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ABSTRACT
We approach the problem of understanding how people interact
with each other in collaborative settings, especially when individu-
als know little about their teammates, via Multiagent Inverse Rein-
forcement Learning (MIRL), where the goal is to infer the reward
functions guiding the behavior of each individual given trajectories
of a team’s behavior during some task. Unlike current MIRL ap-
proaches, we do not assume that team members know each other’s
goals a priori; rather, that they collaborate by adapting to the goals
of others perceived by observing their behavior, all while jointly
performing a task. To address this problem, we propose a novel
approach to MIRL via Theory of Mind (MIRL-ToM). For each agent,
we first use ToM reasoning to estimate a posterior distribution over
baseline reward profiles given their demonstrated behavior. We
then perform MIRL via decentralized equilibrium by employing
single-agent Maximum Entropy IRL to infer a reward function for
each agent, where we simulate the behavior of other teammates ac-
cording to the time-varying distribution over profiles. We evaluate
our approach in a simulated 2-player search-and-rescue operation
where the goal of the agents, playing different roles, is to search
for and evacuate victims in the environment. Our results show that
the choice of baseline profiles is paramount to the recovery of the
ground-truth rewards, and that MIRL-ToM is able to recover the
rewards used by agents interacting both with known and unknown
teammates.
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1 INTRODUCTION
Understanding the underlying strategies of how humans interact
with each other in collaborative teaming scenarios is a vital compo-
nent of creating systems that appropriately predict team behavior,
understand collaboration dynamics, and provide assistance to po-
tentially improve performance. This is particularly challenging
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when people are collaborating for the first time and therefore know
little about the goals, strategies, and intentions of others, yet have
to adapt to each other as they perform a cooperative task.

One way to predict what individuals will do is to create models of
their decision-making process given traces of their behavior, using
machine learning techniques. One approach is to learn a policy, i.e.,
a mapping from states to actions, directly from observation. This
includes imitation learning techniques, e.g., behavior cloning [12]
that has the power of replicating the behavior of others without
the need for environment and dynamics modeling [22]. However,
such approaches lack the capability of understanding the under-
lying intentions of individuals or the goals in the task. Further, in
teamwork settings, knowing the policy of individuals alone makes
it hard to understand how they coordinate their behavior [25], or
whether there are impediments to cooperation, e.g., a mismatch
between the preferences of each team member.

An alternative, more robust method is to assume that the be-
havior of each individual is the result of a Reinforcement Learning
(RL) process, where agents learn how to perform a task through
trial-and-error interactions with a dynamic and uncertain environ-
ment [20]. The goal of an RL agent is specified by a reward function
that encodes its preferences and whose output the agent wants to
maximize over its lifetime. Therefore, understanding the underly-
ing strategy of an individual by observing its behavior relies on
recovering the reward function guiding the behavior during task
performance. This problem is known as Inverse Reinforcement
Learning (IRL) [3, 11] and involves inferring the reward function
used by an individual, referred to as the expert, given traces of its
behavior. IRL has advantages compared to imitation learning ap-
proaches in that the reward function is the most succinct and robust
representation of the expert’s goals and allows for the prediction of
behavior in novel situations or different tasks (generalization) [11].

Within IRL, apprenticeship learning [1] established a linear pro-
grammingmethod to match the learned reward model to the feature
counts derived from state-action pairs in the expert’s demonstra-
tions. A game-theoretic approach [21] was also proposed to learn
from playing repeated games even in the absence of experts. Maxi-
mum margin IRL [18] formulates a quadratic problem to find the
reward solution producing behavior paths that are closer to the
expert’s behavior than others by a margin that scales with the path
difference loss. One of the main challenges of IRL that is addressed
by these approaches is that the IRL problem is ill-posed — the same
observed behavior can be explained by multiple reward functions,
and the same reward function can lead to different behaviors un-
der stochastic dynamics [3]. To resolve this ambiguity, many IRL
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Figure 1: Overview of the proposed approach for Multiagent Inverse Reinforcement Learning via Theory of Mind reasoning
(MIRL-ToM). Given the environment and the demonstrated behaviors of a team of humans, each learner agent performs
single-agent IRL by reasoning about other agents’ behavior via ToM and output the resulting reward functions.

algorithms provide probabilistic formulations by finding the re-
ward function that maximizes the likelihood of the demonstrated
trajectories. In particular, Maximum entropy (MaxEnt) IRL [27]
finds a trajectory distribution where the expert demonstrations are
exponentially preferred. Bayesian IRL [17] presents an efficient sam-
pling method to infer the posterior distributions of reward function
parameters.

Understanding the strategies and intentions underlying the be-
havior of a team in collaborative tasks requires extending IRL to
multiagent settings, which is known as Multiagent Inverse Rein-
forcement Learning (MIRL). In MIRL, the goal is to infer the indi-
vidual reward functions guiding the behavior of each agent, given
trajectories of a team’s (joint) behavior. It is often assumed that the
joint behavior is the result of an equilibrium solution concept, such
as Nash equilibrium [5, 7]. This makes the MIRL problem harder
because, in addition to multiple reasonable reward functions given
the demonstrations, there may be multiple equilibria that are a
solution to a combination of individual rewards [5, 9].

