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ABSTRACT
Correlated Equilibrium (CE) is a well-established solution concept

that captures coordination among agents and enjoys good algorith-

mic properties. In real-world multi-agent systems, in addition to

being in equilibrium, agents’ policies are often expected to meet

requirements with respect to safety, and fairness. Such additional

requirements can often be expressed in terms of the state density
which measures the state-visitation frequencies during the course

of a game. However, existing CE notions or CE-finding approaches

cannot explicitly specify a CE with particular properties concerning

state density; they do so implicitly by either modifying reward func-

tions or using value functions as the selection criteria. The resulting

CE may thus not fully fulfil the state-density requirements. In this

paper, we propose Density-Based Correlated Equilibria (DBCE), a

new notion of CE that explicitly takes state density as a selection

criterion. Concretely, we instantiate DBCE by specifying different

state-density requirements motivated by real-world applications.

To compute DBCE, we put forward the Density Based Correlated
Policy Iteration algorithm for the underlying control problem. We

perform experiments on various games where results demonstrate

the advantage of our CE-finding approach over existing methods

in scenarios with state-density concerns.
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1 INTRODUCTION
A central question in the study of multi-agent systems is finding

policies for rational game players to reach a particular form of
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equilibrium. A more recent trend in the investigation of this ques-

tion is to incorporate policies’ side effects [23]. Indeed, in many

real-world scenarios, it is difficult to define a reward function that

captures all aspects of desired outputs of the agents. For example, a

robotic system may gain a high reward by performing a specific

risky manoeuvre that is less-than-desirable or engaging in actions

that are seen as unethical [31]. When finding policies for agents, it

is therefore not optimal to simply enable agents to achieve the high-

est possible rewards. Still, more importantly, the procedures must

also satisfy other desirable properties, such as safety and fairness,

that are not reflected by rewards.

For simplicity, we formulate this type of problem as taking an

𝑁 -player Markov game as input while asking for policies of agents

that satisfy two types of requirements:

(1) Reward Requirement: First, we expect that the agents, being
rational, will not unilaterally deviate from their policies due to

utility concerns, and

(2) Non-reward Requirements: Then, the policies must satisfy

certain non-utility-based requirements that confine the runs of

the multi-agent system.

In this paper, we study an instance of the general problem above.

(1) For the reward requirement, we specify a solution concept that

factors into the possible coordination among agents. More specif-

ically, we adopt correlated equilibrium (CE) [17] as the solution

concept. Compared to Nash equilibrium (NE), widely adopted in

this field [19], CE does not require independence among agents

and is suitable for a wider range of practical scenarios. Moreover,

the set of CEs constitutes a convex polytope. Therefore, it is easy

to compute via linear programming. Many adaptive procedures

are shown to converge to CE rather than the more restricted NE

[13, 16]. (2) For the non-reward requirements, we consider essential

properties which can be loosely translated to, e.g., “certain situation
should not take place”, “certain situation should happen with a pre-
scribed frequency” and “two situations should happen with the same
frequency”. These properties can be captured by examining a run,
i.e., the sequence of states the agents are in during the game. More

precisely, they are state-distribution requirements that are defined
in terms of the visitations to states in the game:

• Safety requirements. These conditions demand that certain bad
states should not be visited. Many industrial applications involve

Session 2D: Behavioral and Algorithmic Game Theory
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

652



dangerous states that should never happen. Take, e.g., the low-

power status of a robot system [29]. Similar concerns can happen

from an ethical perspective as well [31].

• Frequency requirements. These conditions demand that certain
states should be visited with a fixed frequency. To generalise safety,
the system may be expected to visit certain states with a certain

proportion in the long term. For example, we may want a robotic

system to run in high-efficiency mode 30% of the time, and the

rest 70% time in normal mode.

• Fairness requirements. These conditions demand that two states
should be visited with the same frequency. One may also wish to

balance the visitation frequency of two different states of the

system for the sake of, e.g., system stability. For instance, if there

are two charging stations for a team of unmanned aerial vehicles,

one may wish to balance their use rate to avoid unnecessary

queuing. Or at a crossroads, traffic lights in two directions should

be green with equal frequency.

The state density function may be employed to measure the state

visitation frequency when navigating the environment using a

policy [29]. The function can express the aforementioned state-

distribution requirements. However, so far, no work on CE or CE-

finding algorithms has explicitly incorporated requirements defined

by the state density function. On the other hand, methods have been

introduced to implicitly express these non-reward requirements

by imposing additional constraints on rewards. Yet, these methods

may not be sufficient to meet these desired requirements. In detail,

the existing techniques fall into two categories:

(1) Risk-sensitive reward modification. This method adds additional

terms that tweak the reward structure, such as negative rewards

for undesired states or imposing variance as risk-terms [5, 12, 25,

32]. This method has been preferred when the target is simple,

and a tweaking strategy can be efficiently designed. However, it

requires parameter fine-tuning as the optimal policy is sensitive

to reward settings. When computing CE, this method changes

the shape of the CE set of the original game. As a result, the

optimal policy found in a modified game may not be a CE to the

original game. Moreover, designing a reward modification for

complex targets such as value-targeting requirement requires
expert domain knowledge, which is challenging in real-world

applications.

(2) Constrained methods. This method directly takes the subset

of policies by adding explicit constraints such as constrained
Markov games [3]. However, it requires parameter fine-tuning

because the threshold for constraints can directly impact the

game’s performance and feasibility. Before solving the game,

the optimal solution is invisible to the designers, so setting a

correct threshold is challenging. Additionally, when computing

CE, the introduced constraints may reduce the size of the CE

set of the original game.

