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ABSTRACT
We present new data structures for representing symmetric normal-
form games. These data structures are optimized for efficiently
computing the expected utility of each unilateral pure-strategy
deviation from a symmetric mixed-strategy profile. The cumulative
effect of numerous incremental innovations is a dramatic speedup
in the computation of symmetric mixed-strategy Nash equilibria,
making it practical to represent and solve games with dozens to
hundreds of players. These data structures naturally extend to role-
symmetric and action-graph games with similar benefits.
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1 INTRODUCTION
Symmetric games, where all players face identical incentives, play a
central role in game-theoretic analysis. Many of the classic examples
used to teach game-theoretic concepts [15, 24] such as prisoner’s
dilemma and rock-paper-scissors are symmetric, and the original
paper proposing the concept of a Nash equilibrium [19] addressed
symmetry and proved that symmetric games must have symmetric
equilibria. Symmetric games are quite common in the recent multi-
agent systems literature [2, 28]. The role of symmetry becomes
especially prominent in games with a large number of players,
because it is often only with the help of player symmetry that
incentives can even be tractably described, and multiple distinct
sub-fields of computational game theory [4, 29] rely heavily on
foundational assumptions about player symmetry to scale up game-
theoretic analysis.

Despite this importance, data structures for representing and
solving large symmetric games have received a paucity of atten-
tion in the research literature. Most libraries for representing and
solving games, particularly Gambit [18], but also GameTracer [1]
and QuantEcon [21], include few tools for efficiently solving large
symmetric games. One notable exception is the work of Jiang et al.
[14] on action-graph games, which incorporate player symmetry,
and which have been partially implemented in Gambit. However,
action-graph games focus primarily on theoretical compactness in
the action space, and only consider expected utility calculations
enough to ensure they take polynomial time. The data structures
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that have been implemented are not specifically optimized for equi-
librium computation under player symmetry, meaning that solving
large symmetric games remains inefficient.

In the sub-fields that scale up symmetric game analysis, approxi-
mations play a central role. Simulation-based games [29] frequently
employ player reduction methods [30] that use a reduced gamewith
a very small number of players to replace a game with dozens or
hundreds of players in the hope that analysis of the reduced-game
will approximately hold in the large game. Mean-field games [4]
give up on representing discrete players and replace them with an
average effect that aggregates over a continuum. Other approaches
aim to identify underlying representational compactness [9, 16] or
to avoid explicitly constructing game models in favor of sampling-
based techniques [10, 25]. These approximations are sometimes
unavoidable, when the representation is too large or the payoff
computations are too slow for a game to even be enumerated, but
analysts often end up resorting to approximation when faced with
any non-trivial number of players. The result is a substantial gap
between the very small games that can be represented and solved
exactly and the very large games where approximation is necessary.
We bridge this gap by designing efficient data structures that make
it practical to exactly solve much larger instances.

In this work, we present a detailed exploration of data structure
improvements for symmetric normal-form games, with specific
focus on the task of computing symmetric mixed-strategy Nash
equilibria. We argue, following Cheng et al. [6], that this is by
far the most compelling solution concept for symmetric games,
because symmetric equilibria are guaranteed to exist, and it provides
greater intuitive explanatory power for symmetries of the game
to be reflected in its equilibria. While computing symmetric Nash
equilibria can be hard in the worst case [7, 8], incomplete local-
search algorithms such as replicator dynamics and gradient descent
are often highly successful in practice.

To facilitate algorithms for identifying symmetric equilibria, we
aim for data structures that optimize the calculation of deviation
payoffs (and their derivatives). For a symmetric mixed strategy em-
ployed by all players, the deviation payoff vector gives, for each
action, the expected utility a single agent would receive if they
deviated unilaterally to that action. For a large fraction of the al-
gorithms used to compute Nash equilibria, the ability to evaluate
deviation payoffs for symmetric mixed strategies is both necessary
and sufficient; for most other algorithms, deviation payoffs plus
their derivatives suffice. We show that focusing the design of sym-
metric game data structures toward deviation payoffs leads to a
number of optimizations that jointly yield a dramatic improvement
in the practical efficiency of solving large symmetric games.
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1.1 Contributions
We describe seven distinct upgrades to classic data structures for
representing symmetric normal-form games. Two of these (sections
3.3 and 3.4) constitute asymptotic improvements: changing from
𝑃-player profiles to (𝑃 − 1)-opponent configurations reduces the
number of stored payoff entries (with 𝐴 actions) from 𝐴

(𝑃+𝐴−1
𝑃

)
to

𝐴
(𝑃+𝐴−2
𝑃−1

)
, and pre-computing probability weights to avoid repeated

multinomial calculations accelerates equilibrium searches by a fac-
tor of 𝐴. Four of the upgrades focus on vectorization, resulting in
better constants and enabling SIMD acceleration. And we find—as
has been well-established in the settings of neural networks and
scientific computation—that such improvements can qualitatively
change the scope of the computational tools. The remaining up-
grade (section 3.6) follows because the overall expansion-of-scope
enables us to analyze games so large that the probability calcu-
lations can overflow 64-bit integers, necessitating a switch to a
log-space representation of payoffs and probabilities.

Our main result is a roughly ten-thousand-fold speedup in the
running time of equilibrium computation algorithms for symmetric
games with many players. This makes it possible to run practical-
but-incomplete search methods like replicator dynamics on any
symmetric game that can fit in memory, and can also facilitate
other slower equilibrium-search techniques. Our results effectively
close the gap between small and large symmetric games, relegating
approximation techniques to only those games too large to be
represented explicitly.