Many of the existing approaches to MIRL assume the existence
of a centralized learner that computes the joint action equilibrium
given the (known) reward functions of each individual [9, 19, 23].
This implies that all individuals perfectly know each other’s pref-
erences (task payoffs/reward functions) at all times and then play
according to the equilibrium solution. However, assuming perfect
information about others in a team might be too restrictive. First,
the individuals might be interacting with unknown teammates, e.g.,
the observed behavior was produced by individuals recruited to per-
form a collaborative task who tried to adapt to each other’s behav-
iors while performing the task. Second, the assumptions formed by
each individual regarding the teammates’ goals and intentions, cre-
ated by observing their behavior, might be incorrect due to the noisy
nature of human behavior. Finally, because individuals are adapting
their behavior to that of their team members (non-stationarity), the
assumptions about their preferences must constantly be updated as
a result of the individuals’ interaction. All of this makes it less likely
that a team’s demonstrated behavior was derived from a unique,
stationary, known a priori equilibrium.

To address the aforementioned issues, we borrow the concept
Theory of Mind (ToM) from cognitive science [24] which ascribes

mental states to explain and predict the actions of others. In par-
ticular, we model each individual as adapting to the behavior of
the teammates by maintaining a probability distribution over base-
line behavior profiles for each other member of the team, which is
updated as the task unfolds and interactions between team mem-
bers occur. Computationally, these profiles correspond to domain-
specific reward models encoding typified preferences in a task. We
then split MIRL into two phases (see overview in Fig. 1):

(1) Model inference: for each individual in the team, we use ToM
reasoning to estimate a posterior distribution over baseline
profiles for each other teammate given their behavior in-
cluded in the trajectories — this models how each team
member might have modeled each other by observing their
behavior during task performance.

(2) Decentralized MIRL: We perform MIRL via a decentralized
equilibrium approach where we break down the MIRL prob-
lem into multiple single-agent IRL problems similar to the
approach in [5]. A reward function is inferred given the cor-
responding individual’s demonstrated behavior via MaxEnt
IRL, where we simulate the behavior of other team mem-
bers according to the time-varying distribution over baseline
profiles computed in Phase 1 — this models best-response
strategies conditioned on the perceived models of others.

The analogy between IRL and ToM has been drawn in [8] to link
the mental states of humans to the reward models of IRL agents [14].
Despite applications of ToM in multiagent RL [16], limited research
has been done to investigate the underlying strategic behaviors and
motivations of teams in the MIRL setting. The main contribution of
this paper is a decentralized MIRL framework using ToM reason-
ing (MIRL-ToM) that extends MaxEnt IRL to multiagent settings.
Our framework allows modeling interactions between arbitrarily
unknown teammates under the assumption of a set of baseline
reward profiles. We deal with uncertainties in the intentions of
other teammates by performing ToM reasoning over the profiles in
a Bayesian setting.

We evaluate our approach in a simulated 2-player search-and-
rescue task where each agent plays a different role with a distinct set
of skills in the task.We designed rewards for each agent that include
both task- and social-related aspects allowing for different types of
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coordination strategies to emerge. We assess the capability of our
MIRL-ToM approach in recovering the original reward functions of
agents given different sets of baseline profiles. Overall, our results
show that the choice of baseline profiles in Phase 1 is paramount
to the recovery of ground-truth rewards in phase 2. In particular,
including baseline profiles corresponding to the opposite goals of
team-members prevents the convergence of MaxEnt IRL, while
including baselines whose goals are close to those of the original
teammates leads to reward functions similar to the ground-truth.
Further, we show that our method, using ToM reasoning over the
demonstrated behaviors, can be used to recover the rewards used
by agents interacting both with known and unknown teammates,
which attests to the robustness of our approach.

2 RELATEDWORK
Generalizing IRL to multiagent systems is hard, because we aim to
learn individual reward functions that explain both how each agent
behaves—which involves recovering the rewards via IRL—and how
together the agents coordinate—that involves modeling the joint
behavior as a solution to an equilibrium concept. Within MIRL, in
[10] an algorithm was developed to train a centralized agent that
optimizes coordination of behaviors for traffic-routing problems;
however, while learning the rewards via IRL, the agents ignore their
teammates which are treated as part of the environment. In [9],
Bayesian inference is performed on zero-sum two-person games by
optimizing rewards under a likelihood function that encodes the
notion of a minimax equilibrium, but the solution is not scalable
to 𝑛-player games and complex domains. Further, many MIRL so-
lutions rely on computing some notion of equilibrium given the
individual reward functions at each iteration. Some approaches
deal with competitive games by learning Markov perfect equilib-
rium policies given individual rewards [19], playing against Nash
Equilibrium policies through adversarial training [23], evaluating
undesirable strategic behavior by extracting utility functions from
demonstrations [5], and leveraging Generative Adversarial Net-
works [4] to retrieve reward functions in high-dimensional domains
[26]. However, these methods still require finding an equilibrium
policy throughout learning, and it is assumed that experts have
perfect knowledge of the goals and intentions of their teammates,
ignoring the dynamic nature of interactions and the possibility of
first encounters. The proposed MIRL-ToM, combining ToM reason-
ing with single-agent MaxEnt IRL, is able to not only decentralize
the model reasoning and reward learning process but also considers
situations of unknown teammates and adaptation via belief updates
over a set of baseline reward profiles.