Both methods above may change the shape or size of the feasible

CE set of the original game. Such changes are illustrated in Fig. 1

In this paper, we introduce Density-Based Correlated Equilibria
(DBCE) in the context of Markov games. By using density functions

as a selection criterion, DBCE explicitly integrates state-distribution

requirements (non-reward requirements) and reward requirements

Figure 1: This diagram shows the changes to the feasible CE
sets by the two existingmethods. A constrainedmethod leads
to a size-reduced feasible set, which can be empty if addi-
tional constraints are infeasible. The risk-sensitive reward
modification generates a new game; thereby, the feasible set
may be shifted. Moreover, an improper reward modification
may cause an empty intersection between the feasible sets
for the modified game and the original game.

to a novel CE concept without suffering the issues above in the

existing CE notions or CE-finding approaches.

However, having an equilibrium concept does not necessarily

imply an effective way to find it. Directly computing a DBCE is

intractable due to the inconsistency between the measurements of

a policy’s state density and cumulative rewards, preventing us from

optimising the two in the same space. To settle this challenge, we

employ the notion of occupancy measure, i.e., the cumulative state-

action visitation frequency, in terms of which both the state density

and cumulative rewards can be represented; it thus allows us to

optimise the two in a unified fashion. This machinery gives rise to

our proposed algorithm for computing DBCE named Density Based
Correlated Policy Iteration (DBCPI). More specifically, DBCPI runs

in such an iterative manner that alternates between the update

of agents’ policies and the occupancy measure: the policies are

updated by finding a CE that is induced by the current occupancy

measure and satisfies the non-reward requirements; the current

occupancy is subsequently updated in accordance with the updated

policy. Moreover, we provide a theoretical justification for DBCPI

where the convergence conditions are given.

Our primary contributions are summarised as follows:

(1) We propose a new CE concept for Markov games– Density-

Based Correlated Equilibria (DBCE) – which exploits the state

density function to explicitly capture non-reward requirements

without changing the set of all feasible CEs.

(2) To compute DBCE, we come up with Density-Based Correlated

Policy Iteration (DBCPI). We show that under certain assump-

tions, this mechanism converges to a valid DBCE.

(3) We test DBCPI against existing approaches on different simu-

lated scenarios motivated by real-world applications. Experi-

mental results demonstrate our machinery’s advantage in find-

ing CE with those mentioned above, additional non-reward

requirements, i.e., safety, frequency and fairness.

2 RELATEDWORKS
Equilibrium Concepts. Solving a game in multi-player games, es-

pecially non-cooperative ones, amounts to finding an equilibrium.
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Nash Q-learning [20] extended the canonical Q-learning to general-

sum Markov games to find Nash equilibrium. As for finding CEs,

some work [7, 26] attempted to calculate the whole set of CEs

by determining or approximating the boundary of the resulting

expected-reward space, which has been shown to be a convex poly-

tope. Alternatively, Greenwald et al. [14] proposed a Q-learning-like

algorithm to find an instance of CE in a Markov game rather than

the whole set. Another line of work focuses on exploiting the ap-

plication value of CEs in real-world scenarios, such as Yu et al. [37]

and Han et al. [15] used CEs to coordinate equipment in industrial

scenarios; Jin et al. [22] used CEs as the solution to a outsource

task pricing problem. A series of work captures some particular

properties by selecting a special subclass of CEs from the entire set.

For instance, Ortiz et al. [28] and Ziebart et al. [38] choose the CE

with the maximum policy entropy to ensure the uniqueness of the

solution to a game.

Non-reward Requirements. In real-world applications, the non-reward
requirements are inevitable. Some work adopts an implicit way to

satisfy these requirements by modifying the reward functions [9].

One popular method is to augment the reward function with risk-

sensitive terms such as variance [24] and exponential utility func-

tion [6]. Rather than implicit reward tweaking, logic instruction [18]

that explicitly describes the goal is also considered as one method

to modify the reward function. Recently, reinforcement learning

algorithms with different risk-sensitive factors have been studied

in various aspects [5, 12, 25, 32]. Some work along this line adds

constraints to the learned policy in order to capture safety concerns:

Altman [2] studied constrained MDP, and subsequently, Q-learning

was extended to constrained MDP by [10]. Constrained method was

later further extended to Markov Games in the multi-agent setting

[1, 3, 11, 21]. Among these constraints, the state density stands

out as a particular one. Typical work includes [12] that directly

specified the unwanted states to avoid getting in, and Qin et al.

[29] proposed to use density functions as constraints to guide the

finding of an optimal policy in reinforcement learning.

3 PRELIMINARIES
The set of all natural numbers, reals, and non-negative reals are

denoted by N, R, and R≥0, respectively. For a natural number 𝑁 ,

the set {1, . . . , 𝑁 } is denoted by [𝑁 ].

Markov Games. Markov games, also known as stochastic games,

are extensions of Markov decision processes to the multi-agent

setting, where agents act in a stochastic environment, each aiming

to maximise its cumulative rewards.

Definition 1. An 𝑁 -agent Markov game is a tuple

(S, {A𝑖 }𝑁𝑖=1, 𝑃, {𝑟𝑖 }
𝑁
𝑖=1, 𝜂, 𝛾), where

• S is the set of states,
• A𝑖 is the set of actions for the 𝑖th agent,
• 𝑃 : S × A → Δ(S) is the transition function that specifies
the transition probability between two states given a joint action
𝒂 = (𝑎1, . . . , 𝑎𝑛), where A = ×𝑁

𝑖=1
A𝑖 is the space of joint actions

and Δ(S) denotes the set of probability distributions over S,
• 𝑟𝑖 : S × A → R is a reward function that determines agent 𝑖’s
immediate reward of a joint action in a state,

• 𝜂 ∈ Δ(S) is the initial distribution of states,
• 𝛾 ∈ (0, 1) is a discount factor.