Two open-source libraries implement most of the data structures
and algorithms we discuss. The gameanalysis.jl1 repository pro-
vides simple Julia implementations of the best CPU and GPU ver-
sions of our symmetric game data structure, and also includes all
of the code for experiments in this paper. The gameanalysis.py2
module implements in Python the data structure variants for role-
symmetric games that we discuss in Section 5.2 and provides a
richer command-line interface with numerous tools for solving
role-symmetric games.

2 BACKGROUND
2.1 Terminology
In a symmetric game, all players have the same action set and
identical incentives. We therefore refer to the number of players
𝑃 , but rarely distinguish individual players. We call the number of
actions 𝐴, and will often index the actions by 𝑎 ∈ {1, . . . , 𝐴}.

A profile specifies an action for each player, and in a symmetric
game, we can represent a profile by an integer-vector ®𝑠 specifying
a non-negative number of players selecting each action. We denote
the entries in a vector with a subscript, so ®𝑠𝑎 is the player-count for
action 𝑎. We use a superscript 𝑖 or 𝑗 to index vectors in a collection:
for example ®𝑠𝑖 ; to avoid ambiguity, exponents are generally applied
to a quantity in parentheses. We will also distinguish a profile from
an opponent configuration ®𝑐 , which differs only in that

∑
𝑎 ®𝑠𝑎 = 𝑃 ,

while
∑
𝑎 ®𝑐𝑎 = 𝑃 − 1. We refer to the configuration resulting from

removing action 𝑎 from profile ®𝑠 as (®𝑠 | 𝑎), since it will often appear
in probability calculations and other contexts where it is given that

1https://github.com/Davidson-Game-Theory-Research/gameanalysis.jl
2https://github.com/egtaonline/gameanalysis

one player selects action 𝑎. In terms of the integer-vector repre-
sentation, (®𝑠 | 𝑎) subtracts 1 from dimension 𝑎 of ®𝑠 . A symmetric
game’s payoffs can be expressed as the value achieved by a player
choosing action 𝑎 when opponents play configuration ®𝑐 , which we
denote by 𝑣𝑎 (®𝑐) normally, or by 𝑣𝑎 (®𝑠 | 𝑎), when working in terms
of profile ®𝑠 .

A mixed strategy specifies a probability distribution over ac-
tions, and a mixed strategy used by all players is called a symmetric
mixed-strategy profile. We denote this with the variable ®𝜎 , and
will often abbreviate the term by referring to a mixture. When
computing probabilities, we will frequently refer to the number of
asymmetric arrangements corresponding to a symmetric configura-
tion, which we call repetitions. We denote this quantity by Reps (®𝑐)
or Reps (®𝑠 | 𝑎), and calculate it with the following multinomial:

Reps (®𝑐) =
(

𝑃 − 1
®𝑐1, ®𝑐2, . . . , ®𝑐𝐴

)
=
(𝑃 − 1)!
®𝑐1!®𝑐2! . . . ®𝑐𝐴!

(1)

2.2 Deviation Payoffs
When analyzing a symmetric game, we are most often interested
in computing symmetric mixed-strategy Nash equilibria. For many
algorithms that compute such equilibria a necessary and sufficient
condition is the ability to compute deviation payoffs, and for most
other algorithms, deviation payoffs plus deviation derivatives suf-
fice. We begin by formally defining these terms, and then describe
their application to our preferred equilibrium computation algo-
rithms in section 2.3.

Given a symmetric mixed-strategy profile ®𝜎 , we define the devi-
ation payoff ®𝑢𝑎 ( ®𝜎) for action 𝑎 as the expected utility one player
would receive if they played 𝑎 while all opponents randomized
according to ®𝜎 . This expectation is often expressed as a sum over all
profiles in which 𝑎 is played of the probability that profile occurs
times the payoff to 𝑎 in that profile:

®𝑢𝑎 ( ®𝜎) =
∑︁
®𝑠 : ®𝑠𝑎>0

Pr
®𝜎
(®𝑠 | 𝑎) 𝑣𝑎 (®𝑠 | 𝑎) (2)

but can be stated much more cleanly using configurations:

®𝑢𝑎 ( ®𝜎) =
∑︁
®𝑐
𝑣𝑎 (®𝑐) Pr

®𝜎
(®𝑐) (3)

=
∑︁
®𝑐
𝑣𝑎 (®𝑐) Reps (®𝑐)

∏
𝑎′
( ®𝜎𝑎′ )®𝑐𝑎′ (4)

The deviation payoff vector ®𝑢 ( ®𝜎) collects these values for all ac-
tions 𝑎 ∈ {1, . . . , 𝐴}. We call the partial derivatives of deviation
payoffs with respect to mixture probabilities deviation derivatives.
Specifically, 𝜕®𝑢𝑎 ( ®𝜎 )

𝜕 ®𝜎𝑠 gives the change in the deviation payoff for
action 𝑎 as the probability of action 𝑠 is varied. Again this can be
expressed in terms of profiles, but is more straightforward in terms
of configurations: 3