3 BACKGROUND
3.1 Reinforcement Learning
Reinforcement learning (RL) [20] relies on the formalism of (single-
agent) Markov Decision Process (MDP), which is defined as a tuple
of ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩, where 𝑠 ∈ 𝑆 is a finite set of states, 𝑎 ∈ 𝐴 is a finite
set of actions, 𝑇 := 𝑃𝑟 (𝑠′, 𝑎, 𝑠) is the transition probability between
states given an action, 𝑅 := 𝑅(𝑠, 𝑎) is the reward of reaching a state
and performing an action, and 𝛾 ∈ [0, 1) is the discount factor
that encourages receiving larger reward at earlier steps. Under the
Bellman equations, the optimal quality value of an action given a

state satisfies𝑄∗ (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +𝛾E𝑠′∼𝑇 [𝑚𝑎𝑥𝑄∗ (𝑠′, 𝑎′)]. (Forward)
RL algorithms find the optimal policy 𝜋 : 𝑆 → 𝐴 that can be
retrieved using 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄

∗ (𝑠, 𝑎).

3.2 Inverse Reinforcement Learning
Inverse Reinforcement Learning (IRL) [11] represents the inverse
problem of RL, i.e., finding the reward function 𝑅 of the learner
agent given 𝑆,𝐴,𝑇 and a collection of demonstrated trajectories
D = {𝜁0 . . . 𝜁𝑖 . . . } following the internal policy of an expert. Each
trajectory 𝜁𝑖 = {(𝑠0, 𝑎0) . . . (𝑠 𝑗 , 𝑎 𝑗 ) . . . (𝑠𝑡 , 𝑎𝑡 )} consists of state-
action pairs over 𝑡 steps. IRL aims to find the reward function
parameters that maximize the likelihood of demonstrations. Maxi-
mum Entropy IRL [27] (MaxEnt IRL) utilizes the principle of maxi-
mum entropy and assumes that the demonstrated action given a
state is exponentially preferred over other actions. MaxEnt IRL con-
siders the trajectory reward 𝑅(𝜁 ) as a linear combination of state
feature counts (i.e., 𝑅(𝜁 ) = 𝜃𝑇𝜙 (𝜁 )) and iteratively finds the param-
eters 𝜃∗ = argmax𝜃 E𝜁∼𝑃𝑟 (𝜁 |𝜃 ) [

∑
𝑗 𝑟 (𝑠 𝑗 , 𝑎 𝑗 |𝜃 )] that best reproduce

the demonstrated behaviors such that the probability of taking a
trajectory 𝜁 is proportional to the exponential of the rewards along
the path (i.e., 𝑃𝑟 (𝜁 |𝜃 ) ∝ 𝑒𝑅 (𝜁 ) ).

3.3 Multiagent Inverse Reinforcement Learning
Multiagent Inverse Reinforcement Learning (MIRL) extends IRL to
multiagent settings. The collected team trajectories are denoted
as D = {𝜁0 . . . 𝜁𝑖 . . . }, where 𝜁𝑖 = {(𝑠0, 𝑎0) . . . (𝑠 𝑗 , 𝑎 𝑗 ) . . . (𝑠𝑡 , 𝑎𝑡 )} is
each team trajectory in the form of state-joint action pairs (𝑠 𝑗 , 𝑎 𝑗 )
over 𝑡 steps, where 𝑎𝑘

𝑗
denotes the action of agent 𝑘 at step 𝑗 . MIRL

then aims to recover a set of reward function parameters for all
agentsΘ∗ = {𝜃∗} = argmaxΘ E𝜁∼𝑃𝑟 (𝜁 |Θ) [

∑
𝑗 𝑟 (𝑠 𝑗 , 𝑎 𝑗 |Θ)] that best

match the collected team trajectories.

3.4 PsychSim
We implemented our approach using PsychSim [13], a framework
that models decision-theoretic agents with recursive Theory-of-
Mind (ToM) for interactive social simulation [13]. To achieve this,
PsychSim models world dynamics under the Multiagent Partially-
Observable Markov Decision Process (MPOMDP) formalism [2, 15].
At each step, each agent selects an action based on the values
computed for each available action by assessing risk/reward trade-
offs in decisions up to a specified planning horizon (cumulative
discounted reward), conditioned on the actions of others. Namely,
during planning each agent computes the action values for all other
agents using recursive ToM, where others are considered reward
maximizers under the (mental) models that the agent has of them.
To model uncertainty, agents can form beliefs about the state of the
environment and the models of other agents, which are updated
via Bayesian inference based on observations of state features and
the actions of others, respectively.

4 MULTIAGENT INVERSE REINFORCEMENT
LEARNING VIA THEORY OF MIND

We assume that individuals in a team coordinate their behavior
without explicit communication. In such cases, they need to reason
about the goals and intentions of others while computing their own
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Figure 2: Two phases of the Multiagent Inverse Reinforce-
ment Learning via Theory of Mind

actions. We also assume the existence of a set of baseline agent
profiles that encode domain-specific, notional preferences in the
task of interest. For example, in a search-and-rescue task, this might
correspond to having profiles for trying to search for victims, triage
them, calling for backup, etc. Before a task, an individual might
assume that teammates behave according to a prior distribution
over the baseline profiles, e.g., uniform, or a preference given to
a profile given background information. As the task progresses
and individuals observe the behavior of others, this distribution
is updated accordingly. We propose Multiagent Inverse Reinforce-
ment Learning via Theory of Mind (MIRL-ToM) to allow reasoning
about others’ behavior while performing a task, corresponding to a
decentralized approach to learn the reward functions of each team
member. The approach consists of two phases as shown in Fig. 2,
the details of which are discussed in the following sections.

