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ABSTRACT
We define probabilistically monotone partition function games, a
subclass of the well-known partition function games in which we

introduce uncertainty. We provide a constructive proof that an

exact optimum can be found using a greedy approach, present an

algorithm for finding an optimum, and analyze its time complexity.
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1 INTRODUCTION
Existing solutions for the coalition structure generation (CSG) prob-

lem [3] for partition function games (PFGs) were devised either by

placing constraints on externalities or else on the function that

maps coalition structures to values. A common feature of existing

work is that it is focussed on games whose properties are known

with certainty (we will call such games deterministic). However,
stochasticity is inherent to many multi-agent settings. Given this,

the goal of our present work is to investigate how to solve the CSG

problem for stochastic environments in which some aspects of the

problem are not known with certainty.

To this end, we build on our prior work [1] in which we con-

sidered the CSG problem for PFGs with priority ordered players

and a restricted class of value functions, viz., those that satisfy

a certain monotonicity property, and devised a polynomial time

solution. In this previous work, the notion of monotonicity was

deterministic in the sense that, with probability one, the function

that maps coalition structures to values satisfies monotonicity. In

this paper, we relax the deterministic monotonicity assumption

by allowing a certain degree of non-monotonicity. Specifically, we

replace the deterministic monotonicity restriction by probabilistic
monotonicity. Probabilistic monotonicity means that the value func-

tion obeys monotonicity with a certain probability 0 < 𝑝 ≤ 1 (for

the deterministic case 𝑝 = 1). For probabilistically monotone PFGs

with priority ordered players, we devise an algorithm for optimally

solving the CSG problem and characterize its time complexity.
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2 BACKGROUND
There is a finite, non-empty set of players 𝑁 = {1, . . . , 𝑛}. The term
coalition refers to a non-empty subset of 𝑁 . The symbol 𝐶 possibly

with sub/superscripts denotes a coalition and C denotes the set of

all coalitions of 𝑁 .

C = {𝐶 | 𝐶 ⊆ 𝑁,𝐶 ≠ ∅}

A coalition structure is an exhaustive partition of a set of players

into mutually disjoint coalitions. Formally:

Definition 2.1. For any coalition 𝐶 , let Π𝐶
denote the set of all

coalition structures over 𝐶 . Then {𝐶1,𝐶2, . . . ,𝐶𝑘 } ∈ Π𝐶
iff

∪𝑘𝑖=1𝐶𝑖 = 𝐶, ∀𝑖 𝐶𝑖 ≠ ∅, and ∀𝑖∀𝑗 ≠ 𝑖 𝐶𝑖 ∩𝐶 𝑗 = ∅.

The symbol 𝜋 possibly with sub/superscripts will denote a coali-

tion structure. An embedded coalition is a coalition together with a

specification of how the non-members are organised into coalitions.

It is formally defined as follows:

Definition 2.2. Let E denote the set of all embedded coalitions.

Then

E = {(𝐶, 𝜋) | 𝐶 ∈ 𝜋 ∈ Π𝑁 }

Definition 2.3. A characteristic function game (CFG) is a pair

(𝑁, 𝑣1) where 𝑣1 : 2𝑁 → R and 2
𝑁

denotes the set of all subsets of

𝑁 . A PFG is a pair (𝑁, 𝑣2) where 𝑣2 : E → R.

Thus CFGs are a subclass of PFGs.

Definition 2.4. The value of a coalition structure over 𝑁 is given

by an objective function 𝑣 : Π𝑁 → R.

In the literature, the function that maps coalition structures to

values, i.e., the objective function 𝑣 , is a social welfare function. It

is commonly assumed to be the sum of coalition values. In the

proposed model, however, the value of a structure does not have to

be the sum of the values of its coalitions but could be any function.

The CSG problem then is to find an optimal structure, i.e., a structure
O such that 𝑣 (O) is the highest between all coalition structures.

3 COALITION STRUCTURE GENERATION
Let 𝑁 = {1, · · · , 𝑛} be the set of players and Δ ⊆ 𝑁 be the priority

ordered ones with 𝛿 = |Δ|. Let P𝑖 denote the 𝑖th priority player.

Any coalition that contains at least one priority player is called a

priority coalition. An ordering over Δ induces an ordering over the

priority coalitions: they are ordered as per the priorities of their

highest priority members.
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To measure the distance between any two structures 𝜋1 and 𝜋2

over 𝑁 , we define a metric 𝑑 in terms of the positions of the priority

players, i.e., in terms of the restriction of 𝜋1 and 𝜋2 to Δ.

