior knowledge is required to obtain estimates of P, while
obtaining rewards and costs for each state-action pair. Initially, the

algorithm does not have good estimates of the model, and thus accu-

mulates a regret and constraint violations as it does not know the op-

timal policy. Formally, given the stationary optimal policy 𝜋★ under

the CMDP𝑀 in (1), letJ★ = J𝜋★
(J★

𝑞 = J𝜋★
𝑞 ) be the optimal long-

term average reward (of task 𝜏𝑞 ) under the CMDP when P is known.

We define the regret 𝑅(𝑇 ) as the difference between the expected

rewards from running 𝜋★ and the cumulative reward obtained

for 𝑇 time steps, i.e., 𝑅(𝑇 ) = ∑𝑇𝑡=1 (J
★ − 𝑟 (s𝑡 , 𝑎𝑡 )). Similarly, let

𝑅𝑞 (𝑇 ) = ∑𝑇
𝑡=1 (J★

𝑞 − 𝑟𝑞 (s𝑡 , 𝑎𝑡 )) be the regret of task 𝜏𝑞 . The regret
of constraint violations is defined by 𝑅𝑐 (𝑇 ) = max𝑖, 𝑗,𝑞 𝑅

𝑖,𝑞

𝑗
(𝑇 ),

where 𝑅
𝑖,𝑞

𝑗
(𝑇 ) = | ∑𝑇𝑡=1 𝜂

𝑖,𝑞

𝑗
(s𝑡 , 𝑎𝑡 ) | is the constraint violations of

task 𝜏𝑞 associated with skill 𝑖 and level 𝑗 . Our goal is then minimiz-

ing both 𝑅(𝑇 ) and 𝑅𝑐 (𝑇 ).
By adapting the OptCMDP algorithm proposed by [20] for finite-

horizon CMDPs, we first devise Algorithm 3 for long-term average

rewards in CMDPs (Subsection 5.1). Though a similar adaptation

was performed in [19], the challenges discussed in Remark 1 com-

pel us to use a different approach which treats multiple coalitions

instead of a single one. In some applications, the organizer is more

sensitive to over-utilizing specific skill levels when considering a

certain task compared to the rest. Yet, Algorithm 3 and [19]’s algo-

rithm ignore such scenarios. Unlike [19], we propose an algorithm

that enables the organizer to prespecify the desired upper bounds

on each component of the regret of constraint violations, and keep

them below those bounds (Subsection 5.2).

5.1 Optimism in the Face of Uncertainty
Adapting OptCMDP [20], we herein introduce Algorithm 3. The

OptCMDP algorithm builds upon the popular reinforcement learn-

ing algorithm UCRL2 [5], that follows the principle of optimism in

the face of uncertainty. FollowingOptCMDP, we proceed in episodes,

where at each episode we build a set of plausible CMDPs compatible

with the observed samples, and then play the optimal policy of the

CMDP with the lowest cost (i.e., optimistic CMDP).

Each episode of Algorithm 3 terminates whenever the number of

observations for some agent s doubles. At episode 𝑒 ≥ 0 and time

𝑡 ≥ 0, agent s𝑡 is assigned to a task based on a single stationary and

optimistic policy 𝜋𝑒 , which we subsequently depict its construction.

Let 𝑇𝑒 be the inception time of episode 𝑒 and 𝐼𝑒 = [𝑇𝑒 ,𝑇𝑒+1]. Let
𝑛𝑡 (s) = ∑𝑡𝑡 ′=1 1{s𝑡′=s} be the number of times s was observed until

time 𝑡 and let 𝑛𝑞 (𝑡 − 1) = |𝐶𝑞

𝑡−1 | = ∑
𝑡−1
𝑡 ′=1 1{𝑎𝑡′=𝑞 } . Let 𝑛

𝑖
𝑗
(C𝑞

𝑡−1) =
∑𝑡−1𝑡 ′=1 1{s𝑖

𝑡′=𝑗,𝑎𝑡′=𝑞 }
be the number of agents s with s𝑖 = 𝑗 that were

assigned to task 𝜏𝑞 before time 𝑡 . At each episode 𝑒 , Algorithm 3

estimates the true distribution P of the agents via its empirical

average
ˆP𝑒 (s) =

𝑛𝑇𝑒−1 (s)
𝑇𝑒−1 . As in UCRL2, at the beginning of each

episode 𝑒 , we construct confidence intervals D𝑒 for P. D𝑒 is built

using the 𝐿1 concentration inequality of [53], according to which:

∥ ˆP𝑒 − P∥1 ≤

√︄
2|S| log(3|S| |U|𝑇𝑒 (𝑇𝑒 − 1)/𝛿)

𝑇𝑒 − 1
≜ 𝛽𝑒 (3)

with probability ≥ 1 − 𝛿
3
for any 𝛿 ∈ (0, 1). Hence, let D𝑒 =

{ ˜P ∈ Δ(S) : ∥ ˆP𝑒 − P∥1 ≤ 𝛽𝑒 }. The set of plausible CMDPs

corresponding toD𝑒 is thenM𝑒 = {�̃� = (S,U, ˜P, 𝑟 , 𝜂) : ˜P ∈ D𝑒 },
using which Algorithm 3 solves the following optimization problem

at the inception of each episode 𝑒:

max

˜P∈D𝑒 ,𝜋

{
J ˜P,𝜋 ��J 𝑖,𝑞

𝑗
( ˜P, 𝜋) = 0 ∀𝑖 ∈ [𝑚], 𝑗 ∈ [𝛼𝑖 ], 𝑞 ∈ [𝑘]

}
(4)

In Appendix C.3 [14], we prove (𝜋★,P) to be feasible under (4)

and that the policy recovered by solving it is optimistic. Unlike

(1), in (4) the transitions are unknown, and we thus cannot directly

optimize (4). Thus, we rewrite (4) as an extended LP (ELP). As in

[42], we consider the state-action occupation measure 𝜑 (s, 𝑎) =
𝜋 (s, 𝑎)P(s) and variables 𝛽 (s) that linearize the 𝐿1 constraint (3)
induced by the confidence set D𝑒 for formulating the ELP:

max

𝜑,𝛽
∑

(s,𝑎) ∈S×U
𝜑 (s, 𝑎)𝑟 (s, 𝑎)

(5)

s.t. 𝜑 ≥ 0, ∑
(s,𝑎) ∈S×U

𝜑 (s, 𝑎) = 1
(6)

ˆP𝑒 (s) − 𝛽 (s) ≤ ∑
𝑎∈U

𝜑 (s, 𝑎) ≤ ˆP𝑒 (s) + 𝛽 (s), 𝛽 (s) ≤ 𝛽𝑒∀s ∈ S (7)
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∑
(s,𝑎) ∈S×U

𝜑 (s, 𝑎)𝜂𝑖,𝑞
𝑗
(s, 𝑎) = 0 ∀𝑖, 𝑗, 𝑞

(8)

For each task 𝜏𝑞 , (8) enforces that 𝑔
𝑖,𝑞

𝑗
is the proportion of agents

that are assigned to 𝜏𝑞 and represented by a skill vector s with
s𝑖 = 𝑗 ∀𝑖, 𝑗 . The constraints (7) require the compatibility of 𝜑 with

the 𝐿1 constraint. If the ELP is infeasible, then we set the policy as

𝜋𝑒 (𝑎 |s) = 1

𝑘+1 ∀s, 𝑎. Otherwise, once 𝜑 is obtained, we recover the

transitions as
˜P𝑒 (s) = ∑𝑎 𝜑 (s, 𝑎) and the policy as 𝜋𝑒 (𝑎 |s) = 𝜑 (s,𝑎)

˜P𝑒 (s)
if

˜P𝑒 (s) ≠ 0. If
˜P𝑒 (s) = 0, then 𝜋𝑒 (𝑎 |s) = 1

𝑘+1 ∀𝑎. As the MDP

induced by
˜P𝑒 is still weakly communicating and any policy is

unichain (Readers unfamiliar with these notions may refer to [6]),

the optimal long-term average reward of our CMDP is unaffected.