4.1 Model Inference
In the model inference phase, we use ToM reasoning to update
a probability distribution (belief) over baseline profiles given the
behavior of an agent in the trajectories. Before the inference process,
we pre-select the set of baseline profiles for each agent. In general,
the profiles can encode any agent decision-making model, and we
denote the initial profile set by {𝑚𝑖 }. In this paper, we consider
profiles to correspond to predefined reward functions, i.e., reward
profiles. Let us denote by 𝑏𝑘 (𝑚) the prior distribution that an agent
holds over the models of another agent 𝑘 . For each step of each
trajectory 𝜁𝑖 , 𝑏𝑘 (𝑚) is updated via Bayesian inference:

𝑏′ (𝑚) ∝ 𝑃𝑟 (𝑎 |𝑚, 𝜁 ) × 𝑏 (𝑚 |𝜁 ) (1)

where we drop the agent indexing 𝑘 for convenience. This phase
augments the team trajectories, D̂ = {𝜁𝑖 }, by adding the agent’s
belief over agent models at each step, resulting in a set of state-joint
action-model distribution tuple sequences: 𝜁𝑖 = {(𝑠 𝑗 , 𝑎 𝑗 , 𝑏 𝑗 (𝑚)}.
In loose terms, this phase captures how the intentions of agents
could be modeled by others given their actions in the trajectories,
conditioned on a set of agent profiles and the prior distribution.1

1We note that the initial set of profiles and the prior distribution need not to be the
same for all observing agents. Similarly, the belief update process can be different for
distinct agents observing the same teammate, e.g., by restricting observability to local
interactions between agents.

4.2 Decentralized MIRL
After each learner agent computes the (time-varying) beliefs about
the expected reward models of its teammates, we perform decen-
tralized MIRL by computing a reward function for each individual
agent separately. Without loss of generality, here we assume that
the reward functions 𝑅(𝑠, 𝑎) := 𝜃𝑇𝜙 (𝑠, 𝑎) are linear combinations
of (potentially nonlinear) reward features 𝜙 (𝑠, 𝑎) parameterized by
reward weights 𝜃 . We follow the maximum entropy principle to find
the individual reward function where the demonstrated trajectories
of the agent are exponentially preferred [27], i.e.:

𝜃∗ = argmax
𝜃

𝐿 (𝜃 |𝑏 (𝑚)) = argmax
𝜃

∑︁
𝜁𝑖 ∈D

log 𝑃𝑟 (𝜁𝑖 |𝜃, 𝑏 (𝑚)) (2)

We propose an algorithm that extends the MaxEnt IRL [27] to
the MIRL setting via decentralized equilibrium computation, where
at each iteration, we approximate the distribution over paths of
an agent conditioned on both the current reward weight and the
belief over agent models computed in the model inference phase,
as shown in Alg. 1. For ease of explanation, in Alg. 1 we show the
case where the team contains only two agents, i.e., there is only
one model distribution, 𝑏 (𝑚), to be computed. To solve the MIRL
problem, we learn a reward weight vector 𝜃𝑘 for each individual
agent 𝑘 by iteratively improving according to whether the weight
vector leads to the behavior similar to that exhibited by the cor-
responding expert in the demonstrated trajectories, as measured
by comparing the estimated feature counts (FCs) against the em-
pirical FCs (Alg. 1, line 5). Therefore, we achieve a decentralized
equilibrium by having each individual reward function be the solu-
tion to the best response strategy to the perceived models of the
other agents during estimated FCs computation. We note that, as
an advantage to this approach, the learning process for each agent
can be completely distributed and parallelized. At each iteration,
we assume the existence of a forward RL solver computing the
policy 𝜋𝑘 given the current reward weight vector candidate, 𝜃𝑘 ,
where the actions of the other agent are optimized according to
the distribution over models 𝑏 (𝑚) at each timestep (Alg. 1, line 8).
During the gradient descent step (Alg. 1, lines 9-11), the estimated

Algorithm 1 Decentralized MIRL via ToM
1: D ← Collection of team trajectories
2: for each learner agent 𝑘 do
3: 𝑏0 (𝑚): prior model distribution, 𝜙 (𝑠, 𝑎): feature vector
4: D̂ = {𝜁𝑖 } ←Model inference on D using ToM reasoning
5: 𝜙𝑘𝑒𝑚𝑝 ←

∑
𝜁𝑖 ∈D

∑
(𝑠 𝑗 ,𝑎𝑘𝑗 ) ∈𝜁𝑖

𝜙 (𝑠 𝑗 , 𝑎𝑘𝑗 )

6: Initialize reward vector weights 𝜃𝑘

7: while 𝜃𝑘 not converging do
8: 𝜋𝑘 (𝑎 |𝑠, 𝑏 (𝑚), 𝜃𝑘 ) ← forward pass
9: 𝜙𝑘𝑒𝑠𝑡 ←

∑
𝜁𝑖∼𝜋

∑
(𝑠 𝑗 ,𝑎𝑘𝑗 |𝑏 𝑗 (𝑚) ) ∈𝜁𝑖 𝑃𝑟 (𝑠 𝑗 |𝜋

𝑘 , 𝜃𝑘 )𝜙 (𝑠 𝑗 , 𝑎𝑘𝑗 )

10: ∇𝐿(𝜃𝑘 ) ← 𝜙𝑘𝑒𝑠𝑡 − 𝜙𝑘𝑒𝑚𝑝

11: 𝜃𝑘 ← 𝜃𝑘 − 𝛼∇𝐿(𝜃𝑘 )
12: end while
13: end for
14: return {𝜃𝑘 }
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Figure 3: Forward pass of feature count estimation. Each
learner agent uses the model distribution data to select the
actions of other agents and select an action given the current
reward model. The feature counts are computed from the
environment states and the team actions.