𝑑 (𝜋1|𝛿 , 𝜋
2

|𝛿 ) = 𝛿 − 𝑚𝑎𝑥
1≤𝑖≤𝛿

{𝜋1|𝑖 = 𝜋2|𝑖 } (1)

Let ΠO denote the set of all optimal coalition structures and S be the
set of all ordered pairs of coalition structures over 𝑁 . For a game of

𝑛 players, |S| = 𝐵𝑒𝑙𝑙 (𝑛) × (𝐵𝑒𝑙𝑙 (𝑛) − 1). Then, for a player ordering,
deterministic monotonicity and probabilistic monotonicity of an

objective function 𝑣 are defined as follows.

Definition 3.1. Deterministicmonotonicity: For any two struc-
tures 𝜋1 and 𝜋2, and a unique optimum O:

𝑑 (O, 𝜋1) < 𝑑 (O, 𝜋2) ⇒ 𝑣 (𝜋1) > 𝑣 (𝜋2) (2)

with probability one. □

Definition 3.2. Probabilistic monotonicity: For a random pair

(𝜋1, 𝜋2) ∈ S such that 𝜋1 ∉ ΠO and 𝜋2 ∉ ΠO, and any optimal

structure O ∈ ΠO
𝑑 (O |𝛿 , 𝜋1|𝛿 ) < 𝑑 (O |𝛿 , 𝜋2|𝛿 ) ⇒ 𝑣 (𝜋1) > 𝑣 (𝜋2) (3)

with a certain probability. Specifically, for a random pair (𝜋1, 𝜋2) ∈
S such that neither 𝜋1 nor 𝜋2 is an optimum, the probability that

𝑣 (𝜋1) > 𝑣 (𝜋2) conditional on 𝑑 (O |𝛿 , 𝜋1|𝛿 ) < 𝑑 (O |𝛿 , 𝜋2|𝛿 ) is

𝑝

(
𝑣 (𝜋1) > 𝑣 (𝜋2) | 𝑑 (O |𝛿 , 𝜋1|𝛿 ) < 𝑑 (O |𝛿 , 𝜋2|𝛿 )

)
≤ 1

For a random pair (𝜋1, 𝜋2) ∈ S such that any one element of the

pair, say 𝜋1, is an optimum, 𝑣 (𝜋1) > 𝑣 (𝜋2) with probability 1. □

Definition 3.3. A partition function game (𝑁, 𝑣2, 𝑣) is probabilsti-
cally monotonic if 𝑣 is probabilistically monotone for some player

ordering. □

Let the set A be defined as follows:

A = {(𝑢, 𝑣) | 𝑢 ∈ {<,=, >} and 𝑣 ∈ {<,=, >}}.
Let the functions 𝑓 : S → A, 𝑟𝑑 : S → {<,=, >}, and 𝑟 𝑣 :

S→ {<,=, >} be defined as follows. For any (𝑥,𝑦) ∈ S, 𝑓 (𝑥,𝑦) =
(𝑟𝑑 (𝑥,𝑦), 𝑟 𝑣 (𝑥,𝑦)) where

𝑟𝑑 (𝑥,𝑦) =


< if 𝑑 (O |𝛿 , 𝑥 |𝛿 ) < 𝑑 (O |𝛿 , 𝑦 |𝛿 )
= if 𝑑 (O |𝛿 , 𝑥 |𝛿 ) = 𝑑 (O |𝛿 , 𝑦 |𝛿 )
> if 𝑑 (O |𝛿 , 𝑥 |𝛿 ) > 𝑑 (O |𝛿 , 𝑦 |𝛿 )

𝑟 𝑣 (𝑥,𝑦) =


< if 𝑣 (𝑥) < 𝑣 (𝑦)
= if 𝑣 (𝑥) = 𝑣 (𝑦)
> if 𝑣 (𝑥) > 𝑣 (𝑦)

The set S can be partitioned into nine pairwise disjoint subsets as

follows:

(1) S𝑒𝑒 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ S and 𝑓 (𝑥,𝑦) is (=,=)}
(2) S𝑒𝑔 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ S and 𝑓 (𝑥,𝑦) is (=, >)}.
(3) S𝑒𝑙 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ S and 𝑓 (𝑥,𝑦) is (=, <)}
(4) S𝑔𝑒 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ S and 𝑓 (𝑥,𝑦) is (>,=)}
(5) S𝑔𝑔 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ S and 𝑓 (𝑥,𝑦) is (>, >)}
(6) S𝑔𝑙 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ S and 𝑓 (𝑥,𝑦) is (>, <)}
(7) S𝑙𝑒 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ S and 𝑓 (𝑥,𝑦) is (<,=)}
(8) S𝑙𝑔 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ S and 𝑓 (𝑥,𝑦) is (<, >)}