Throughout, we use bold variables without subscripts to repre-

sent the concatenation of the corresponding variables for all agents

and use the subscript −𝑖 to denote all agents other than 𝑖 , e.g.,

𝒂 = (𝑎1, . . . , 𝑎𝑛) = (𝑎𝑖 , 𝒂−𝑖 ) denotes a joint action of all agents.

Definition 2. The agents’ (stationary) joint policy is a function

𝝅 : S → Δ(A)

which specifies agents’ probabilistic choice of actions according to the
current state. The set of all joint policies is denoted by Π.

Each agent aims to find a policy to maximise its own cumulative
rewards during the whole course of a game:

∑∞
𝑡=0 𝛾

𝑡𝑟𝑖 (𝑠𝑡 , 𝒂𝑡 ). For
each agent 𝑖 , the expected return of a state-joint action pair under a

joint policy 𝝅 is defined as:

𝑄𝝅
𝑖 (𝑠, 𝒂) ≜ E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟𝑖 (𝑠𝑡 , 𝒂𝑡 )
����𝑠0 = 𝑠, 𝒂0 = 𝒂, 𝑃, 𝝅

]
.

Correlated Equilibria. A solution to a Markov is called an equilib-

rium that amounts to a joint policy where no agent has the incentive

to deviate in order to gain rewards unilaterally. Two canonical equi-

librium concepts stand out concerning assumptions on different

degrees of independence among agents’ policies. The well-known

Nash equilibrium (NE) [8] requires independence among the agents,

i.e., 𝝅 = ×𝑁
𝑖=1
𝜋𝑖 where 𝜋𝑖 : S → Δ(A𝑖 ) denotes the policy of an

individual agent. In comparison, correlated equilibrium (CE) [4]

generalises NE by capturing the coordination among agents, which

is more suitable for multi-agent systems where agents coordinate

their actions. Conceptually, agents are coordinated by a correlation
device that recommends an action 𝑎𝑖 ∈ A𝑖 to each agent 𝑖 , who is

aware of all other agents’ conditional distribution 𝝅−𝑖 (𝒂−𝑖 |𝑠, 𝑎𝑖 ).
To be in a CE, each agent has no incentive to disobey the recom-

mendation, i.e., selecting an alternate action 𝑎′
𝑖
∈ A𝑖 , called the

deviation action.

Definition 3. A correlated equilibrium (CE) for a Markov game
is a joint policy 𝝅 that satisfies:

∀𝑖 ∈ [𝑁 ], 𝑠 ∈ S, 𝑎𝑖 , 𝑎′𝑖 ∈ A𝑖 , reg𝝅 (𝑠, 𝑖, 𝑎𝑖 , 𝑎′𝑖 ) ≤ 0. (1)

Here, the regret reg𝝅 (𝑠, 𝑖, 𝑎𝑖 , 𝑎′𝑖 ) embodies the expected reward gain
of shifting to a deviation action:

reg𝝅 (𝑠, 𝑖, 𝑎𝑖 , 𝑎′𝑖 ) ≜ E𝒂−𝑖∼𝝅−𝑖 ( · |𝑠,𝑎𝑖 )
[
𝑄𝝅
𝑖 (𝑠, 𝑎

′
𝑖 , 𝒂−𝑖 ) −𝑄

𝝅
𝑖 (𝑠, 𝑎𝑖 , 𝒂−𝑖 )

]
.

The general existence of NE [8] implies the existence of CE. CE

has nicer mathematical properties than NE in the sense that the

constraints in Eq. (1) define an 𝑁 -dimension polytope in agent’s

expected returns while the set of NE consists of isolated points

[27] in the polytope. Consequently, the set of CEs for normal-form

games (equivalent to one-shot Markov games) can be derived using

linear programming as Eq. (1) is a system of linear inequalities. Still,

exactly computing CE for Markov games is generally intractable

due to two reasons: (i) the constraints of CE turn to non-linear

inequalities because both 𝑄 and 𝝅 are unknown in Eq. (1); (ii) the

number of corners of the CE polytope grows exponentially with

the horizon increases [38].
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Density Functions. A density function [30] 𝜌 : S → R≥0 measures

the visitation frequency of states when navigating the environment

with a policy. Formally, for an infinite-horizon Markov game with

its initial distribution 𝜂, discounted factor 𝛾 , the density function

under a joint policy 𝝅 is defined as

𝜌𝝅 (𝑠) ≜
∞∑︁
𝑡=0

𝛾𝑡 Pr(𝑠𝑡 = 𝑠 |𝝅 , 𝑠0 ∼ 𝜂).

Notice that the density function can also be written in a recursive

form as

𝜌𝝅 (𝑠) = 𝜂 (𝑠) + 𝝅 (𝑠, 𝑎)𝛾
∑︁
𝑠′∈S

∑︁
𝒂∈A

𝑃 (𝑠 |𝑠′, 𝒂)𝜌𝝅 (𝑠′) .

Occupancy Measure. Similar to the density function, the occupancy
measure 𝜌 (𝑠, 𝑎) : S ×A → R≥0 measures the visitation frequency

of state-action pairs given a stationary policy. Formally, the occu-

pancy measure 𝜌𝝅 under 𝝅 is defined as

𝜌𝝅 (𝑠, 𝒂) ≜
∞∑︁
𝑡=0

𝛾𝑡 Pr(𝑠𝑡 = 𝑠, 𝒂𝑡 = 𝒂 |𝝅 , 𝑠0 ∼ 𝜂) .