FCs 𝜙𝑒𝑠𝑡 are computed by sampling Monte Carlo trajectories using
the resulting joint policy. This process can be visualized in Fig. 3.

5 RESULTS
To assess the effectiveness of the proposed MIRL-ToM approach,
we consider a collaborative environment and a team of two agents.
Instead of evaluating our approach with real human data, where the
underlying reward functions cannot be accessed, here we specify
a set of ground-truth rewards, collect trajectories by having the
agents maximize those rewards according to some predefinedmodel
of others, and then compare the learned to the ground-truth reward
functions for each agent. This is a necessary first step to assess the
capabilities (and limitations) of our approach before testing with
human data.2

5.1 Experiment
5.1.1 Environment. We designed a collaborative multiagent search-
and-rescue (S&R) operation using PsychSim [13] which allows the
modeling of partial observations, stochastic state-action dynamics,
and ToM reasoning via agent modeling. In our S&R task, two agents
need to cooperate in order to search all locations in a gridworld
environment and evacuate all victims as quickly as possible. Ini-
tially, the victims’ locations are unknown to the agents, which we
model via a uniform belief over the existence of victims in each
location, which is set to the real value once agents enter the corre-
sponding cell. The state of the environment 𝑠 ∈ 𝑆 := 𝑆𝑃1 × · · · × 𝑆

𝑃
𝑛

describes a gridworld with 𝑛 locations, where each location has a
feature 𝑣 ∈ 𝑉 := {𝑢𝑛𝑘𝑛𝑜𝑤𝑛, 𝑓 𝑜𝑢𝑛𝑑, 𝑟𝑒𝑎𝑑𝑦, 𝑐𝑙𝑒𝑎𝑟, 𝑒𝑚𝑝𝑡𝑦} denoting
the victim status at that location. The action set includes three types
of actions: 1) movement actions: {𝑢𝑝,𝑑𝑜𝑤𝑛, 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡,𝑤𝑎𝑖𝑡} that
deterministically move the agent in the corresponding direction,
2) victim-handling actions: {𝑠𝑒𝑎𝑟𝑐ℎ, 𝑡𝑟𝑖𝑎𝑔𝑒, 𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑒} that changes
the victim status feature, and 3) communication action, 𝑐𝑎𝑙𝑙 , which
2Our implementation and experiments are available at https://github.com/usc-
psychsim/mirl-tom-aamas23.

Figure 4: Transition dynamics of the victim status. 𝒔𝒆𝒂𝒓𝒄𝒉
either finds a victim or an empty cell, 𝒕𝒓 𝒊𝒂𝒈𝒆 prepares a victim
and requires two agents at the same location to 𝒆𝒗𝒂𝒄𝒖𝒂𝒕𝒆 it.

allows an agent to incentivize others to come to its location. The
state transition of the victims’ status is deterministic, the dynamics
of which are illustrated in Fig. 4. As denoted by the red arrow, to
model the need for cooperation, we require the two agents to be
at the same location and perform action 𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑒 at the same time
for a victim to be evacuated.

Table 1: Ground-truth reward functions for the two agents
as linear combinations of features 𝝓𝒊 weighted by 𝜽𝒊 .

■Role-Related Tasks ■ Social/Helping
𝝓𝒊 (𝒔, 𝒂) 𝜽𝒊 Description
Dist2Vic 0.06 Distance to the nearest 𝑓 𝑜𝑢𝑛𝑑 victim
Search 0.06 Whether to search 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 locations
Triage 0.19 Whether to triage 𝑓 𝑜𝑢𝑛𝑑 victims
Evacuate 0.63 Whether to evacuate 𝑟𝑒𝑎𝑑𝑦 victims
Wait 0.03 Whether to standby
Call 0.03 Whether to call for help if needed

(a) Medic

𝝓𝒊 (𝒔, 𝒂) 𝜽𝒊 Description
Dist2Help 0.25 Distance to the agent with 𝑐𝑎𝑙𝑙 action
Search 0.25 Whether to search 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 locations
Evacuate 0.50 Whether to evacuate 𝑟𝑒𝑎𝑑𝑦 victims

(b) Explorer

5.1.2 Ground-Truth Agents (Experts). We consider a team of two
agents with designated roles—Medic and Explorer—each defining
different action sets and reward functions. The Medic agent has the
full action set, while the Explorer agent is not able to𝑤𝑎𝑖𝑡 , 𝑡𝑟𝑖𝑎𝑔𝑒 ,
or 𝑐𝑎𝑙𝑙 , i.e., it can only explore the environment. The reward func-
tion of each agent 𝑅(𝑠, 𝑎) := ∑

𝑖 𝜃𝑖𝜙𝑖 (𝑠, 𝑎) is linearly parameterized
by ground truth weights 𝜃 as defined in Table 1. The distance fea-
tures compute the Manhattan distance from the agent to the target
location. The action-related features are indicator functions that
denote whether an action was taken in the current state. As seen
in Table 1, reward features are categorized into role-related task
features (orange) and social features (blue). We model the Medic
as prioritizing the rescue of victims, while the Explorer prioritizes
searching but also reacts to the call for help from the Medic.