Algorithm 3 terminates when 𝐵𝑞 agents have been assigned

to each task 𝜏𝑞 . Given the output CS = (C𝑞)𝑘
𝑞=1

of Algorithm

3, Theorem 5.1 that follows provides the regret and constraint

violations bounds, as well as a high probability upper bound on the

distance 𝑑 (x(C𝑞), 𝑔𝜏𝑞 ) induced by the 𝐿∞-norm for each 𝜏𝑞 .

Theorem 5.1. Let 𝛿 ∈ (0, 1). Then, with probability ≥ 1 − 𝛿 , the
regrets 𝑅(𝑇 ), 𝑅𝑞 (𝑇 ) and the regret of constraint violations 𝑅𝑐 (𝑇 ) are
upper bounded by 𝑂 (

√︁
|S|𝑇 log( |S||U|𝑇 /𝛿) +

√
𝑇 ). Further, after 𝑇

time steps, the following holds with probability ≥ 1 − 𝛿 :

∥x(C𝑞
𝑇
) − 𝑔𝜏𝑞 ∥∞ = 𝑂 ((

√︁
|S| log( |S||U|𝑇 /𝛿) + 1)

/
(
√
𝑇J★

𝑞 )) (9)

The proof is deferred toAppendix C.4 [14]. Recalling that𝑛(C𝑞
𝑇
) =∑𝑇

𝑡=1 1{𝑎𝑡=𝑞 } and𝑛
𝑖
𝑗
(C𝑞

𝑇
) = ∑𝑇

𝑡=1 1{s𝑖𝑡=𝑗,𝑎𝑡=𝑞 } , note that𝑅
𝑞 (𝑇 )/𝑇 =

J★
𝑞 − 𝑛(C

𝑞

𝑇
)/𝑇 . Theorem 5.1 thus indicates that, with high proba-

bility, the difference between the optimal assignment rate J★
𝑞 of

agents to task 𝜏𝑞 and the assignment rate 𝑛(C𝑞
𝑇
)/𝑇 to task 𝜏𝑞 under

OptOCSF decreases according to𝑂 (
√︁
log(𝑇 )/𝑇 ) as𝑇 increases. Fur-

ther, the same applies to the constraint violations and the distance

𝑑 (x(C𝑞), 𝑔𝜏𝑞 ). Hence, the organizer shall observe sufficiently many

agents so as to assign them to tasks at a low expense of regret,

while meeting the skill level requirements as much as possible.

By (9), the distance 𝑑 (x(C𝑞), 𝑔𝜏𝑞 ) is inversely proportional to

the optimal assignment rate J★
𝑞 of agents to tasks. Intuitively, if

agents are assigned to task 𝜏𝑞 at a low rate (i.e., 𝑛(C𝑞
𝑇
) is small), then

the coalition is too small to meet the skill levels required by the

task, and thus the distance ∥x(C𝑞
𝑇
) − 𝑔𝜏𝑞 ∥∞ = 𝑅𝑞 (𝑇 )/𝑛(C𝑞

𝑇
) may

be quite large. However, 𝑅
𝑖,𝑞

𝑗
(𝑇 ) = |𝑛𝑖

𝑗
(C𝑞

𝑇
) − 𝑔𝑖,𝜏𝑞

𝑗
𝑛(C𝑞

𝑇
) | may be

small under a low assignment rate since OptOCSF controls 𝑛𝑖
𝑗
(C𝑞

𝑇
)

such that the number of agent with level 𝑗 at mastering skill 𝑖

is as close as possible to being a fraction of 𝑔
𝑖,𝜏𝑞
𝑗

out of all the

𝑛(C𝑞
𝑇
) agents assigned to 𝜏𝑞 . Finally, opposed to Theorem 4.3, not

knowing P hinders the coalitions’ compliance with the skill level

required by their respective tasks: we suffer an additional factor of

𝑂 (
√︁
|S| log( |S||U|)) due to the estimation (3).