Algorithm 1 Computes optimal coalition structure

Input: 𝑁 = {1, . . . , 𝑛}, 𝑟 𝑣 , 𝛿
Output: P and O
1: Initialize 𝑍 (as described in [2])

2: while |𝑍 | > 2 do
3: Consider any two elements of𝑍 and choose a test𝑇𝑎 (where

𝑎 ∈ {1, 2, 3}) to do

4: Generate 3B arbitrary elements of𝑈𝑇𝑎 (as described in [2])

5: Compute𝑀𝑆𝑅𝑇𝑎 (as described in [2])

6: Perform eliminations from 𝑍 (as described in [2])

7: end while
8: P1 ← 𝑥 , P2 ← 𝑦, O[1] ← 1, O[2] ← 𝑧 ⊲ where

𝑍 = {(𝑥,𝑦, 1, 𝑧)}
9: for 𝑘 ← 3, 𝛿 do
10: Initialize 𝑉 (𝑘)
11: while |𝑉 (𝑘) | > 1 do
12: Consider any two elements of 𝑉 (𝑘) and do the test 𝑇 4

13: Generate 3B arbitrary elements of 𝑈𝑇 4
14: Compute𝑀𝑆𝑅𝑇 4 (as described in [2])

15: Perform eliminations from 𝑉 (𝑘) (as described in [2])

16: end while
17: P𝑘 ← 𝑎, O[𝑘] ← 𝑏, ⊲ where (𝑎, 𝑏) ∈ 𝑉 (𝑘) is what

remains in 𝑉 (𝑘) after eliminations

18: end for
19: O← 𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑆𝑒𝑎𝑟𝑐ℎ(O𝐸|𝛿 )
20: return (P1, . . . , P𝛿 ,O)

(9) S𝑙𝑙 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ S and 𝑓 (𝑥,𝑦) is (<, <)}
Then S is the union of these nine subsets:

S = S𝑒𝑒 ∪ S𝑒𝑔 ∪ S𝑒𝑙 ∪ S𝑔𝑒 ∪ S𝑔𝑔 ∪ S𝑔𝑙 ∪ S𝑙𝑒 ∪ S𝑙𝑔 ∪ S𝑙𝑙 . (4)

Between all these nine subsets, only S𝑒𝑒 , S𝑒𝑔 , S𝑒𝑙 , S𝑔𝑙 , and S𝑙𝑔 satisfy
monotonicity. The union of these is denoted Smon:

Smon = S𝑒𝑒 ∪ S𝑒𝑔 ∪ S𝑒𝑙 ∪ S𝑔𝑙 ∪ S𝑙𝑔 . (5)

Definition 3.4. Each pair in Smon is called amonotonicity-satisfying
pair.

Definition 3.5. Degree of non-monotonicity: The degree of
non-monotonicity 𝐷 is the sum of the cardinalities of S𝑔𝑒 , S𝑔𝑔 , S𝑙𝑒 ,
and S𝑙𝑙 .

𝐷 = |S𝑔𝑒 | + |S𝑔𝑔 | + |S𝑙𝑒 | + |S𝑙𝑙 | □

CSG problem: For a probabilistically monotone PFG (𝑁, 𝑣2, 𝑣)
with a bounded degree of non-monotonicity, find the identities of

P1, . . . , P𝛿 and an optimal structure O where

O ∈ {𝜋 | 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜋∈Π𝑁

𝑣 (𝜋)}

given as input 𝑁 and the function 𝑟 𝑣 .

The complete CSG method is summarised as Algorithm 1. Here

𝑍 = {(𝑥,𝑦, 1, 𝑧) | 𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 − {𝑥}, 𝑧 ∈ {1, 2}}

𝑉 (𝑘) = {(𝑥,𝑦) | 𝑥 ∈ 𝑄 (𝑘), 𝑦 ∈ {1, . . . , 𝛼 (𝑘) + 1}}
𝛼 (𝑘) is the number of coalitions in O |𝑘 , 𝑄 (𝑘) = 𝑁 − {P1 · · · P𝑘 },
and O𝐸|𝛿 is the set of structures whose 𝑘 element prefix is O |𝑘 .
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