We can calculate the density of a state by an equation 𝜌𝝅 (𝑠) =∑
𝒂∈A 𝜌𝝅 (𝑠, 𝒂). Occupancy measure also has several properties

useful in policy synthesis via optimisation [33]. First, a function

𝑓 : S ×A → R is the occupancy measure under some stationary

policy if and only if it satisfies the following Bellman flow (BF)
constraints:

BFError𝑓 (𝑠) = 0,∀𝑠 ∈ S AND 𝑓 (𝑠, 𝒂) ≥ 0,∀𝑠 ∈ S, 𝒂 ∈ A, (2)

where BFError𝑓 (𝑠) denotes the Bellman residualwith respect to the

state-action visitation frequency:

BFError𝑓 (𝑠) =
∑︁
𝒂∈A

𝑓 (𝑠, 𝒂) − 𝜂 (𝑠) − 𝛾
∑︁
𝑠′∈S

∑︁
𝒂∈A

𝑃 (𝑠 |𝑠′, 𝒂) 𝑓 (𝑠′, 𝒂) .

On the other direction, for an 𝑓 satisfying BF constraints, there is

a unique stationary policy 𝝅 ∈ Π associated with 𝑓 such that 𝑓 is

the occupancy measure under 𝝅 (i.e., 𝜌𝝅 = 𝑓 ); furthermore, such a

policy can be constructed by

𝝅 (𝑠, 𝒂) = 𝑓 (𝑠, 𝒂)
/ ∑︁
𝒂′∈A

𝑓 (𝑠, 𝒂′). (3)

Non-reward Requirements. In addition to reward requirements cap-

tured by equilibrium concepts, non-reward requirements have also

drawn attention. Here, we consider the three typical non-reward

requirements: safety, frequency and fairness requirements. These

requirements can be measured as the counts of occurrences of cer-

tain states in a game trajectory, i.e., a sequence of states generated
by a policy in a Markov game. A finite trajectory with length 𝑛+1 is
written as 𝜏 ≜ 𝑠0, 𝑠1, . . . , 𝑠𝑛 . We can formalise the above-mentioned

three types of non-reward requirements in a trajectory-centric way:

• Safety: For a set of undesired states 𝑆∗, we expect the count

of undesired states in the trajectory equals zero,

∑
𝑖∈[0,𝑛] I(𝑠𝑖 ∈

𝑆∗) = 0 where I is the indicator function;
• Frequency: For a set of specific states 𝑆∗, we expect the count
of such states occur in trajectory with a certain proportion 𝑐 ,∑
𝑖∈[0,𝑛] I(𝑠𝑖 ∈ 𝑆∗)/(𝑛 + 1) = 𝑐

Figure 2: Demonstrations of three types of non-reward re-
quirements. Sequences of circles represent the trajectory, and
black and white colors represent two different states.

• Fairness: For 2 sets of states 𝑆∗
1
, 𝑆∗

2
, we expect the counts of such

states from 2 sets to be equal in trajectory,

∑
𝑖∈[0,𝑛] I(𝑠𝑖 ∈ 𝑆∗1 ) =∑

𝑖∈[0,𝑛] I(𝑠𝑖 ∈ 𝑆∗2 ).
Intuitively, we demonstrate the three types of non-reward re-

quirements in Fig. 2 on a Markov game with two different states.

4 DENSITY-BASED CORRELATED EQUILIBRIA
This section first proposes the general definition of Density-Based
Correlated Equilibria (DBCE). We then instantiate it by specify-

ing the selection criterion as above mentioned three types of non-

reward requirements.

Recall that the motivation of DBCE is to find an equilibrium that

can capture both agents’ coordination and policies’ side effects that

cannot be simply represented in terms of rewards but can instead

be interpreted using the density function. To this end, we formalise

DBCE by taking one or a set of density functions as the selection

criterion to identify the subset of CEs that satisfy the desired non-

reward requirements. In such a way, DBCE is defined as a solution

to a constrained optimisation problem, where the density functions

serve as the objective and the constraints enforce the conditions of

being a CE.

Definition 4. Let the following be given:

• A Markov Game (S, {A𝑖 }𝑁𝑖=1, 𝑃, {𝑟𝑖 }
𝑁
𝑖=1
, 𝜂, 𝛾);

• A subset of states S∗ = {𝑠1, . . . , 𝑠𝑚} ⊆ S;
• A real-valued function 𝐹 : R𝑚 → R;
• A function 𝜑 (𝝅) = 𝐹 (𝜌𝝅 (𝑠1), . . . , 𝜌𝝅 (𝑠𝑚)), which we call the
density error of 𝝅 .

A joint policy 𝝅 is called an (𝐹 -specified) density-based correlated

equilibria (DBCE) if it is a solution to the following constrained opti-
misation problem:

min

𝝅 ∈Π
𝜑 (𝝅) subject to

reg𝝅 (𝑠, 𝑖, 𝑎𝑖 , 𝑎′𝑖 ) ≤ 0,∀𝑖 ∈[𝑁 ], 𝑠 ∈ S, 𝑎𝑖 , 𝑎′𝑖 ∈ A𝑖 .
(4)

We can use the value of the density error 𝜑 (𝝅) to indicate the

quality of 𝝅 in terms of the state density. By choosing a suitable

function 𝐹 , we can instantiate the DBCE that captures specific non-

reward requirements. Here, we introduce the following specific

DBCEs with respect to safety, frequency and fairness requirements:

a DBCE is called a
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• Minimum Density CE (MDCE) when we have

𝜑 (𝝅) = ∑
𝑠∈S∗ 𝜌

𝝅 (𝑠);
• Frequency Matching CE (FMCE) when we have

𝜑 (𝝅) = |∑𝑠∈S∗ 𝜌𝝅 (𝑠) − 𝑐 | for some 𝑐 ∈ R≥0;
• Minimum Density Gap CE (MDGCE) when we have

𝜑 (𝝅) = |∑𝑠∈S1 𝜌𝝅 (𝑠) −∑𝑠∈𝑆2 𝜌𝝅 (𝑠) | for 𝑆1, 𝑆2 ⊆ S∗.
Intuitively, we use MDCE, FMCE and MDGCE to represent CEs

with requirements concerning safety, frequency, and fairness re-

quirements, respectively. These instantiations indicate the general

ability of DBCE to characterise the equilibria with some density-

related properties, which are not yet able to be represented by other

equilibrium notions.