5.2 Tuning Bounds on Constraint Violations
By Theorem 5.1, Algorithm 3 yields the same upper bound on both

the regret and constraint violations. However, in some scenarios

the organizer is more sensitive to over-utilizing specific skill levels

when considering a certain task, which translates to a susceptible

constraint. Hence, we propose a modification to Algorithm 3 which

allows the organizer to tune the upper bound on the regret of each

constraint violation, and thus referred to as TuneOptOCSF.
Though the optimistic approach presented in Subsections 5.1-

5.2 incentivizes the algorithm to explore policies that can visit

new state-action pairs, it allows exploratory policies that violate

the constraints with respect to the true transition dynamics P.
That is, it is possible that J 𝑖,𝑞

𝑗
( ˜P𝑒 , 𝜋𝑒 ) = 0 for some 𝑖, 𝑗, 𝑞, but

J 𝑖,𝑞

𝑗
(P, 𝜋𝑒 ) ≠ 0. Thus, we consider a tightened version of (4):

max

˜P∈D𝑒 ,𝜋

{
J ˜P,𝜋 ��J 𝑖,𝑞

𝑗
( ˜P, 𝜋) ≤ 𝜖

𝑖,𝑞

𝑗
∀𝑖, 𝑗, 𝑞

}
(10)

where 𝜀
𝑖,𝑞

𝑗
∈ (0, 1) is a constant pessimistic term that restrains the

constraint violations. Yet, (10) may not have any feasible solution.

Thus, as in [44], we make the following standard assumption:

Assumption 2. There are a policy 𝜋𝑏 and a constant 𝜃 > 0 s.t.

J 𝑖,𝑞

𝑗
(P, 𝜋𝑏 ) = 𝑐

𝑖,𝑞

𝑗
< 𝜀

𝑖,𝑞

𝑗
− 𝜃 ∀𝑖, 𝑗, 𝑞 (𝜃 is known to the organizer).

Under Assumption 2, Slater’s condition [11, 20] holds and thus

(10) is strictly feasible. Accordingly, the TuneOptOCSF algorithm

follows Algorithm 3, yet involves solving an extended LP (ELP)

different from (5)-(8). Namely, (10) can be rephrased as an ELP

similar to (5)-(8) except that (8) is substituted with the constraints

∑(s,𝑎) ∈S×U 𝜑 (s, 𝑎)𝜂𝑖,𝑞
𝑗
(s, 𝑎) ≤ 𝜖

𝑖,𝑞

𝑗
− 𝜃𝑖,𝑞

𝑗
∀𝑖, 𝑗, 𝑞, where 𝜃𝑖,𝑞

𝑗
= 𝜁

𝑖,𝑞

𝑗
𝜃

with 𝜁
𝑖,𝑞

𝑗
∈ (0, 1) being parameters chosen by the organizer for

controlling the desired upper bounds. Similarly to Subsection 5.1,

we can recover a transition dynamics
˜P𝑒 and a policy 𝜋𝑒 from using

the solution 𝜑 of the resulting ELP. Next, we bounds in the same

vein as Theorem 5.1 (The proof appears in Appendix D [14]).

Theorem 5.2. Let 𝛿 ∈ (0, 1), 𝜄 = min𝑖, 𝑗,𝑞 (𝜀𝑖,𝑞𝑗 − 𝜃 − 𝑐
𝑖,𝑞

𝑗
) and 𝜔 =

𝜃
𝜄 max𝑖, 𝑗,𝑞 𝜁

𝑖,𝑞

𝑗
. Then, with probability ≥ 1 − 𝛿 , the regret and regret

of constraint violations satisfy 𝑅(𝑇 ) ≤ 𝑂 (
√︁
|S|𝑇 log( |S||U|𝑇 /𝛿) +√

𝑇 ) + 𝜔𝑇 and 𝑅𝑐 (𝑇 ) ≤ 𝑂 (
√︁
|S|𝑇 log( |S||U|𝑇 /𝛿) +

√
𝑇 ) + (𝜖𝑖,𝑞

𝑗
−

𝜃
𝑖,𝑞

𝑗
)𝑇 . After𝑇 time steps, the following holds with probability ≥ 1−𝛿 :

