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ABSTRACT
In scenarios with numerous emergencies that arise and require

the assistance of various rescue units (e.g., medical, fire, & police

forces), the rescue units would ideally be allocated quickly and

distributedly while aiming to minimize casualties. This is one of

many examples of distributed settings with service providers (the

rescue units) and service requesters (the emergencies) which we

term service oriented settings. Allocating the service providers in a

distributed manner while aiming for a global optimum is hard to

model, let alone achieve, using the existing Distributed Constraint

Optimization Problem (DCOP) framework. Hence, the need for a

novel approach and corresponding algorithms.

We present the Service Oriented Multi-Agent Optimization Prob-

lem (SOMAOP), a new framework to overcome DCOP’s shortcom-

ings in service oriented settings. We evaluate the framework using

algorithms based on auctions and matching (e.g., Gale Shapely). We

empirically show that algorithms based on repeated auctions con-

verge to a high quality solution very fast, while repeated matching

problems converge slower, but produce higher quality solutions.

We demonstrate the advantages of our approach over standard

incomplete DCOP algorithms and a greedy centralized algorithm.
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1 INTRODUCTION
Advances in computation and communication have resulted in

realistic distributed applications in which people interact with tech-

nology to reach and optimize mutual goals, such as saving lives

in disaster response [26] and maximizing user satisfaction while

minimizing energy usage in smart homes [12, 28]. Thus, there is a
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growing need for optimization methods to support decentralized

decision making in complex multi-agent systems. Many of these

systems share the underlying structure of a service oriented system,

which includes two sets of agents: one set of agents that can provide

services and the other of agents that require services to be provided.

Consider, for example, a disaster rescue scenario, where rescue

units (medical personnel, fire fighters, police, etc.) need to coordi-

nate their actions to save as many people as possible from numerous

disaster sites. This coordination problem is particularly challeng-

ing due to the following characteristics: 1) Optimization of a
Global Objective: the various rescue units need to work together

as a team towards a common goal (e.g., saving as many victims

as possible). 2) Decentralized Coordination: often there is no

centralized entity that coordinates agents, but rather a diverse set

of agents (e.g., medical personnel, fire fighters and disaster site

coordinators) making personal coordination decisions. While we

use the disaster rescue scenario as a motivating setting through-

out this paper, these factors are present in a much larger class of

multi-agent coordination problems.

A common approach to solve these types of problems is to model

them as distributed constraint optimization problems (DCOPs), where
decision makers are modeled as cooperative agents that assign val-
ues to their variables [11, 20, 27, 30]. The goal in a DCOP is to

optimize a global objective in a decentralized manner. The global

objective is decomposed into constraints that define the utility

agents derive (or costs they incur) from combinations of assign-

ments to variables [4, 6, 15]. This model captures how a rescue unit

(an agent) with a schedule (a variable) is assigned a disaster site

to go to (a value for the variable), with the goal of saving as many

victims as possible (the global objective). For each combination

of assignments of disaster sites to the police units’ schedules, a

(possibly) different number of victims will be saved (the utility).

In DCOP algorithms, agents exchange messages, communicating

selected value assignments or their estimated utilities. The informa-

tion received by an agent is used to adjust its variable assignments.

The local quality of the assignments they select is measured accord-

ing to the constraints they are subject to.

If we examine the properties of the service oriented systems

described above, it is apparent that the DCOP model does not

naturally apply to them. On the contrary, in many of them, the

constraints are defined by entities (e.g., disaster site coordinators)

different from the agents making the decisions (e.g., rescue units).
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These entities require a service to be performed, but they do not

assign variables. Rather, they are affected by the consequences of

the decisions made by the agents performing the actions. Thus,

while the solution is determined by the set of the "original" DCOP

agents (the ones assigning variables, e.g., rescue units), the quality

of the solution (i.e., the global utility derived from it) is measured

according to the satisfaction of the service requiring agents (e.g.,

disaster site coordinators) from the services provided to them.

In our disaster response example, consider the ambulances that

are required to evacuate casualties from disaster sites to hospitals.

The number of casualties and the severity of their wounds in each

disaster site determines the utility derived from evacuating them

to hospitals (e.g., not much utility in evacuating people with very

minor wounds). To use the standard DCOP model for solving this

problem, we would have the ambulances hold complete and coher-

ent information regarding all disaster sites they can drive to and

exchange messages with all rescue units (e.g., ambulances, police

units and fire fighters) that can attend to casualties from the same

sites (neighboring units). Moreover, to calculate the utility that they

would derive from each decision they make, the ambulances would

require knowledge of all assignments made by neighboring units and
the utility (or cost) of all constraints representing the outcome of

each possible combination of their assignments. Such a modelling

requires agents to have detailed knowledge on almost all other

agents, defeating the purpose of a distributed setting.