𝜕®𝑢𝑎 ( ®𝜎)
𝜕®𝜎𝑠

=
∑︁
®𝑐
𝑣𝑎 (®𝑐)Reps (®𝑐) (®𝑐𝑠 ) ( ®𝜎𝑠 )®𝑐𝑠−1

∏
𝑎′≠𝑠

( ®𝜎𝑎′ )®𝑐𝑎′ (5)

3Note that efficient computation of ( ®𝜎𝑠 ) ®𝑐𝑠 −1 can result in numerical errors for mix-
tures where ®𝜎𝑠 = 0. This sort of error can be avoided here and elsewhere with no real
loss of precision by lower-bounding mixture probabilities at machine-epsilon.
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Figure 1: Execution traces for both replicator dynamics (red)
and gradient descent (yellow) on a 100-player, 3-action game.
The underlying heatmap shows mixture regret. Black points
are starting mixtures. Large points indicate 𝜀-equilibria. The
3 orange equilibria were found by both algorithms. RD found
2 unique equilibria, while GD found 6.

We can define most other standard game-theoretic quantities for
symmetric games in terms of deviation payoffs. The expected utility
experienced by all players when following a symmetric mixed
strategy is given by the dot product 𝑢 ( ®𝜎) = ®𝑢 ( ®𝜎) · ®𝜎 . The regret
of a mixture is reg( ®𝜎) = max𝑎 (®𝑢𝑎 ( ®𝜎) − 𝑢 ( ®𝜎)). A symmetric Nash
equilibrium is a mixture with reg( ®𝜎) = 0, while an approximate
Nash equilibrium has reg( ®𝜎) ≤ 𝜀, for suitable 𝜀.

2.3 Equilibrium Computation
Computing deviation payoffs and/or their derivatives is the key
step for a number of algorithms that identify Nash equilibria in
symmetric games. We describe two of the most practical algorithms
here: replicator dynamics, which depends on deviation payoffs,
and gradient descent on sum-of-gains, which depends on devia-
tion derivatives. Our data structures can also efficiently support
a number of other Nash algorithms, including fictitious play [3],
Scarf’s simplicial subdivision [22], and the global Newton method
of Govindan and Wilson [11], as well as some algorithms for cor-
related equilibria [13]. The Nash Algorithms Appendix4 presents
further details on how some of these algorithms depend on devia-
tion payoffs.

Replicator dynamics. [26] is often presented as a rule governing
evolutionary dynamics, but can also be viewed as an algorithm for
computing symmetric Nash equilibria. Expressed in terms of devia-
tion payoffs, replicator dynamics starts from some initial mixture
®𝜎0 at 𝑡 = 0, and performs iterative updates of the form:

4See Appendix C: Nash Algorithms. https://arxiv.org/abs/2302.13232

®𝑤𝑎 ← ®𝜎𝑡𝑎 ®𝑢𝑎 ( ®𝜎𝑡 )

®𝜎𝑡+1𝑎 ← ®𝑤𝑎∑
𝑎′ ®𝑤𝑎′

This update assumes that all payoffs are non-negative; a positive
affine transformation can be applied to any game to ensure this
assumption holds (and to adjust the effective step-size).

Gradient descent. is a classic local-search algorithm for minimiz-
ing differentiable functions. We can easily define a function whose
minima correspond to Nash equilibria based on the following sum
of deviation gains:

𝑔( ®𝜎) =
∑︁
𝑎

max (0, ®𝑢𝑎 ( ®𝜎) − ®𝑢 ( ®𝜎) · ®𝜎)

Then we can iteratively take steps in the direction of −∇𝑔( ®𝜎). The
elements of this gradient vector are given by:

∇𝑠 (𝑔) =
∑︁
𝑎

(
𝜕®𝑢𝑎 ( ®𝜎)
𝜕𝑠

− ®𝑢𝑠 ( ®𝜎) −
∑︁
𝑎′
®𝜎𝑎′

𝜕®𝑢𝑎′ ( ®𝜎)
𝜕𝑠

)
1𝑔𝑠

Where 1𝑔𝑠 is an indicator variable for ®𝑢𝑠 ( ®𝜎) > ®𝑢 ( ®𝜎) · ®𝜎 . So devia-
tion payoffs and deviation derivatives suffice to compute the gain
gradient. When performing gradient descent, the mixture resulting
from ®𝜎 − ∇𝑔( ®𝜎) may not lie on the probability simplex, so it is
necessary to project each step back onto the simplex, which we do
using the method from Wang and Carreira-Perpinán [27].

Neither replicator dynamics nor gradient descent is guaranteed
to identify a Nash equilibrium. However, since these algorithms
are many orders of magnitude faster than complete algorithms like
simplicial subdivision or global Newton, it is practical to re-run
them from many initial mixtures. We find that both algorithms tend
to identify multiple equilibria in large symmetric games and that
the sets of equilibria they find are often only partially overlapping.
On the other hand, we find that fictitious play and other best-
response-based updates are ineffective on large symmetric games.
Therefore in practice, we recommend repeatedly running both
replicator dynamics and gradient descent, filtering by regret to
isolate 𝜀-Nash mixtures, and merging the resulting equilibrium
sets. An example trace from running both algorithms on a 100-
player, 3-action Gaussian mixture game (represented using our
data structures) appears in Figure 1.

3 DATA STRUCTURE IMPROVEMENTS
The classic payoff-matrix representation of a normal-form game has
a dimension for each player, and a size along each dimension equal
to the number of actions available to that player. In a symmetric
game, it suffices to store just one player’s payoffs, so if there are 𝑃
players and 𝐴 actions, a symmetric game can be represented by a
symmetric tensor of size 𝐴𝑃 .