𝑑 (x(C𝑞), 𝑔𝜏𝑞 ) = 𝑂 (𝜅𝑇 /(J★
𝑞 −𝜔)+(𝜖

𝑖,𝑞

𝑗
−𝜃𝑖,𝑞

𝑗
)/(J★

𝑞 −𝜔−𝜅𝑇 )) (11)

where 𝜅𝑇 = (
√︁
|S| log( |S||U|𝑇 /𝛿) + 1)/

√
𝑇 .

Remark 2. Theorem 5.2 dictates that the regret of constraint vio-

lations and the distance 𝑑 (x(C𝑞), 𝑔𝜏𝑞 ) can be made arbitrarily small

by the organizer for a proper choice of the controlled parameters 𝜁
𝑖,𝑞

𝑗
,

at the expense of hindering the regret 𝑅(𝑇 ). Unlike (9), (11) comprises

of two terms. The first term is analogous to (9), yet it is inversely

proportional to J★
𝑞 − 𝜔 instead of J★

𝑞 . However, the second term

is inversely proportional to J★
𝑞 − 𝜔 − 𝜅𝑇 . Namely, even when the

assignment rate to task 𝜏𝑞 is small, 𝜔 allows the organizer to achieve

a smaller distance by tuning the parameters 𝜁
𝑖,𝑞

𝑗
for reducing both

terms. Additionally, the organizer shall observe sufficiently many

agents so as to decrease the second term even further.

Session 2B: Planning + Task/Resource Allocation
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

499



6 EMPIRICAL EVALUATIONS
In this section, we evaluate our algorithms on a synthetic dataset.

Our main goal is supplying practical guidelines defining the pre-

ferred algorithm to use according to the situation at hand, which

depend on the attributes compound by the considered problem

instance (e.g., number of skills, budgets). As such, we investigate

the impact of such characteristics on our algorithms’ performance

in terms of both the proximity of the resulting coalition structures’

skill coverages from the tasks’ goals and the expected number of

agents contacted (i.e., the sample complexity). Given a coalition

structure CS = (C𝑞)𝑘
𝑞=1

, we term the first measure as its minimum

distance, which is assessed via min𝑞 𝑑 (s(C𝑞), 𝑔𝜏𝑞 ).
Experimental Setup [15]. We generate our novel synthetic

dataset as follows. Unless stated otherwise, we refer to a baseline

scenario where we consider a set of 𝑘 = 10 tasks and𝑚 = 6 pos-

sible skills. Each of the first four skills allows for 𝛼𝑖 = 2 (𝑖 ∈ [4])
mastering levels, whereas the remaining two skills allow for 𝛼5 = 3

and 𝛼6 = 8 mastering levels. Since neither the agents’ distribution

P nor the tasks’ goals G are controlled by the organizer, both were

randomly initialized. Since our desire is also exploring the budgets’

effects upon the algorithms, each instance is accompanied with

a baseline budget 𝐵 ∈ {50, 100, 150, 250, 500, 1000} such that the

budget of task 𝜏𝑞 is 𝐵 ·𝑞. Thus, we model diversity in the budgets in

addition to the tasks’ requirements and the agents’ skills. Further,

we consider that Greedy (Algorithm 1) has a tolerance of either

𝜖 = 0.03 or 𝜖 = 0.05, whereas both OptOCSF (Algorithm 3) and

TuneOptOCSF (Algorithm 1) have a confidence of 𝛿 = 0.01. Ad-

ditionally, in TuneOptOCSF, we set 𝜀
𝑖,𝑞

𝑗
= 5 · 10−4 ∀𝑖, 𝑗, 𝑞 as the

constant pessimistic terms in (10). As the baseline policy 𝜋𝑏 and

constant 𝜃 > 0 in Assumption 2, we select the optimal solution of

the given tightened CMDP (10) with 𝜀
𝑖,𝑞

𝑗
/5 and set 𝜃 = 2 · 10−11.