5.2 Collecting and Visualizing Trajectories
Given the ground-truth reward functions defined in Table 1, we
start with the case where the two agents interact with each other
and perform the task knowing exactly each other’s reward function
(perfect models). Notwithstanding, we note that the MIRL-ToM
procedure is unaware of this and is only given the generated team
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Figure 5: An example trajectory at timestep 𝒕 = 4 (left), 𝒕 = 10
(center), and 𝒕 = 16 (right) for the Medic (top) and Explorer
(bottom) agents.

trajectories and a set of baseline profiles. The goal is to test the
importance of different priors over profiles for the recovery of the
original rewards. We collected 16 trajectories, each with 25 steps,
for the team of agents, produced by having the agents plan with
a horizon of 2 using a soft-max action selection. Fig. 5 shows the
collaborative behavior of two agents at three different steps in one
example trajectory. At 𝑡 = 4, the Medic calls for help, and the
Explorer moves toward the Medic instead of searching or moving
away; 𝑡 = 10 illustrates role-dependent actions: theMedic is waiting,
because all victims are either unknown or clear, while the Explorer
keeps searching other locations; at 𝑡 = 16, both agents evacuate the
victim together.3

5.3 Model Inference Results
Based on the reward features 𝜙𝑖 detailed in Sec. 5.1.2, we designed
a set of baseline profiles as shown in Table 2 by creating different
variations of the ground-truth rewards and the task- and social-
oriented features. The goal was to create a set of reward functions
one would typically expect individuals to follow in our S&R task.

From these reward profiles, we define the following experimental
conditions, i.e., each defining the set of agent models/profiles used
in the Model Inference phase (see Sec. 5.3):

Table 2: Baseline reward profiles

Reward Function Description
Gt 𝜃𝑔𝑡 Ground truth rewards
Op −𝜃𝑔𝑡 Opposite goals
Rd 𝜃0 No goals / random behavior
Tk [𝜃𝑡𝑎𝑠𝑘 , 𝜃𝑠𝑜𝑐𝑖𝑎𝑙 = 0] Focus on task-specific aspects
Sc [𝜃𝑡𝑎𝑠𝑘 = 0, 𝜃𝑠𝑜𝑐𝑖𝑎𝑙 ] Focus on social aspects

𝒄𝒐𝒏𝒅-1: Gt, always believe the other agent uses Gt rewards.
𝒄𝒐𝒏𝒅-2: Op, always believe the other agent uses Op rewards.
𝒄𝒐𝒏𝒅-3: Gt-Op-Rd, update belief 𝑏 ({𝐺𝑡,𝑂𝑝, 𝑅𝑑}) via ToM.
𝒄𝒐𝒏𝒅-4: Rd-Tk-Sc, update belief 𝑏 ({𝑅𝑑,𝑇𝑘, 𝑆𝑐}) via ToM.
3Example simulated animations showing the agents interacting in the S&R environ-
ment are included HERE as the supplementary material.

Figure 6: Average model probabilities with standard devia-
tions (shaded) of 16 trajectories for Medic (top) and Explorer
(bottom) agents under two experimental conditions: 𝒄𝒐𝒏𝒅-3
(Gt-Op-Rd, left) and 𝒄𝒐𝒏𝒅-4 (Rd-Tk-Sc, right).

Condition 𝑐𝑜𝑛𝑑-1 corresponds to the setting where the learner
agent uses the ground-truth rewards of the other (perfect model) to
compute the estimated FCs during MaxEnt IRL. The rationale is to
assess the best-response (decentralized equilibrium) computation
during single-agent IRL. 𝑐𝑜𝑛𝑑-2 presents a situation where the
learner agent always believes its teammate has goals opposite to
those of the ground-truth agent. Here we assess the importance
of agent co-dependencies in the task and test the limits of MIRL
in recovering the original rewards given contradictory models of
others. For these first two conditions, the model distribution is
fixed so we do not perform model inference via ToM reasoning. In
contrast, 𝑐𝑜𝑛𝑑-3 and 𝑐𝑜𝑛𝑑-4 both use ToM reasoning. 𝑐𝑜𝑛𝑑-3 verifies
the accuracy of the model inference procedure in identifying the
ground truth model given the observed behavior, while 𝑐𝑜𝑛𝑑-4
investigates whether MIRL-ToM can still recover rewards close to
the original without being given the Gt model given, i.e., such as it
might happen when analyzing real human data.

For 𝑐𝑜𝑛𝑑-3 and 𝑐𝑜𝑛𝑑-4, we perform Bayesian inference using
PsychSim by computing the posterior distribution over agent mod-
els given their behavior at each step of the 16 collected trajectories
using Eq. 1. The mean model probabilities at each timestep are
shown in Fig. 6. In 𝑐𝑜𝑛𝑑-3 (Fig. 6 left), the Gt models can clearly
be identified apart from the Rd models, meaning that the observed
behavior does denote different agent strategies (otherwise, a ran-
dom behavior could be equally probable). In addition, the Op model
has a very low associated probability at the end of trajectories. For
𝑐𝑜𝑛𝑑-4 (Fig. 6 right), the Medic agent is identified as being more
task-oriented, which makes sense since it has available the full
action set. However, for the Explorer agent, it is harder to differen-
tiate between the Tk and Sc models, meaning that the ground-truth
behavior is perceived as being equally task- and social-oriented.