Because symmetric tensors also arise in other settings, it is worth
considering whether generic techniques for symmetric tensors
would suffice for efficiently representing symmetric games. In par-
ticular, Schatz et al. [23] propose a block-representation of sym-
metric tensors and a cache-conscious algorithm for multiplying
with them. In principle, their representation has the same level
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Figure 2: The normal-form (dotted lines) and symmetric-
tensor (dashed lines) representations use significantly more
memory than the largest of our proposed data structures.

of asymptotic compression as the data structures presented here.
However, in Figure 2, we compare the memory footprint of the
Schatz et al. symmetric-tensor representation (as implemented
by the SymmetricTensors.jl library) against the largest of our
symmetric-game data structures (pre-computed repetitions), show-
ing that while the block-symmetric representation is better than
storing the full payoff matrix, it is significantly larger than any of
our data structure variants.

3.1 Payoff Dictionary
We therefore turn to purpose-built data structures for storing sym-
metric games. The classic approach is to store a mapping from
profiles to payoffs. In Gambit [18] the implementation of symmet-
ric action-graph games stores this mapping in a trie, while others
have used a database [5]. Such a mapping is also implicit in many
theoretical descriptions, for example when relating the size of a
compact representation to the number of profiles [12, 14]. In our
experiments, our baseline data structure stores this mapping using
a hash table that maps a vector of integers representing the profile
®𝑠 to a vector of floats that stores the payoff 𝑣𝑎 (®𝑠) for each played
action with ®𝑠𝑎 > 0. With 𝑃 players and 𝐴 actions, this table will
store

(𝑃+𝐴−1
𝑃

)
profiles.

Calculating a deviation payoff𝑢𝑎 ( ®𝜎) using this mapping requires
iterating through all profiles to compute the sum from Equation (2),
where the probabilities are given by this expression:

Pr
®𝜎
(®𝑠 | 𝑎) = Reps (®𝑠 | 𝑎) ( ®𝜎𝑎)®𝑠𝑎−1

∏
𝑎′≠𝑎

( ®𝜎𝑎′ )®𝑠𝑎′ (6)

Reps (®𝑠 | 𝑎), calculated according to the multinomial from Equa-
tion (1), gives the number of asymmetric orderings of the symmetric
configuration (®𝑠 | 𝑎), while the remaining terms gives the probabil-
ity of the opponents jointly playing one such asymmetric ordering.
The Worked Examples Appendix shows the full mapping and a
detailed walk-through of the deviation payoff calculation on an
example 3-player, 3-strategy symmetric game for this version of the
data structure as well as for all subsequent variants. We strongly

recommend stepping through these examples to help resolve any
confusion that arises from the data structure and algorithm descrip-
tions that follow.5

3.2 Array Vectorization
The first idea for improving this deviation payoff calculation is to
store the profiles ®𝑠 and the payoffs 𝑣 in a pair of two-dimensional
arrays with parallel structure, denoted by a shared index 𝑖 over
all profiles. In both arrays, each row corresponds to an action and
each column corresponds to a profile, resulting in arrays of size
𝐴×

(𝑃+𝐴−1
𝑃

)
. Extracting column 𝑖 of the profiles-array gives a profile

vector ®𝑠𝑖 with the count for each action. The corresponding column
of the payoffs-array stores the payoff 𝑣𝑎

(
®𝑠𝑖 | 𝑎

)
for each action 𝑎

where that profile has a non-zero count.
Of note, the array representation here (and in all subsequent

data structure variants) hinders direct look-up of payoffs for a pure-
strategy profile using the mapping. However, this trade-off is clearly
worthwhile for several reasons:

(1) Calculatingmixed-strategy deviation payoffs is amuch tighter
bottleneck than looking up pure-strategy payoffs.

(2) Symmetric mixed-strategy equilibria in symmetric games
are more often relevant than asymmetric pure-strategy equi-
libria (and are guaranteed to exist).

(3) The profile-to-index mapping can be computed by a ranking
algorithm for combinations-with-replacement [17], or can be
stored alongside the arrays for fast lookup with only linear
additional memory.

Using this array representation, we can vectorize each of the
steps in the calculation of the deviation payoff ®𝑢𝑎 ( ®𝜎). We describe
each of the following operations in terms of profile 𝑖 , and broadcast
those operations across array columns. First, we can compute a
mask𝑚 identifying the profiles where action 𝑎 is played:

𝑚𝑖 ← ®𝑠𝑖𝑎 ≠ 0 (7)

Then for each such profile, we can remove a player choosing 𝑎

to get the opponent-configuration ®𝑐𝑖 = (®𝑠𝑖 |𝑎) by subtracting an
indicator vector ®𝑒𝑎 for action 𝑎:

®𝑐𝑖 ← ®𝑠𝑖 − ®𝑒𝑎 (8)

For each profile, the probability 𝑝𝑖 = Pr
(
®𝑐𝑖
)
of the opponent con-

figuration is calculated by a multinomial to compute repetitions
along with a broadcast-and-reduce to apply exponents and take the
product, resulting in an array of configuration probabilities:

𝑝𝑖 ← Reps
(
®𝑐𝑖
) ∏

𝑎′
( ®𝜎𝑎′ )®𝑐

𝑖
𝑎′ (9)

Finally the deviation payoff for action 𝑎 can be computed by ex-
tracting row 𝑎 of the payoffs array, multiplying element-wise by the
configuration probabilities, masking out the invalid configurations,
and summing over the remaining profiles:5

®𝑢𝑎 ( ®𝜎) ←
∑︁
𝑖

𝑚𝑖 𝑝𝑖 𝑣𝑎

(
®𝑐𝑖
)

Since these steps can be performed using only arithmetic primi-
tives and indexed reduction, the computation is vectorizable in any
numeric library. Further vectorization over actions is in principle
5See Appendix A: Worked Examples. https://arxiv.org/abs/2302.13232
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possible, but we defer this to later sections. The degree of improve-
ment from array vectorization will vary with the language used.
More importantly, it sets the stage for our subsequent innovations.