Given 𝜃 , the organizer selects the controlled parameters 𝜁
𝑖,𝑞

𝑗
∈ (0, 1)

randomly ∀𝑖, 𝑗, 𝑞. Finally, plots are generated by averaging results

over 5 runs of each algorithm so as to reduce noise.

As a side note, we observed that our algorithms are not majorly

affected by the number of tasks 𝑘 , except for our online learning

schemes. This is consistent with our theoretical results in Theo-

rems 3.1 and 4.3 regarding both Greedy and OCSF-CMDP (resp.),

which dictate that the upper bounds guaranteed by both algorithms

do not depend on the number of tasks. In contrast, by Theorems

5.1-5.2, our online learning schemes suffer an additional factor of

𝑂 (
√︁
|S| log( |S||U|)) due to the estimation (3) of P. Thereby, we

solely report the effects of the baseline budget 𝐵, the number of

skills𝑚, the tolerance 𝜖 and the knowledge of P on our algorithms.

When the agents’ distribution is known, we compare OCSF-

CMDP and Greedy. For verifying the impact of the diversity in

the possible numbers of skills and mastering levels, we regard our

baseline scenario as well as another scenario where there are only

two binary skills instead of four, and thus𝑚 = 4 in the second case.

Despite OCSF-CMDP’s non-adaptivity, Figures 1a-1b depict that it

surpasses the other algorithms in terms of both sample complexity

and minimum distance, regardless of the scenario at hand. Particu-

larly, as expected by Theorem 4.3, the minimum distance attained

by OCSF-CMDP indeed decreases with the baseline budget. Further,
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Figure 1: Impact of the baseline budget 𝐵, the number of skills
𝑚, the tolerance 𝜖 and the knowledge of P on our algorithms.

Theorem 4.3 also dictates that the high probability upper bound en-

sured by OCSF-CMDP should increase the number of pairs 𝑖 ∈ [𝑚],
𝑗 ∈ [𝛼𝑖 − 1], a property that is verified by our experiments as the

minimum distance is higher when𝑚 = 6 skills are considered.

Though Theorem 3.1 yields that the upper bound obtained by

Greedy increases with the maximum possible skill level and de-

creases with the budget, both effects can only be observed for small

budgets and Greedy does not improve for larger ones. However, a

lower tolerance (𝜖 = 0.03) achieves a lower distance across all bud-

gets. Concerning the sample complexity, in both scenarios Greedy

requires more samples than OCSF-CMDP, as expected. Particularly,

note that the better accuracy of Greedy with 𝜖 = 0.03 comes at

the expense of sample complexity, as it requires more samples than

Greedy with 𝜖 = 0.05 for reaching a lower minimum distance.

When the agents’ distribution is unknown, we consider two dif-

ferent settings: (1) two binary skills (𝑚 = 2), and (2) two binary

skills and two additional skills with 3 and 4 possible mastering

levels, respectively (𝑚 = 4). Initially, we study how the knowledge

on the agents’ distribution influences our algorithms. Due to the

high sample complexity induced by Greedy with 𝜖 = 0.03 (Figure

1a), we focus on a tolerance of 𝜖 = 0.05. Figures 1c-1d illustrate

that both of our online learning algorithms require higher bud-

gets for their incurred minimum distance to decrease, compared to

OCSF-CMDP which always reaches the lowest minimum distance

among all algorithms. Hence, not knowing the agents’ distribu-

tion P harms the produced minimum distance as it is required

to estimate P. However, in terms of sample complexity, both Op-

tOCSF and TuneOptOCSF contact less agents than OCSF-CMDP

until the algorithms’ termination. Comparing our online learning

schemes against Greedy, we observe that for smaller skill domains

(𝑚 = 2) both OptOCSF and TuneOptOCSF reach lower values of

both minimum distance and sample complexity. Thus, there are
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cases where one may prefer learning the agents’ distribution P
instead of following Greedy with (or without) the knowledge of P.