The fact that the dominant model used to represent and solve

multi-agent optimization problems seems deficient for so many

distributed realistic applications is what motivates this work. We

propose an alternative abstract model, Service Oriented Multi-Agent
Optimization Problem (SOMAOP). In contrast to standard DCOP,

SOMAOP offers a paradigm for multi-agent optimization that can

handle service oriented settings. In this model, agents are divided

into two sets: service requesters (SRs) and service providers (SPs).

This approach allows us to adopt (and adapt) existing AI and OR

centralized methods for assigning service providers to service re-

questers. Thus, in this paper we:

(1) Present the SOMAOP model.

(2) Propose algorithms based on auctions and matching algo-

rithms for solving SOMAOPs.

(3) Conduct empirical comparison between various SOMAOP

algorithms, and empirically show that algorithms based on

repeated auctions converge to a high quality solution very

fast, while repeated matching problems converge slower, but

produce higher quality solutions.

(4) Compare SOMAOP algorithms to DCOP algorithms in solv-

ing service oriented problems.

Our results demonstrate that the SOMAOP model allows the use of

algorithms that converge quickly to high quality solutions while

maintaining the problem’s distributed structure and without requir-

ing complete and coherent information to be held by the service

providing agents.

2 SERVICE ORIENTED MULTI-AGENT
OPTIMIZATION

The Service Oriented Multi-Agent Optimization Problem (SO-

MAOP) is a multi-agent problem in which there is a clear distinction

between two disjoint sets of agents: service requesting agents (SRs)

and service providing agents (SPs). We create a bipartite graph with

the SRs and SPs as the nodes. Each service providing agent (SP) is

connected by an edge to SR nodes that require services that it can

perform. Each service requesting agent (SR) is similarly connected

by an edge to SP nodes that can provide the services that it requires.

Each agent can communicate solely with agents that are connected

to it by an edge.

The variables of the problem are held by the SPs, with assign-

ments to the variables reflecting the actions (services) that they will

perform. A solution to the problem will include an assignment to

each of the variables. The solution’s quality will be determined by

the satisfaction of the SRs from the actions chosen by the SPs (the

services assigned to be provided to them) and will be reflected in a

global utility, which the agents aim to maximize. Thus, one set of

agents (SPs) selects the actions that are performed, while the other

set (SRs) evaluates the outcome of these actions.

Formally, a SOMAOP is a tuple ⟨𝑆𝑃, 𝑆𝑅, 𝑆, 𝑃𝑆, 𝑅𝑆, 𝑋, 𝐷,𝑈 ⟩, where
𝑆𝑃 = {𝑆𝑃1, 𝑆𝑃2, . . . , 𝑆𝑃𝑛} is a set of 𝑛 service providing agents and

𝑆𝑅 = {𝑆𝑅1, 𝑆𝑅2, . . . , 𝑆𝑅𝑚} is a set of𝑚 service requesting agents.

The capabilities provided and requested as services are formal-

ized as skills. The set of all skills is 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑘 }. Each 𝑆𝑃𝑖 ∈ 𝑆𝑃
has a set of providable skills, 𝑃𝑆𝑖 ⊆ 𝑆 . For each 𝑠 ∈ 𝑃𝑆𝑖 , the SP has

a workload𝑤𝑠
𝑖
that defines the amount of the skill it can provide

as a service. For example, an ambulance can evacuate a limited

number of casualties. For each skill 𝑠 ∈ 𝑃𝑆𝑖 , the SP also has a work

time function 𝑡𝑠
𝑖
(𝑤) that defines the time it takes to complete 𝑤

workload of this skill. The workload of a providable skill 𝑠 decreases

when the SP schedules the skill to be provided as a service to an SR

(providable skill 𝑠 is depleted when𝑤𝑠
𝑖
= 0).

On the other hand, each 𝑆𝑅 𝑗 ∈ 𝑆𝑅 has a set of requested skills,

𝑅𝑆 𝑗 ⊆ 𝑆 . For each requested skill 𝑠 ∈ 𝑅𝑆 𝑗 , the SR has a workload𝑤𝑠
𝑗

that defines the amount of service required of the skill it requests.