5 DENSITY-BASED CORRELATED EQUILIBRIA
FINDING

This section is devoted to the introduction of a policy iteration

algorithm to compute DBCE and the proof of its convergence under

certain assumptions. For simplicity, our analysis centres around the

Minimum Density CE (MDCE); but it applies to any other instance

of DBCE.

5.1 Density-Based Correlated Policy Iteration
Recall that computing an MDCE requires solving the constrained

optimisation problem defined in Eq. (4) where𝜑 (𝝅) = ∑
𝑠∈S∗ 𝜌

𝝅 (𝑠).
However, directly solving it is intractable because the density func-

tions in the objective and the expected return in the constraints

are defined in two different spaces; this prevents us from optimis-

ing the density-related objective whilst satisfying rewards-related

constraints in a unified fashion. We thus ask for a way to unify

the representations of the state density and expected return. Fortu-

nately, we observe that both the state density and expected return

can be rewritten in terms of the occupancy measure introduced in

Sec. 3. We can thereby simultaneously control the two by maintain-

ing a single variable, rather than in two separate spaces.

We next show how to derive an equivalent yet tractable form of

the original constrained optimisation problem. We first rewrite the

constraints of Eq. 4 by occupancy measure, reg′
𝑓
(𝑠, 𝑖, 𝑎𝑖 , 𝑎′𝑖 ), which

is defined as follows:∑︁
𝒂−𝑖

𝑓 (𝑠, 𝑎𝑖 , 𝒂−𝑖 )
[
𝑄𝝅
𝑖 (𝑠, 𝑎

′
𝑖 , 𝒂−𝑖 ) −𝑄

𝝅
𝑖 (𝑠, 𝑎𝑖 , 𝒂−𝑖 )

]
.

This is equivalent to reg′
𝜌𝝅
(𝑠, 𝑖, 𝑎𝑖 , 𝑎′𝑖 ), shown via Eq. (3).

With the relationship between the occupancy measure and the

density function, the objective function 𝜑 (𝝅) can also be rewritten

as 𝜑 ′ (𝑓 ), where

𝜑 ′ (𝑓 ) ≜ 𝐹
(∑︁
𝒂

𝑓 (𝑠1, 𝒂), . . . ,
∑︁
𝒂

𝑓 (𝑠𝑚, 𝒂)
)
. (5)

Recall that the density function can be rewritten as the sum of

occupancy measures within one state: 𝜌𝝅 (𝑠) = ∑
𝒂∈A 𝜌𝝅 (𝑠, 𝒂), the

new objective function becomes equivalent to the original objective

function. So far, we achieve the consistency between non-reward

requirements and reward requirements by occupancy measure. By

the properties of occupancy measure discussed in the previous

section, we recast the problem as follows:

Problem 1. min

𝑓 :S×A→R

∑︁
𝑠∈𝑆∗

∑︁
𝒂∈A

𝑓 (𝑠, 𝒂) subject to

reg′
𝑓
(𝑠, 𝑖, 𝑎𝑖 , 𝑎′𝑖 ) ≤ 0, ∀𝑖 ∈ [𝑁 ], 𝑠 ∈ S, 𝑎𝑖 , 𝑎′𝑖 ∈ A𝑖 ; (6)

BFError𝑓 (𝑠) = 0, ∀𝑠 ∈ S; (7)

𝑓 (𝑠, 𝒂) ≥ 0, ∀𝑠 ∈ S, 𝒂 ∈ A. (8)

Here, the Bellman flow constraints (7) and (8) enforce 𝑓 to be

the occupancy measure under some 𝝅 ∈ Π. For such an 𝑓 , the new

objective function

∑
𝒂∈A 𝑓 (𝑠∗, 𝒂) is equal to 𝜌𝝅 (𝑠∗), and (6) en-

forces 𝝅 to be a CE. Due to the one-to-one correspondence between

occupancy measures and stationary policies, a solution of Prob. 1

is the occupancy measure under a solution to the original problem.

However, Prob. 1 is still difficult to solve directly because both

𝑓 and 𝑄 (involved in reg′
𝑓
) are unknown. We introduce an itera-

tive approach to handle the problem that we call Density-Based
Correlated Policy Iteration (DBCPI). It alternates between (i) policy
evaluation: estimating 𝑄 values according to the current policy;

and (ii) policy improvement: computing a DBCE under the current

𝑄 function. More formally, let 𝑡 denote the index of iterations. At

each iteration, Q𝑡 = {𝑄𝑡
𝑖
}𝑖∈[𝑁 ] defines a stage game with constant

𝑄 values. Define reg𝑡
𝑓
(𝑠, 𝑖, 𝑎𝑖 , 𝑎′𝑖 ) as follows:∑︁

𝒂−𝑖

𝑓 (𝑠, 𝑎𝑖 , 𝒂−𝑖 )
[
𝑄𝑡𝑖 (𝑠, 𝑎

′
𝑖 , 𝒂−𝑖 ) −𝑄

𝑡
𝑖 (𝑠, 𝑎𝑖 , 𝒂−𝑖 )

]
.

By substituting reg′
𝑓
in Prob. 1 with reg𝑡

𝑓
, the stage game Q𝑡 is now

tractable to solve using linear programming. After deriving the

DBCE 𝝅𝑡 of the current stage game Q𝑡 , we head back to update 𝑄

functions and derive Q𝑡+1. The pseudocode is presented in Alg. 1.