3.3 Pre-computed Repetitions
The next improvement comes from recognizing that each time
we compute a deviation-payoff vector ®𝑢 ( ®𝜎), we make use of the
Reps (®𝑠 | 𝑎) value for every profile-action pair. Since equilibrium
search involves many, many deviation-payoff calculations, we can
save significant work by pre-computing these repetitions and stor-
ing them in a third parallel array. Then the probability calculation in
Equation (9) can extract row 𝑎 of this repetitions array and element-
wise multiply by the array of products. Our gameanalysis.jl li-
brary1 and the Worked Examples Appendix5 each include a version
of this data structure that computes ®𝑢 ( ®𝜎) in a single pass instead
of computing ®𝑢𝑎 ( ®𝜎) separately for each action, but we defer the
detailed explanation of this vectorization to the following variant
where it is dramatically simplified.

3.4 Opponent Configurations
A closer inspection of these parallel array structures reveals some
redundancies: first the payoffs array contains a number of meaning-
less entries, since whenever ®𝑠𝑎 = 0 the corresponding 𝑣𝑎 is masked
out of the calculations.5 Second, the repetitions array contains a
number of redundant entries: whenever two profiles differ by a
single player’s action, that is (®𝑠 | 𝑎) = (®𝑠 ′ | 𝑎′) we will end up
storing identical entries for Reps (®𝑠 | 𝑎) and Reps (®𝑠 ′ | 𝑎′).

Both of these issues can be avoided if we switch to storing
opponent-configurations, with a shared index 𝑗 over all config-
urations. This gives us two parallel arrays of size 𝐴 ×

(𝑃+𝐴−2
𝑃−1

)
for

configurations and payoffs, and a 1 ×
(𝑃+𝐴−2
𝑃−1

)
repeats-array. The

configurations-array now stores each configuration ®𝑐 𝑗 over 𝑃 − 1
opponents. Each corresponding column of the repeats-array stores
Reps

(
®𝑐 𝑗

)
, and the same column of the payoffs-array stores, for

each action 𝑎, the payoff 𝑣𝑎 (®𝑐 𝑗 ) for a player choosing 𝑎 when their
opponents play according to ®𝑐 𝑗 .

This also simplifies the deviation-payoffs calculation. We com-
pute probability 𝑝 𝑗 = Pr(®𝑐 𝑗 ) of a configuration in same way as
before, except we can skip the steps from Equations 7 and 8, instead
simply accessing configuration ®𝑐 𝑗 from storage:

𝑝 𝑗 ← Reps
(
®𝑐 𝑗

) ∏
𝑎′
( ®𝜎𝑎′ )®𝑐

𝑗

𝑎′

The key difference in this equation is that we compute the probabil-
ity of a configuration 𝑗 , instead of the probability of a configuration
derived from a masked profile 𝑖 . This change removes the need to
mask payoffs and means that the configuration probabilities are
identical for all deviations, meaning we do not have to perform a
separate probability calculation for each action. This single array
of configuration probabilities in turn simplifies vectorization over
deviation actions, easily giving us the whole deviation-payoff vec-
tor at once. To get deviation payoffs, we multiply the configuration
probabilities 𝑝 𝑗 by the payoffs-array (broadcasting over actions),
and sum over the configurations dimension.

®𝑢 ( ®𝜎) ←
∑︁
𝑗

𝑝 𝑗 ®𝑣 𝑗 (10)

Here ®𝑣 𝑗 refers to a column of the payoffs-array, and summing these
configuration-payoff vectors gives us a vector of deviation payoffs.
The code for this version is the easiest to understand, so despite
our recommended further improvements, we include it in the Julia
Code Appendix.6

3.5 Pre-Weighting by Repetitions
The next improvement comes from the realization that by associa-
tivity we can re-group Equation (10) as follows.

®𝑢𝑎 ( ®𝜎) ←
∑︁
𝑗

(
𝑣𝑎

(
®𝑐 𝑗

)
Reps

(
®𝑐 𝑗

)) ∏
𝑎′
( ®𝜎𝑎′ )®𝑐

𝑗

𝑎′ (11)

Which means that even though repetitions are logically part of
the probability calculation, we can simplify our computations by
storing them with the payoff values. Specifically, we can combine
the repeats-array into the payoffs-array by multiplying each payoff
value by that configuration’s repetitions, so that the entry in row 𝑎,
column 𝑗 of the payoffs array stores the value:

Reps
(
®𝑐 𝑗

)
𝑣𝑎

(
®𝑐 𝑗

)
This operation can be performed once in advance, saving space and
speeding up all subsequent deviation payoff calculations.5

3.6 Log Transformation
The combined effect of all the improvements so far is sufficient to
allow reasonably efficient deviation payoff calculations for games
with over 100 players, as long as the number of actions is kept small,
but this poses a new problem:

( 32
6,6,6,7,7

)
> 263, meaning that the rep-

etitions overflow a 64-bit integer for some profiles with 𝑃 = 33 and
𝐴 = 5. We can solve this problem by working with log-probabilities,
and this incidentally produces a slight computational speed-up by
making use of arithmetic operations that consume fewer processor
cycles when we transform exponents into multiplication and mul-
tiplication into addition. Specifically, we can store the natural (or
other base) log of the repetition-weighted payoffs 𝜆, and to calculate
repetitions, we can use a log-gamma function to avoid overflows.