5.4 Decentralized MIRL Results
We applied the proposed decentralized MIRL-ToM approach in
each of the aforementioned experimental conditions, with initially
uniform reward weights (𝜃0), maximum 30 IRL training epochs,
and a learning rate (𝛼) exponential decay of 0.9. For the forward
pass (Alg. 1, line 8), we collected 16 Monte Carlo trajectories in
PsychSim to estimate the FCs.
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Figure 7: Learning curves of the rewardweights during IRL forMedic (top) and Explorer (bottom) in two experimental conditions:
𝒄𝒐𝒏𝒅-2 (left) and 𝒄𝒐𝒏𝒅-3 (right).

Table 3: Learned reward functions for the two agents, for all
conditions in the known teammates setting.

Feature Profile 𝜽𝒊 MIRL 𝜽𝒊 MIRL-ToM 𝜽𝒊
𝜙𝑖 (𝑠, 𝑎) Gt Op 𝑐𝑜𝑛𝑑-1 𝑐𝑜𝑛𝑑-2 𝑐𝑜𝑛𝑑-3 𝑐𝑜𝑛𝑑-4
Dist2Vic 0.06 -0.06 0.02 - 0.02 0.00
Search 0.06 -0.06 0.18 - 0.16 0.16
Triage 0.19 -0.19 0.23 - 0.27 0.29
Evacuate 0.63 -0.63 0.25 - 0.26 0.28
Wait 0.03 -0.03 0.27 - 0.23 0.26
Call 0.03 -0.03 0.06 - 0.06 0.01

(a) Medic

Feature Profile 𝜽𝒊 MIRL 𝜽𝒊 MIRL-ToM 𝜽𝒊
𝜙𝑖 (𝑠, 𝑎) Gt Op 𝑐𝑜𝑛𝑑-1 𝑐𝑜𝑛𝑑-2 𝑐𝑜𝑛𝑑-3 𝑐𝑜𝑛𝑑-4
Dist2Help 0.25 -0.25 0.01 - 0.62 0.26
Search 0.25 -0.25 0.23 - 0.21 0.43
Evacuate 0.50 -0.50 0.76 - 0.17 0.30

(b) Explorer

The learned reward functions inferred via MIRL-ToM for each
condition are summarized in Table 3. We observe that the reward
weights obtained for 𝑐𝑜𝑛𝑑-3 and 4 using ToM reasoning are very
close to those of 𝑐𝑜𝑛𝑑-1, where the Gt model is used for both agents.
Especially for 𝑐𝑜𝑛𝑑-4, we see that model inference via ToM cap-
tured the behavior of the teammates accurately enough to allow
for the recovery of the original behavior. Some results in this table
can better be understood by looking at the learning curves, i.e., the
evolution of the reward weights 𝜃𝑖 at each IRL iteration. In particu-
lar, Fig. 7 shows the curves for 𝑐𝑜𝑛𝑑-2 and 𝑐𝑜𝑛𝑑-3. As can be seen,
the reward weights converge to their final values approximately
within 15 training epochs except for 𝑐𝑜𝑛𝑑-2, where agents always
believe the other agent uses the Op model. The reward weights for
this condition were not able to converge (Fig. 7, left), either oscillat-
ing or not converging within the maximum number of iterations.4
Because the agent uses an incorrect model of its teammate, the
resulting coordination behavior, computed via the best-response
4The seemingly converging curves are due to the decreased learning rate 𝛼 .

Table 4: Similarity of recovered behavior for the two agents,
for all conditions in the known teammates setting.

Feature Profile MIRL MIRL-ToM
𝜙𝑖 (𝑠, 𝑎) Gt Op 𝑐𝑜𝑛𝑑-1 𝑐𝑜𝑛𝑑-3 𝑐𝑜𝑛𝑑-4

Empirical Feature Counts
Dist2Vic 11.86 0.00 11.53 15.39 14.48
Search 2.40 0.00 1.75 3.13 2.06
Triage 2.97 0.00 2.91 2.97 2.94
Evacuate 2.94 0.00 2.81 2.63 2.66
Wait 8.97 0.00 10.88 6.28 7.78
Call 4.78 0.00 2.72 4.38 4.44

Similarity Metrics
FC Diff 2.38 30.55 4.52 7.53 4.50
𝜋 Div 0.00 0.25 0.13 0.10 0.13

(a) Medic

Feature Profile MIRL MIRL-ToM
𝜙𝑖 (𝑠, 𝑎) Gt Op 𝑐𝑜𝑛𝑑-1 𝑐𝑜𝑛𝑑-3 𝑐𝑜𝑛𝑑-4

Empirical Feature Counts
Dist2Help 6.50 0.00 2.41 6.45 4.24
Search 6.59 0.00 7.06 6.34 7.38
Evacuate 2.94 0.00 2.81 2.63 2.66

Similarity Metrics
FC Diff 2.25 14.84 3.06 2.13 1.26
𝜋 Div 0.00 0.32 0.02 0.03 0.04

(b) Explorer

strategy learned by the agent given the current rewards and the
other’s model distribution (Alg. 1, line 8) leads to feature counts
that are inconsistent with the empirical ones (lines 9-10), which in
turn leads to a dramatic change in the reward vectors (line 11) in
the next iteration.

As shown in Table 3, the reward weights recovered through IRL
do not exactly match the ground-truth rewards (Gt column). Still,
they allow us to recover the relative importance that some features
have on the agents’ behavior, e.g., dealing with victims (including
waiting for the Explorer for evacuation) is more important for
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Table 5: Similarity of recovered behavior for the two agents
in the unknown teammates setting.