Algorithm 1 Density-Based Correlated Policy Iteration

1: Input: A Markov game (S,A, 𝑃, {𝑟𝑖 }𝑁𝑖=1, 𝜂, 𝛾).
2: Initialisation: 𝑄𝑖 for each 𝑖 ∈ [𝑁 ], learning rate 𝛼
3: 𝝅 (𝑠, 𝒂) ← 𝑓 (𝑠, 𝒂)/∑𝒂′∈A 𝑓 (𝑠, 𝒂′)
4: for each iteration do
5: 𝑓 ← (solution to Prob. 1 with {𝑄𝑖 }𝑖∈[𝑁 ] )
6: 𝝅 (𝑠, 𝒂) ← 𝑓 (𝑠, 𝒂)/∑𝒂′∈A 𝑓 (𝑠, 𝒂′)
7: while Not converge do
8: Initialise state 𝑠 ∈ S
9: Observe transition (𝑠, 𝒂, 𝒓, 𝑠′)
10: for each 𝑖 ∈ [𝑁 ] do
11: 𝑉𝑖 (𝑠′) ←

∑
𝒂′∈A 𝝅 (𝑠′, 𝒂′)𝑄𝑖 (𝑠′, 𝒂′)

12: 𝑄𝑖 (𝑠, 𝒂) ← (1 − 𝛼)𝑄𝑖 (𝑠, 𝒂) + 𝛼 (𝑟𝑖 + 𝛾𝑉𝑖 (𝑠′))
13: end for
14: Decay 𝛼

15: end while
16: end for
17: Output: A joint policy 𝝅 , and 𝜑 ′ (𝑓 ) as the error of 𝝅 .

5.2 Convergence Analysis
We next prove that Q𝑡 converges to the 𝑄 values under a DBCE

as Alg. 1 is applied. We begin by introducing the following useful

technical assumptions.

Assumption 1. Each state 𝑠 ∈ S and action 𝑎𝑖 ∈ A𝑖 for all
𝑖 ∈ [𝑁 ] are visited infinitely often.
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Assumption 2. The reward is bounded by some constant.

Assumption 3. The learning rate 𝛼𝑡 satisfies the following condi-
tions: 0 ≤ 𝛼𝑡 < 1 ∀𝑡 , ∑𝑡 𝛼𝑡 = ∞ and

∑
𝑡 𝛼

2

𝑡 < ∞.

We also need the following lemma that guarantees the policy

estimation procedure after solving each stage game can converge

to 𝑄 values under 𝝅𝑡 .

Lemma 1 ([34]). Let Q be the space of all 𝑄 functions. Under
Assumption 1-3, the iteration defined by the following converges to
𝑄𝝅 with probability 1:

𝑄𝑡+1 (𝑠, 𝒂) = (1 − 𝛼)𝑄𝑡 (𝑠, 𝒂)

+ 𝛼𝑡
(
𝑟 (𝑠′, 𝒂) + 𝛾

∑︁
𝒂

𝝅 (𝒂 |𝑠′)𝑄𝑡 (𝑠′, 𝒂)
)
.

Now, we are ready to present our main theorem which shows

that DBCPI converges to a DBCE 𝑄 function under assumptions.

Theorem 1. Under Assumption 1-3, the 𝑄 function iteratively
updated in Alg. 1 will converge to the one under a DBCE if for all 𝑡 ,
𝑠 ∈ S, and 𝑖 ∈ [𝑁 ], the policy 𝝅𝑡 is recognised as the global optimum

expressed as:

∀𝝅 ′ ∈ Π, E𝒂∼𝝅𝑡 [𝑄𝑡𝑖 (𝑠, 𝒂)] ≥ E𝒂∼𝝅 ′ [𝑄
𝑡
𝑖 (𝑠, 𝒂)] .

Proof sketch. The basic idea is to show that the policy guided

byDBCPImonotonically improves in terms of rewards. By Lemma 1,

for all 𝑡 , after sufficient rounds of updates, we derive 𝑄 functions

Q𝑡+1 = {𝑄𝑡+1
𝑖
}𝑖∈[𝑁 ] under 𝝅𝑡 . By assumption, there always exists

a globally optimal policy for each encountered stage game Q𝑡 . As a
result, in every iteration the policy monotonically improves as the

iteration progresses:

E𝒂∼𝝅𝑡+1 [𝑄𝑡+1𝑖 (𝑠, 𝒂)] ≥ E𝒂∼𝝅𝑡 [𝑄𝑡+1𝑖 (𝑠, 𝒂)],
for all 𝑡 , 𝑠 ∈ S, and 𝑖 ∈ [𝑁 ]. This implies that after a sufficient

number of iterations, the policy converges to a globally optimal

one, and so does the 𝑄 function. By solving each stage game Q𝑡

using linear programming, all constraints in Prob. 1 can be satisfied.

At convergence, the policy is thus a feasible DBCE. □

Although Thm. 1 tells us that the convergence holds true under

strong constraints on every stage game, in experiments we find the

constraint is not necessary for DBCPI to converge. This fact is in

accordance with the empirical analysis in [20, 36].

6 EXPERIMENTS
We seek to answer the following questions via experiments:

Q1. Does our algorithm find a CE better than other approaches?
We evaluate this by checking the following values upon the termi-

nation of Alg. 1 after 𝐾 iterations:

MaxReg ≜ max

𝑠,𝑖,𝑎𝑖 ,𝑎
′
𝑖

reg𝐾+1
𝑓
(𝑠, 𝑖, 𝑎𝑖 , 𝑎′𝑖 ),

MaxBF ≜ max

𝑠
|BFError𝑓 (𝑠) |.