𝜆
𝑗
𝑎 ← log

(
Reps

(
®𝑐 𝑗

))
+ log

(
𝑣𝑎 (®𝑐 𝑗 )

)
This will not work if payoffs are negative, but since any positive

affine transformation of utilities has no effect on incentives, we can
transform any game into one with non-negative payoffs. In fact, we
find it useful under all of our game representations to transform the
payoffs into a standardized range, to simplify hyperparameter tun-
ing for various equilibrium-computation algorithms. And of course
these calculations can be vectorized as before with the exponential
applied element-wise to an array with contribution-values for each
configuration.

We can now compute deviation payoffs using this representa-
tion by first computing each configuration’s contribution 𝛾 𝑗 to the
deviation payoff in log-space.

𝛾 𝑗 ← exp

(
𝜆 𝑗 +

∑︁
𝑎′
®𝑐 𝑗
𝑎′ log ®𝜎𝑎′

)
(12)

6Implementation shown in Appendix B: Julia Code. https://arxiv.org/abs/2302.13232
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and then summing over all configurations.5

®𝑢𝑎 ( ®𝜎) ←
∑︁
𝑗

𝛾 𝑗

3.7 GPU Acceleration
Now that our deviation-payoff calculations are done as a sequence
of simple mathematical operations broadcast across large arrays of
floating-point data, an obvious way to accelerate them is to move
the computation to a graphics processor. Most modern program-
ming languages have libraries that make GPU translation manage-
able for operations as simple as ours, and specifically in Julia the
translation is trivial, requiring only that we choose an array data
type that moves the data to the GPU; the code for CPU and GPU
versions of our final data structure is otherwise identical.6

3.8 Batch Processing
The final improvement we implemented requires no change to the
preceding data structure, but instead uses it more efficiently. If mem-
ory allows, we can take even greater advantage of SIMD operations
on the GPU by computing deviation payoffs for a batch containing
multiple mixtures.6 This is useful because many of the algorithms
we use to compute Nash equilibria are forms of local search where it
can help to initialize them from many starting points. For example,
in both replicator dynamics and gain-gradient descent, we generally
restart the algorithm as many as 100 times from different initial
mixtures, so by parallelizing deviation-payoff calculations, we can
parallelize multiple restarts of the algorithm. This adds an extra
dimension to the intermediate arrays constructed by the deviation
payoff computation, giving them dimension actions × configura-
tions × mixtures. This is mainly helpful with small games, since
large games can occupy all GPU execution units with the deviation-
payoff calculation for a single mixture. If batch processing is used
on large games, the number of mixtures must be carefully chosen
to not exceed available GPU memory.

3.9 Deviation Derivatives
For any of the data structure variants we describe, it is possible to
calculate deviation derivatives, but here we describe the approach
only for the final log-transformed variants.

Computing the Jacobian with respect to the mixture probability
®𝜎𝑠 only requires a small addition to the deviation payoff contribu-
tions computed in equation (12); we multiply by ®𝑐𝑠®𝜎𝑠 over a new
dimension 𝑠 , before summing across configurations.6

𝜕®𝑢𝑎 ( ®𝜎)
𝜕®𝜎𝑠

←
∑︁
𝑗

®𝑐 𝑗𝑠
®𝜎𝑠
𝛾 𝑗

Table 1: For a given number of actions 𝐴, the largest number
of players 𝑃 before repetitions overflows a 64-bit integer.

𝐴 2 3 4 5 6 7 8 9 10
max𝑃 67 44 36 32 29 27 26 25 25

𝐴 11 12 13 14 15 16 17 18 ≥ 19
max𝑃 24 23 23 23 23 22 22 22 21

Figure 3: GPU memory required to store the final version of
our data structure. Batch-computation of deviation payoffs
increases memory footprint by a linear factor.

This calculation can be fully vectorized using similar operations
but adds a dimension since we have a partial derivative for each
pair of actions. This extra dimension is the main reason gradient
descent runs slower than replicator dynamics in our experiments.

4 VALIDATION AND EXPERIMENTS
4.1 Size Limits
The first constraint on the size of the data structures comes from
integer overflows when calculating repetitions. Table 1 shows the
upper limit in terms of 𝑃 and 𝐴 beyond which at least one profile
will overflow a signed 64-bit integer. For example, if we want to
represent a 5-action game with more than 32 players, we must use
the log-transform to ensure that we calculate probabilities correctly.
Note that using unsigned integers usually makes no difference and
never allows more than one extra player.