The workload of a requested skill 𝑠 decreases when an SP sched-

ules to provide the skill as a service to the SR (requested skill 𝑠 is

no longer required when 𝑤𝑠
𝑗
= 0). For each of its requested skills

𝑠 ∈ 𝑅𝑆 𝑗 there is an optimal team size for performance capability, 𝑞𝑠
∗
𝑗
,

defining the number of SPs that are requested to cooperate simulta-

neously when performing the service (e.g., if a requested skill 𝑠 with

𝑤𝑠
𝑗
= 2 has 𝑞𝑠

∗
𝑗
= 2, 𝑆𝑅 𝑗 will prefer two SPs to each schedule to pro-

vide half of the requested workload of 𝑠 simultaneously rather than

a single SP to provide the full requested workload). Additionally,

each requested skill 𝑠 has a maximal utility 𝑢𝑠
∗
𝑗
, defining how much

utility could be derived if the full service is completed immediately,

with 𝑞𝑠
∗
𝑗
SPs sharing the workload of the service simultaneously.

Lastly, each requested skill 𝑠 has a latest completion time 𝑡𝑠𝑚𝑎𝑥 𝑗
,

after which the service is no longer required.

𝑋 = {𝑋1, 𝑋2, ..., 𝑋𝑛} includes sets of variables for each SP, i.e., for

each service provider 𝑆𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑋𝑖 includes the set of variables

𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝜆𝑖
representing the services that 𝑆𝑃𝑖 will provide; 𝜆𝑖 is

the maximal number of services that it can perform. An assignment

to 𝑆𝑃𝑖 ’s variable 𝑥𝑖𝑎 is a service tuple ⟨𝑆𝑅𝑎, 𝑠𝑎,𝑤𝑎, 𝑡𝑎⟩ representing
the SR that the service will be provided to, the skill provided, the

workload provided and the expected start time for performing the

service, respectively. The order of the variables defines the order in
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which the agent will execute the services, i.e., 𝑆𝑃𝑖 will first perform

the service assigned to 𝑥𝑖1 , then the service assigned to 𝑥𝑖2 , etc.

𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝑛} includes sets of variable domains such that

𝐷𝑖 , 1 ≤ 𝑖 ≤ 𝑛, includes the set of domains 𝑑𝑖1 , 𝑑𝑖2 , . . . , 𝑑𝑖𝜆𝑖
, which

include the values that can be assigned to variables 𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝜆𝑖
of 𝑆𝑃𝑖 respectively (i.e., 𝑑𝑖1 contains all of the service tuples that

𝑆𝑃𝑖 can schedule to provide first). The domains can also include

a non-service assignment in cases where a SP is purposefully not

assigned to a service e.g., in cases when SPs need time to recharge.

A solution 𝜎 to the SOMAOP is an assignment to each of the

variables held by the set of SPs, of a value from its domain. The

utility derived by a service requesting agent 𝑆𝑅 𝑗 from solution 𝜎

is denoted by𝑈 𝑗 (𝜎). It is calculated as a function of the utility 𝑆𝑅 𝑗

will derive from the services scheduled for each requested skill

𝑠 ∈ 𝑅𝑆 𝑗 as specified by 𝜎 , denoted 𝑢𝑠
𝑗
(𝜎). 𝑢𝑠

𝑗
(𝜎) is bounded by

𝑢𝑠
∗
𝑗
and is affected by three factors: 1) The time the SR will spend

awaiting service for 𝑠: the utility to be derived from the service

will decrease with a latency penalty function, corresponding to the

time the SR awaits service. 2) The amount of workload scheduled

to be performed and its timing. 3) The performance capability of

the SPs providing the service: the performance capability of 𝑆𝑅 𝑗 ’s

requested skill 𝑠 is affected by the number of SPs that provide the

workload of the service simultaneously [1]. This is denoted by the

capability function, 𝐶𝑎𝑝𝑠
𝑗
(𝑞). The function can represent minimum

required or maximum allowed numbers of agents by setting the

capability to 0 for fewer agents, or by not increasing the capability

when more than the maximum number of required agents share a

service, respectively. 𝐶𝑎𝑝𝑠
𝑗
(𝑞) will reach its maxima at 𝑞 = 𝑞𝑠

∗
𝑗
. We

assume 𝐶𝑎𝑝 is weakly monotonically increasing in 𝑞.