MaxReg can be seen as a “distance” between 𝝅 and the CE-set:

the larger the value is, the larger incentive there exists for some

agent to deviate from 𝝅 . In particular, 𝝅 is a CE when this value is

non-positive. MaxBF evaluates the soundness of the computation

in line 5: the larger the value is, the further 𝑓 deviates from 𝜌𝝅 , i.e.,

(a) FairGamble (b) Hunters (c) CaE

Figure 3: Screenshots of games.

the occupancy measure of 𝝅 . Such a deviation of 𝑓 implies that the

value 𝜑 ′ (𝑓 ) is unreliable as the error of 𝝅 .
To evaluate the algorithms in this question, we focus on the

MaxReg and MaxBF values in all cases. The smaller the values are,

the better the algorithms are. 9 extra MDCE tasks are carried out

to compare the MaxReg in modified games and original games for

risk-sensitive reward modification.

Q2. Does our policy generate desired trajectories?
We evaluate this by examining the patterns of individual trajectories

under the policy computed by Alg. 1 on all three requirements.

Q3. What is the accuracy of our DBCPI compared to existing ones?
To make the comparison in accuracy, we compare the errors (i.e.,

the value 𝜑 ′ (𝑓 ) in the output of Alg. 1), and select a few instances

from our data and illustrate them with plots.

Q4. What is the convergence performance of our DBCPI on learning?
We evaluate this by performing the iteration error plots of our

DBCPI in the experiments.

6.1 Experiment Setup
6.1.1 Game environments and tasks. We consider three game mod-

els (Fair Gamble, Hunters, Collect and Explore); for each of them,

we impose three different state-distribution requirements, which

make nine instances of the input to Alg. 1 in total. We have anony-

mously published animated demonstrations of our algorithm on

these games, which are available at https://github.com/nanaralala/

Density-based-Correlated-Equilibrium/. The screenshots are pre-

sented in Fig. 3. The description of each game is shown below.

(1) Fair Gamble. In this game, two gamblers play games with each

other, and they choose from 3 different games. 3 games are

extremely fair, so no matter what they do, the reward will be

given randomly. Game 1 gives 0 rewards fairly; Game 2 gives 0.5

to a gambler and -0.5 to another; Game 3 gives 1 to a gambler

and -1 to another.

In each round, the gamblers choose a number from 0,1,2 and

we compare the number to select which game they play. See

Fig. 3a for the explanation.

We consider three state-related requirements, namely

(a) a safety requirement for gamblers to avoid game 3.

(b) a frequency matching requirement for gamblers to choose

game 3 in 10% of the time.

(c) a fairness requirement that demands game 1 and game 2 to

have an equal frequency.

(2) Hunters. In this non-cooperative game, 3 hunters live in one

village. In each round, they are inside the village or outside the

village, and they can choose between going hunting or guarding
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the village against the animals, see Fig. 3b. If one hunter goes

hunting from the village, the hunter will get a high reward (1)

and the rest of the hunters will get a low reward (0.1). If one

hunter guards the village, all hunters will get the samemid-level

reward (0.5). If one hunter is outside of the village and still stays

hunting outside, we consider the behaviour is not safe enough,

so the reward he gains becomes smaller (0.5), and the others

will get a punishment reward (-0.5). Additionally, if there is less

or equal than 1 hunter guarding the village, they will receive

high punishment reward (-3).

We consider three state-related requirements, namely

(a) a safety requirement that demands at least 2 hunters to stay

in the village.

(b) a frequency matching requirement that requires less or equal

to one agent guarding the village 10% of the time.

(c) a fairness requirement that demands that the frequency of

hunter 1 goes hunting and the sum of hunter 2 and 3 go

hunting to be equal.

(3) Collect and Explore (CaE). In this cooperative game, 3 agents are

trapped in a forest, see Fig. 3c. They can choose to explore the

environment or collect some food nearby their accommodation.

If more than one agent chooses to go out, we randomly choose

one of them to go out, and the others will get no rewards. In

each round, if existing agents go exploration, we add 1 to the

reward; if any agent collects foods nearby, we add 0.3 to the

reward. Since it’s a cooperative environment, we set the same

reward for all agents.

We consider three state-related requirements, namely

(a) a safety requirement for agent 1 to not go out.

(b) a frequency matching requirement that confines agent 1 to

go out 10% of the time.

(c) a fairness requirement that demands that the frequency of

agent 1 go explore be equal to the sum of the frequencies that

agent 2 and agent 3 go explore.

6.1.2 Baselines. We implement utilitarian CE-Q [14] with risk-

sensitive reward modification and constrained methods. The detail

is shown as follows:

(1) Risk-sensitive Reward modification (RM). A negative constant

𝑝 < 0 is added to the reward at 𝑠 ∈ 𝑆∗. We write RM-𝑝 to denote

the algorithm with a specific 𝑝 .

(2) Constrained method (CM). An additional constraint 𝜑 ′ (𝑓 ) ≤ 𝑏
is added (cf. eq. (5)). We write CM-𝑏 to denote the algorithm

with a specific 𝑏.

RM is used as a baseline for the safety requirement only; we are not

aware if there exists a canonical way to do that for frequency match-

ing and fairness requirements. CM is used for all state requirements

we consider in the experiment.

6.1.3 Implementation details. The iteration number of Alg. 1 is

set to 250. Parameters in Alg. 1 are set to 𝛾 = 0.99 and 𝛼 decays

from 0.3 to 0.001. We run the algorithm 3 times for each experiment

environment, and the results are taken as the mean of 3 runs. In the

program, the optimisation problem in line 5 of Alg. 1 was solved

using an optimizer in [35].

Table 1: Comparisons on capabilities of found CE.