This raises the question of whether we sacrifice precision when
using the log-transform. To test this, we generated 10 random
bipartite action-graph games for every combination of 2 ≤ 𝑃 ≤
512 and 2 ≤ 𝐴 ≤ 20 for which the size of our data structures
would be below 1GiB. We then represented these games using
the CPU (64-bit) and GPU (32-bit) versions of our data structure,
and calculated deviation payoffs for 1000 mixtures per game and
recorded the largest error in the calculated deviation payoffs. These
errors were tiny, except in games with hundreds of players in the
32-bit representation, and even then the scale of the errors was
at least 7 orders of magnitude smaller than the payoff range of
the game. Full results are shown in the Supplementary Figures
Appendix.7

With these results, the question of what games we can represent
comes down to what can fit in (main or GPU) memory. Figure 3
shows the size of the GPU data structure as 𝑃 increases for various
values of 𝐴. A similar figure for 64-bit arrays appears in Appen-
dix D.7 Note that calculating deviation payoffs requires storing
intermediate arrays of similar size to the data structure, so game

7See Appendix D: supplementary figures. https://arxiv.org/abs/2302.13232
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Figure 4: Time to required to compute deviation payoffs for
1024 mixtures in 4-action games using each data structure
variant. Lines stop when either an integer overflow is en-
countered or when more than 1GB of memory is required.
Similar plots for 𝐴 = 6 and 𝐴 = 8 appear in Appendix D.

size should be restricted to below half of available memory (or
smaller if we want to calculate deviation payoffs in batches). Note
that these sizes mean that it is entirely reasonable to store a 100-
player, 6-action game.

4.2 Timing Comparisons
Figures 4 and 5 show our main results: our data structures produce
significant speedup in computing deviation payoffs and therefore
running Nash-finding algorithms. Timing comparisons were run
using an AMD Threadripper 2990WX CPU and NVIDIA RTX 2080-
Ti GPUs. Figure 4 shows the time to compute deviation payoffs
using each of the data structures described in the previous section.
The first several lines end at 𝑃 = 32, since this is near the int-
overflow limit for 𝐴 = 4. The batch-processing line ends at 𝑃 =

128, because operating on a batch of 64 mixtures requires much
more memory. Note that our proposed data structure can compute
deviation payoffs in a game with 384 players faster than the baseline
data structure can handle 𝑃 = 12. Many more deviation-payoff
timing comparisons including 6- and 8-action games appear in
Appendix D.7

Figure 5 shows a similar result for Nash-finding, but focusing
only on our best data structure, and using batch sizes adapted to
available memory. First, note that replicator dynamics using our
data structure outperforms the previous implementation by four
orders of magnitude. Gradient descent is consistently an order of
magnitude slower than replicator dynamics, making it impractical
and not generally implemented with older data structures. But with
our data structure that slowdown can often be acceptable because
gradient descent and replicator dynamics frequently identify some
distinct equilibria (as illustrated in Figure 1), and so in cases where
replicator dynamics fails or more equilibria are desired it is entirely
reasonable to run both algorithms. For example, with 𝐴 = 4 and

Figure 5: Time to compute Nash equilibria in 4-action games
with 100 starting mixtures and 1000 iterations. Replicator
dynamics is considerably faster than gradient descent (and
could get away with fewer iterations), but it is often worth-
while to run both. Our data structure lets us represent and
solve much larger games than the previous state-of-the-art.
Similar plots for 𝐴 = 6 and 𝐴 = 8 appear in Appendix D.

𝑃 = 512, we can perform 100 runs of replicator dynamics or gradi-
ent descent in a reasonable time-frame. Timing results shown in
Appendix D for 𝐴 = 6 and 𝐴 = 8 are broadly similar.7

5 EXTENSIONS
5.1 Many Strategies
The size of our data structures and therefore the time to compute
deviation payoffs scales reasonably similarly with respect to the
number of players 𝑃 and the number of actions 𝐴. The configu-
rations and payoffs arrays both have size 𝐴 ×

(𝑃+𝐴−2
𝑃−1

)
, which is

dominated by the binomial that grows exponentially in the smaller
of 𝑃 and 𝐴. As a result, it is generally possible to represent games
with a large number of players but a small number of actions or a
large number of actions but a small number of players, with the
caveat that actions contribute an extra linear factor.

Unfortunately, equilibrium computation does not scale equally
well in players and actions. Identifying symmetric mixed-strategy
Nash equilibria means searching for specific points in the mixed-
strategy simplex, whose dimension grows with the number of ac-
tions. The various complete algorithms are generally hopelessly
slow with large numbers of actions, and the local search methods
we prefer are much less likely to identify an equilibrium on any
given run. This means that solving symmetric games with many
players is far more feasible than solving ones with many actions.

To handle games with many actions, we can take inspiration
from Porter et al. [20], and search for equilibria with small sup-
port sets. This requires solving a subgame defined by restricting
the game to a subset of the actions, and then checking whether
those subgame solutions have beneficial deviations in the full action
set. To facilitate this, we can use a variant of our data structure
where we include additional rows in the payoffs-array represent-
ing actions outside the support set, but make no change to the
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configurations-array. Then for a mixture in the support set, we can
compute deviation payoffs for all actions against that mixture by
expanding the step where we broadcast the multiplication of config-
uration probabilities and payoffs. If we determine that the current
subgame set does not contain a Nash equilibrium, we can update
the support set replacing weaker strategies with stronger ones, as
measured by deviation gain against the subgame’s candidate so-
lutions (or other metrics). This will iteratively search the space of
supports and eventually identify a small-support equilibrium if any
exist. This approach of constructing complete subgames with extra
payoff information for unilateral deviations is already widely used
in empirical game settings [29] where determining payoffs for a
single configuration is expensive.