We also observe that the larger the skill vectors’ domain S,
the larger the minimum distance gained by our online learning ap-

proaches. This result is aligned with Theorems 5.1-5.2: due to the es-

timation (3) ofP, we suffer an additional factor of𝑂 (
√︁
|S| log( |S||U|)).

Regardless of |S| and consistently with Remark 2, TuneOptOCSF

usually reaches a lower minimum distance than OptOCSF.

In summary, a higher diversity in skills may hinder the mini-

mum distance attained. However, when P is known, OCSF-CMDP

achieves the best performance compared to the other schemes,

though Greedy functions sufficiently well for small budgets. If

P is unknown, then learning it online given less heterogeneous

agents (i.e., |S| is small) may be preferred over using Greedy. For

larger |S|, one should favor Greedy. As Greedy assigns agents

to the first suitable task instead of the one minimizing the mini-

mum distance, we have simulated the later variant and observed

that Greedy performs better (Appendix E [14]). Future work thus

warrants examining the proper order in which tasks are handled.

7 DISCUSSION: INFINITE SKILL DOMAINS
In this section, we discuss the benefits from considering finite skill

domains instead of infinite ones where S𝑖 = R≥0 for each skill 𝑖 .

Similarly, for each task 𝜏 and skill 𝑖 , 𝜏 ’s required level at mastering

skill 𝑖 is modeled by the level 𝑔𝑖,𝜏 ∈ R needed for accomplishing the

task 𝜏 . Let 𝑔𝜏 = (𝑔𝑖,𝜏 )𝑚
𝑖=1

be 𝜏 ’s goal. Further, we evaluate a coalition

directly via the summation of its members’ skill vectors, i.e., the skill

vector of a coalition C ⊆ A is the sum of skill vectors of agents from

C, denoted by s(C) = ∑ℓ∈C sℓ . Similarly to Section 3, for any task

𝜏𝑞 , the distance 𝑑 (s(C), 𝑔𝜏𝑞 ) is measured in the 𝐿∞-norm, where

𝑑 (s(C), 𝑔𝜏𝑞 ) = ∥s(C) − 𝑔𝜏𝑞 ∥∞ = max𝑖∈[𝑚] |s𝑖 (C) − 𝑔𝑖,𝜏𝑞 |.
Herein, we consider a more general online model for agents’

appearance: an agent appears with multiple operation modes (i.e.,

multiple skill vectors, and thus is referred to as such), each one

associated with a different task. At time 𝑡 ≥ 1, the organizer ob-

serves a single agent with 𝑘 operation modes encapsulated by 𝑘

skill vectors s𝑡,𝑞 ∈ S (𝑞 ∈ [𝑘]) that appear online. The organizer
must immediately and irrevocably decide to which task the agent

should be assigned, if at all. Once the organizer decides to assign

the agent to task 𝜏𝑞 , she is equipped with the skill vector s𝑡,𝑞 .

7.1 Tight Bounds on the Competitive Ratio
In this section, we prove tight upper and lower bound on the com-

petitive ratio for OCSF under the multiple skill vectors model in

the 𝐿∞-norm. We follow the standard notions of competitive anal-

ysis in online settings [10] (Readers may refer to Appendix F for

a brief [14]). In our own context, we assume that (by scaling) the

optimal norm for each task is 1. Hence, an online algorithm is

𝛽𝑞-competitive if 𝑑 (x(C𝑞), 𝑔𝜏𝑞 ) ≤ 𝛽𝑞 for any task 𝜏𝑞 ∈ Γ. We

remark that in the subsequent proofs we first consider that the

goal is simultaneously minimizing the 𝐿𝑝𝑞 -norms for each task

𝜏𝑞 with 1 ≤ 𝑝𝑞 ≤ log𝑚, and then infer the bounds for the 𝐿∞-
norm when 𝑝𝑞 = log𝑘 . Formally, under the 𝐿𝑝 -norm (𝑝 ≥ 1),

𝑑 (s(C), 𝑔𝜏𝑞 ) = ∥s(C) − 𝑔𝜏𝑞 ∥𝑝 = 𝑝

√︃
∑𝑖∈[𝑚] (s𝑖 (C) − 𝑔𝑖,𝜏𝑞 )𝑝 .