Feature Demo MIRL-ToM
𝜙𝑖 (𝑠, 𝑎) 𝜃𝑔𝑡 𝜃𝑖𝑟𝑙

Empirical Feature Counts
Dist2Vic 14.05 14.44
Search 1.99 2.16
Triage 2.49 2.97
Evacuate 2.68 2.81
Wait 7.13 7.88
Call 5.88 5.25

Similarity Metric
FC Diff - 2.55

(a) Medic

Feature Demo MIRL-ToM
𝜙𝑖 (𝑠, 𝑎) 𝜃𝑔𝑡 𝜃𝑖𝑟𝑙

Empirical Feature Counts
Dist2Help 6.49 7.23
Search 8.25 6.50
Evacuate 2.68 2.81

Similarity Metric
FC Diff - 2.63

(b) Explorer

the Medic agent, while searching for and evacuating victims are
the priorities of the Explorer agent. As discussed earlier, different
reward functions can lead to similar behavior, so a better way to
investigate the similarities between the learned and expert behavior
is by using similarity metrics. Here we use the following:
FC Diff: feature count difference between a policy using the IRL

rewards vs. demonstrated behavior:
∑
𝑖 |𝜙𝜃𝑖 − 𝜙

D
𝑖
|.

𝝅 Div: mean Jensen-Shannon Divergence[6] between the action
distributions of the ground-truth and learned policy, over all
steps in all trajectories: 𝐽𝑆𝐷 (𝜋 (𝑎 𝑗 |𝑠 𝑗 ;𝜃 ), 𝜋 (𝑎 𝑗 |𝑠 𝑗 ;𝜃𝑔𝑡 )).

The results are summarized in Table 4. The Profile columns corre-
spond to the best (Gt) and worst (Op) behavior similarities achieved.
The FC Diff for Gt denotes the expected error in sampling policies
using the same rewards but different random seeds (hence not zero).
As the number of simulated trajectories (currently 16) increases, the
FC Diff would approach to zero. The MIRL column shows very sim-
ilar feature counts and behavior, which is again expected because
it corresponds to using a fixed Gt model of the teammate (no ToM).
As for the MIRL-ToM columns, they show that our method can
achieve very similar behavior (highlighted in bold), which denotes
the importance of the model inference phase. Interestingly, more
similar behavior was attained in 𝑐𝑜𝑛𝑑-4, which does not include
the Gt rewards in the model distribution, although we did not as-
sess the statistical significance of this result. We also note that 𝜋
Div is not as close to zero due to the observed difference in the
reward weights in Table 3, and the probabilities are dependent on
the reward weight magnitude.

5.5 Unknown Teammates Setting
In this section, we consider demonstrations that are collected from
a team of agents who form beliefs about each other’s goals and

update them based on observations of their behavior during task
performance. We again use PsychSim to generate the demonstrated
trajectories, but now the expert agents infer the models of each
other given a uniform prior over three reward profiles: Gt, Op and
Rd. We applied MIRL-ToM by performing model inference given
the demonstrations followed by MaxEnt IRL for each agent. In
Table 5, we compare the empirical feature counts, computed from
the demonstrations (column Demo) where agents use the ground-
truth rewards, 𝜃𝑔𝑡 , with the feature counts produced by the agents
using the reward weights resulting from MIRL-ToM, 𝜃𝑖𝑟𝑙 .

The results show that even in the case where the demonstrations
are generated by agents that have imperfect models of their team-
mates, our approach can recover similar behavior. By performing
model inference, we are able to model the process whereby the in-
dividuals “discover” about and adapt to their teammates’ behavior.

6 CONCLUSIONS
We proposed an approach to Multiagent Inverse Reinforcement
Learning using Theory of Mind reasoning (MIRL-ToM). Unlike
other approaches to MIRL, our method does not assume full knowl-
edge of teammates’ reward functions while performing the task to
compute the equilibrium strategy. Rather, we use ToM to reason
about how each individual might have modeled the intentions of
others by observing their behavior throughout the task, given a set
of baseline reward profiles. We then break down MIRL into single-
agent MaxEnt IRL for each individual, where we infer the reward
functions guiding their behavior conditioned on the inferred distri-
bution over profiles. Ascribing mental states and reward models of
teammates not only accounts for imperfect knowledge about indi-
vidual behavior and uncertain strategies of others but also enables
a computationally efficient approach to compute the equilibrium
strategy in a decentralized manner. The proposed MIRL-ToM shows
the ability to recover similar behavior in terms of trajectory feature
counts in both known- and unknown-teammate cases. In addition,
although we experimented with a 2-player collaborative scenario,
our framework can be applied to 𝑛-player, general-sum problems.

Our preliminary experiments were conducted using synthetic
expert demonstration data to show the validity and effectiveness
of MIRL-ToM. A natural next step is to apply the method to data
collected from humans to provide insights into which factors—task-,
social-, and emotional-related—affect their behavior the most in
collaborative settings. Further, we will explore more interpretable
reward structures that do not rely on linear relationships between
basis features. We are also interested in exploring ways to create
the baseline profiles, because the effectiveness of MIRL-ToM seems
to rely heavily on the initial set. One option is to create an iterative
approach, whereby the learned reward functions in one iteration
are added to the set of baseline profiles until convergence.
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