𝑈 (𝜎) defines the global utility derived from solution 𝜎 and is a

function of the utilities received by each of the SRs, i.e., 𝑈 (𝜎) =
𝐹 (𝑈1 (𝜎),𝑈2 (𝜎), . . . ,𝑈𝑚 (𝜎)). The goal of the agents in SOMAOP is

to maximize the global utility function U.

3 ALGORITHMS FOR SOLVING SOMAOP
The general approach we take is to design iterative distributed algo-

rithms in which the building blocks are existing methods for assign-

ing service providers to services, used in the Operation Research

literature, which we adapt to a distributed environment. Specifi-

cally, we will focus on two approaches: auctions [5, 16, 17, 24] and

matching [3, 13, 14].

3.1 Repeated Parallel Auctions (RPA)
The RPA algorithm creates allocations of SPs to SRs by using a

repeated auction process [16, 19, 21]. In each of the algorithm’s

iterations (a predefined number), an auction occurs between the

SPs (sellers that offer providable skills) and the SRs (the buyers who

offer bids on the skills they require). The auction begins with each

SP sending a service proposal to its neighboring SRs for each of their

joint skills (skills that the SP can provide and the SR requests). A

service proposal from 𝑆𝑃𝑖 to 𝑆𝑅 𝑗 for providable skill 𝑠 is composed

of 𝑆𝑃𝑖 ’s proposed workload for 𝑠 and the proposed service start

time at which 𝑆𝑃𝑖 proposes to begin providing 𝑠 to 𝑆𝑅 𝑗 .

Upon receiving service proposals from its SP neighbors, each SR

responds by sending service requests to the SPs that it would most

want to provide it each of its requested skills. A service request from

Algorithm 1 RPA: Service Provider 𝑖

1: for fixed number of iterations do
2: Reset 𝑤𝑠

𝑖
∀ 𝑠 ∈ 𝑃𝑆𝑖 ,𝑋𝑖 , 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 ← 0

3: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ← requests received from SRs in previous iteration, ordered by highest bid value

4: for 𝑟 ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 do
5: 𝑡𝑟

𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡
← earliest time after 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 that 𝑆𝑃𝑖 can begin serving 𝑟

6: if 𝑡𝑟
𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡

≤ 𝑡𝑠𝑡𝑎𝑟𝑡 (𝑟 ) and 𝑤
𝑠 (𝑟 )
𝑖

≥ 𝑤 (𝑟 ) then
7: send proposal(𝑆𝑅 (𝑟 ), 𝑠 (𝑟 ), 𝑤𝑠 (𝑟 )

𝑖
, 𝑡𝑟
𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡

)

8: schedule(𝑟 )

9: Update 𝑤
𝑠 (𝑟 )
𝑖

, 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡
10: else
11: break

12: end if
13: end for
14: for 𝑆𝑅 𝑗 ∈ neighbors do
15: for 𝑠 ∈ 𝑃𝑆𝑖 ∩ 𝑅𝑆 𝑗 not proposed in current iteration do

16: 𝑡
𝑗,𝑠

𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡
← earliest time after 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 that 𝑆𝑃𝑖 can begin serving skill 𝑠 to 𝑆𝑅 𝑗

17: send proposal(𝑆𝑅 𝑗 , 𝑠, 𝑤
𝑠
𝑖
, 𝑡

𝑗,𝑠

𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡
)

18: end for
19: end for
20: end for

𝑆𝑅 𝑗 to 𝑆𝑃𝑖 for requested skill 𝑠 is composed of a 𝑆𝑅 𝑗 ’s requested

workload for 𝑠 , a requested start time for 𝑆𝑃𝑖 to begin to provide 𝑠

to 𝑆𝑅 𝑗 and a bid value that expresses the utility it could derive from

receiving 𝑠 with the workload requested at the start time requested.

Once all service requests for the iteration are sent, the SPs will at-

tempt to create a schedule (each SP starts with an empty schedule in

each iteration). The SP attempts to schedule the service requests in

descending order of bid value. A schedule attempt for request 𝑟 suc-

ceeds if the completion time of the last scheduled request is earlier

than the requested start time of 𝑟 and if the SP has enough workload

left to provide it, given the services needed to fulfil the already-

scheduled requests. The SP will continue to attempt to schedule

requests until an attempt fails. The SP responds to a scheduled

request with a service proposal to provide the service as requested.

The SP responds to an unscheduled request with an updated ser-

vice proposal including its updated remaining providable skills and

workloads (the original skills and workloads, minus those needed

for the scheduled requests) and its updated proposed service start

time (the next time possible after the scheduled requests). This

begins the next auction (iteration), and the process occurs again.