Game Metric Method

Requirement

Safety Fairness Freq-10

FairGamble

Error

DBCE 1.225 32.967 8.683

CM-0.05 8.331 0.466 6.053
CM-5 9.65 8.814 5.668

RM-1.5 17.725 — —

MaxBF

DBCE 0.464 0.13 0.521
CM-0.05 16.496 8.16 11.612

CM-5 18.054 7.781 6.623

RM-1.5 0.032 — —

MaxReg

DBCE 0.164 0.034 0.08
CM-0.05 0.174 0.172 0.22

CM-5 0.391 0.107 0.231

RM-1.5 0.11 — —

Hunters

Error

DBCE 14.129 4.442 3.643

CM-0.05 2.313 2.283 0.05
CM-5 2.124 2.174 5

RM-1.5 0.828 — —

MaxBF

DBCE 0 0 0.035

CM-0.05 0.005 0.001 0
CM-5 0.004 0.032 0
RM-1.5 0.001 — —

MaxReg

DBCE 0.044 0.061 0.037
CM-0.05 9.171 0.52 0.225

CM-5 0.479 1.18 0.18

RM-1.5 0.842 — —

CaE

Error

DBCE 0.419 0.002 7.608

CM-0.05 0.242 0.05 1.174
CM-25 16.802 9.688 11.854

RM-0.5 23.838 — —

MaxBF

DBCE 0 0 0
CM-0.05 0.023 0 0
CM-25 0.004 1.151 0
RM-0.5 0.023 — —

MaxReg

DBCE 0.002 0.001 0.003

CM-0.05 1.266 0.002 0.174

CM-25 0.419 6.695 0.001
RM-0.5 1.434 — —

6.2 Experiment Results
The following results and discussions answer questions asked at

the beginning of this section.

Q1. The results for this question are found in the MaxBF and

MaxReg rows in Tab. 1. DBCE has the smallest MaxBF value in

7 of 9 cases, which means DBCE performs better in finding oc-

cupancy measures and mapping them to policies. DBCE also has

the smallest MaxReg value in 7 of 9 cases, which means DBCE

performs better in finding policies in the CE-set. In conclusion of

this observation, our selection criteria perform better in finding CE

policies in these experiments. In 9 extra MDCE runs, 7 of 9 runs

show that the distance to CE-set in the original game is longer than
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(a) FairGamble-MDCE (b) Hunters-Freq-10 (c) CaE-Fairness

Figure 4: Results for trajectory performance are shown in 4a 4b 4c Close to 0 means desired trajectory.

the distance to CE-set in the modified game, which indicates the

disadvantage of the RM method.

Q2. The result for this question is found in Fig. 4a for MDCE, Fig. 4b

for FMCE and Fig. 4c for MGDCE. Each plot includes a few trajec-

tories generated by our algorithm, we estimate the gap between

the trajectories and the expected visitation counts, so the closer to

0 the value is, the better the trajectory is. In Fig. 4a, we observe

the trajectories have the expected property, which is the count of

visitations to undesired states is low. In Fig. 4b, we observe the

trajectories generated by our algorithm gradually converge to the

expected proportion of visitation. Few trajectories have a larger

deviation from the desired value, which indicates a larger deviation,

but others perform well. In Fig. 4c, all trajectories perform well in

balancing visitation in 30 steps (a similar pattern appears in the

rest 220 steps).

Figure 5: The error plot of ourDBCEfinding algorithmduring
learning. Take CAE-Fairness as an example. The error plot
illustrates the process of the algorithm getting stabilised.

Q3. The selected result for this question is shown in Fig. 2. There,

we picked up the cases with comparableMaxReg andMaxBF val-
ues, which means we drop the cases with large MaxReg or MaxBF
values; notice that these numbers should be (close to) zero to claim

that the algorithm found a CE with the computed error. The ex-

haustive result is found in Tab. 1.

In detail, DBCE has the smallestMaxReg andMaxBF values in
most cases. In CaE-MinGap case, DBCE and Cons005 have almost

the same performance in MaxReg and MaxBF, but DBCE has a

smaller error.

Q4. The results for this question are found in Fig. 5. We can observe

the error-step line gradually gets stable. Fluctuations in the early

stages vanish along with learning. We believe this early-stage fluc-

tuation can be caused by the updating of Q-functions, and risk gets

stable after the Q-functions get stable, which is reasonable since

it’s a policy-iteration process.

Table 2: The explanation on comparable instances.

Task Method MaxReg MaxBF Error

Hunters-MinGap

DBCE 0.061 0 4.442

Cons005 0.52 0.001 2.283

Cons5 1.18 0.032 2.174

FairGamble-MDCE

DBCE 0.164 0.464 1.225

RewMod 0.11 0.032 17.725

CaE-MinGap

DBCE 0.001 0 0.002

Cons005 0.002 0 0.05

Cons5 6.695 1.151 9.688

CaE-MDCE

DBCE 0.002 0 0.419

Cons005 1.266 0.023 0.242

Cons25 0.419 0.004 16.802

RewMod 1.434 0.023 23.838

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a new concept of the correlated equilib-

rium, the Density-Based correlate equilibrium (DBCE). It enables

us to find joint policies that satisfy both reward requirements, i.e.,

equilibrium, and non-reward requirements characterised by state

density functions. Different from existing methods, DBCE neither

modifies the shape or size of feasible CE-set to a game nor suffers

the parameter tuning problem. We connect density and reward by

occupancy measure, and design Density-Based Correlated Policy

Iteration (DBCPI) to compute DBCE. Experiments on various games

prove the advantage of our method in finding desired CEs. In fu-

ture works, one may be interested in implementing parameterised

version of DBCPI to solve more complex games with continuous

state-action space games. Additionally, one density-based objective

may lead to multiple points in the CE space, so further selection

among those candidates can also be the next step.
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