5.2 Role-Symmetric Games
Outside of fully-symmetric games, many large normal-form games
exhibit role-symmetry, where players can be grouped into 𝑅 roles—
like buyers and sellers or attackers and defenders—and within
each role, all players are indistinguishable. To solve role symmetric
games, analysts typically search for role-symmetric Nash equilib-
ria, where all players in a given role play the same mixed strategy.
Role symmetric mixed-strategy profiles can be represented by a
vector that concatenates the mixed strategy played by each role,
and the deviation payoff vector of the same dimension gives the
expected utility of a unilateral deviator selecting each action. These
deviation payoffs and their derivatives remain central to comput-
ing role-symmetric equilibria, and almost all of the techniques we
propose for improving representations of symmetric games also
apply under role symmetry.

Unfortunately, representing opponent configurations gets trick-
ier with more than one role, because the set of opponents is differ-
ent for players belonging to different roles. For example, in a game
with 10 buyers and 10 sellers, when computing deviation payoffs
for buyer-actions, opponent configurations include 9 buyers and
10 sellers, whereas for seller actions, there are 10 buyer-opponents
and 9 seller-opponents. We could resolve this by building separate
opponent-configuration tables for each role 𝑟 , where the arrays
for role 𝑟 are based on configurations with 𝑃𝑟 − 1 opponents in
the same role and 𝑃𝑟 ′ opponents in other roles. This gives us 𝑅
pairs of configuration- and payoff-arrays where the arrays for role
𝑟 have

(𝑃𝑟+𝐴𝑟 −2
𝑃𝑟 −1

) (∏
𝑟 ′≠𝑟

(𝑃𝑟 ′+𝐴𝑟 ′−1
𝑃𝑟 ′

) )
columns, by

(∑𝑅
𝑟=1𝐴𝑟

)
rows

for configurations and 𝐴𝑟 rows for payoffs.
We could also dispense with the opponent-configuration ap-

proach and instead store full 𝑃-player profiles. This results in one
profile-array and one payoff-array that each have size

(∑𝑅
𝑟=1𝐴𝑟

)
×(∏𝑅

𝑟=1
(𝑃𝑟+𝐴𝑟 −1

𝑃𝑟

) )
, but requires us to return to masking-based dev-

iation-payoff computations. Thus for multi-role games, we have a
choice between slightly smaller storage requirements for a profile-
based data structure or slightly simpler computations for a config-
uration-based representation; the gameanalysis.py library2 em-
ploys the former option. Under either of these approaches, all of
our other optimizations can still apply, and as long as the num-
ber of roles is small both options provide for reasonably efficient
deviation-payoff calculations.

5.3 Action-Graph Games
Action-graph games [14] represent certain games compactly by
storing, for each node, a mapping from neighborhood configura-
tions to payoffs. Each action (for any player) corresponds to a node
in a graph, and an action’s payoff depends only on the number
of players choosing each of the adjacent actions. This means that
action-graph games are role-symmetric, with any group of players
who share an action set belonging to the same role; when all players
have the same action set, action-graph games are symmetric.

In the symmetric case, we can extend our data structures to effi-
ciently compute deviation payoffs in action-graph games with a pair
of arrays for each action storing that action’s neighborhood configu-
rations and repetition-weighted payoffs. The key augmentation is to
include, as part of the representation of an opponent-configuration,
an extra “action” capturing the number of players choosing any
action outside the neighborhood. Then when computing the devi-
ation payoff for an action, we can sum the probabilities for each
non-adjacent action to get the out-of-neighborhood probability.
This means that all of our data structure improvements can be
applied to symmetric AGG-∅ games.

For role-symmetric AGG-∅ games, our role-symmetric data struc-
ture variants could be applied after splitting up action nodes shared
by more than one role. For action-graph games with contribution-
independent function nodes, many of our data-structure improve-
ments can be applied, but the representation of these games tends to
be sufficiently compact that the potential gains may be small. The
gameanalysis.jl library1 implements symmetric action-graph
games with a bipartite graph between actions and contribution-
independent functions as one of the tools for generating interesting
random symmetric game instances. This implementation makes
use of vectorization, opponent configurations, pre-computed repe-
titions, and the log transformation.

5.4 Multi-Threading
The next extension we would like to explore would focus on improv-
ing the CPU version of our data structure to capture some of the
parallelism achievable on the GPU. At present, our deviation-payoff
calculations are single-threaded, and while we might not expect
to outperform SIMD array operations, there should still be room
for significant speedup on multi-core systems from parallelizing a
batch of deviation payoff computations across threads, especially
for games in the multi-gigabyte size-range that can stress GPU
memory but still fit in system RAM.

6 CONCLUSION
Our validation experiments show that the data structures we pro-
pose are capable of storing (Section 4.1) and efficiently comput-
ing (Section 4.2) deviation payoffs in symmetric games with very
large numbers of players. By using incomplete-but-effective search
algorithms we are consistently able to identify symmetric Nash
equilibria. In combination with the iterative exploration approach
described in Section 5.1 we can also find small-support equilibria
in games with many actions. These results dramatically out-class
existing solvers, enabling analysis of a much wider range of sym-
metric games, and closing the gap between micro- and macro-scale
symmetric games.
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