Theorem 7.1. (LowerBound) There is a lower bound ofΩ(log𝑚+
log𝑘) on the competitive ratio of deterministic online algorithms for

OCSF for each task 𝜏𝑞 , where the goal is simultaneously minimizing

∥s(C𝑞) − 𝑔𝜏𝑞 ∥∞ for every task 𝜏𝑞 .

Proof. See Appendix G.1 for a detailed proof [14]. □

Theorem 7.2. (Upper Bound) There is an online algorithm for

OCSF that obtains a competitive ratio of 𝑂 (log𝑘 + log𝑚) for each
task 𝜏𝑞 (the goal is simultaneously minimizing ∥s(C𝑞) − 𝑔𝜏𝑞 ∥∞ ∀𝑞).

Proof. Our algorithm is an adaptation of the algorithm provided

in [30, Theorem 4]. In Appendix G.2 [14], we prove that it leads to

the asymptotically optimal competitive ratio for every task. □

By Theorems 7.1–7.2, the optimal competitive ratio for OCSF

under the multiple skill vectors model in the 𝐿∞-norm is Θ(log𝑚 +
log𝑘). Though it is independent of the number of agents, the loga-

rithmic dependence on the number of skills (𝑚) and tasks (𝑘) still

poses a challenge. When agents arrive i.i.d. following a known dis-

tribution, competitive ratios for certain problems can be improved

(e.g., Submodular Welfare Maximization [2], stochastic matching

[37]), thusmotivating our consideration of the i.i.d. stochastic model

in the previous sections. Indeed, unlike our results in Theorems

7.1–7.2, the upper bounds in Theorem 3.1 for the 𝐿∞- and 𝐿1-norms

do not depend on the number of either tasks 𝑘 or skills𝑚. Namely,

increasing the values of either 𝑘 or𝑚 will not degrade these bounds.

Finally, note that Algorithm 1 can be readily adapted to the infinite

skill domains case by the conditional statement substituting in line

4 with 𝑛𝑖
𝑗
(C𝑞

𝑡−1) + 1𝑠𝑖𝑡=𝑗 ≤ 𝑔𝑖,𝜏𝑞 + 𝜖 ∀𝑖, 𝑗 . Yet, the rest of the algo-
rithms cannot be extended directly as CMDPs with infinite state

spaces will be obtained, a direction that is thus left for future work.

8 CONCLUSIONS AND FUTUREWORK
We introduced the novel framework of online coalitional skill forma-

tion (OCSF) that takes a coalition formation approach for allocating

heterogeneous tasks to agents that arrive online and have diverse

skills. Due to the limitations of existing skill models, we presented a

new skill model, where the set of possible mastering levels for each

skill is discrete, and a coalition is evaluated by the extent each skill

level is covered by the coalition. Based on the knowledge regarding

agents’ arrivals, we devised different algorithms, involving a greedy

scheme, a novel correlation to Constrained Markov Decision Pro-

cesses and two online learning algorithms. Empirically, we depicted

that a higher diversity in skills may yield poor assignments.

Our study is bound to form a windfall of future studies, including

cases where agents can strategically modify their skills at a cost for

improving their capabilities. Further, an agent’s entire skill vector

may not be revealed once she arrives. Instead, the organizer might

observe only a quantitative value depicting the agent’s overall qual-

ity. Finally, as typical in online settings, we assumed that decisions

are immediate and irrevocable, yet they may be neither of them.
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