Algorithm 1 depicts the main procedure of the SPs. Initially, a

SP will propose its neighboring SRs the earliest possible service

start time as well as its entire workload per joint skill (lines 14-17,

as there are no requests in the initial iteration). In later iterations,

the SP creates a new schedule by responding to service requests

received from SRs, ordered highest bid first (lines 3-4). The SP will

schedule request 𝑟 for skill 𝑠 (𝑟 ) if the earliest possible start time

for the request, 𝑡𝑟
𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡

, is earlier than (or equal to) the start time

requested 𝑡𝑠𝑡𝑎𝑟𝑡 (𝑟 ) and if the SP has enoughworkload𝑤𝑠 (𝑟 )
𝑖

to fulfil

the requested workload,𝑤 (𝑟 ) (line 6). If a request is scheduled, the
SP proposes to provide the request (line 7). The SP then schedules

the request in the next free slot in 𝑋𝑖 , updates 𝑤
𝑠
𝑖
according to

the the requested workload and 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 according to the expected

completion time of the request (lines 8-9). If a request is not feasible,

the SP stops the scheduling process (line 11). The SP responds to the

unscheduled requests by sending the SRs new proposals to provide

the skills after the scheduled requests, along with the workloads

they will be able to provide at this later time (lines 14-17).
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Algorithm 2 RPA: Service Requester 𝑗

1: for fixed number of iterations do
2: Reset 𝑤𝑠

𝑗
∀ 𝑠 ∈ 𝑅𝑆 𝑗

3: for 𝑠 ∈ 𝑅𝑆 𝑗 do
4: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑠 ← proposals received from SPs in previous iteration for 𝑠 , ordered by

quality of the proposed service

5: for 𝑝 ∈ 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑠 do
6: 𝑤𝑎

𝑠 ←𝑚𝑖𝑛{𝑤 (𝑝 ), 𝑤𝑠
𝑗
}

7: 𝑏𝑖𝑑𝑠,𝑖 ← allocate(𝑆𝑃𝑖 (𝑝 ) , 𝑠 , 𝑤𝑎
𝑠 , 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 (𝑝 ))

8: send request(𝑆𝑃 (𝑝 ) , 𝑠 , 𝑤𝑎
𝑠 , 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 (𝑝 ) , 𝑏𝑖𝑑𝑠,𝑖 )

9: Update 𝑤𝑠
𝑗

10: if 𝑤𝑠
𝑗
= 0 then

11: break

12: end if
13: end for
14: end for
15: end for

Algorithm 2 depicts the main procedure of the SRs. For each of

its requested skills 𝑠 , the SR will iterate over the proposals received

from SPs that correspond with 𝑠 , ordered by the quality of the

proposals received (lines 3-5); i.e., maximal utility gain possible

from the workload the SP has proposed, normalized by workload.

For each proposal, the SR will allocate workload equal either to

the workload proposed or the remaining unallocated workload

requested (line 6). The bid value is then calculated by the SR and

is sent as a request to the proposing SP. The remaining workload

requested 𝑤𝑠
𝑗
is updated according to the allocation (line 9). The

allocation for a requested skill ends when the allocation has satisfied

the request (lines 10-11) or there are no more proposals to allocate.

The algorithm does not aim to allocate exactly 𝑞𝑠
∗
SPs to 𝑠 but

rather enough SPs to provide the workload requested.

3.1.1 RPA convergence. The convergence of RPA depends on how

bids are calculated. There are several parameters that can be con-

sidered when a SR decides on a bid to be sent to a SP regarding a

specific skill 𝑠 , such as the expected satisfaction from the service,

the expected starting time and the amount of workload potentially

received for skill 𝑠 by other SPs prior to this starting time.

We will prove that when the following assumptions hold, the

algorithm is guaranteed to converge. First, we assume that SRs will

bid higher for an earlier starting time. Formally, for each SR, 𝑆𝑅 𝑗 ,

for every two bids for the same skill 𝑠 , 𝑏𝑠 and 𝑏
′
𝑠 with starting times

𝑠𝑡𝑏 and 𝑠𝑡𝑏′ , 𝑏𝑠 > 𝑏′𝑠 if and only if 𝑠𝑡𝑏 < 𝑠𝑡𝑏′ . We will further assume

that a 𝑆𝑃 will schedule that skill 𝑠 is applied for serving some 𝑆𝑅,

at most once.

While our model is more abstract and there are other possibilities

for calculating the bids, these assumptions hold in many realistic

scenarios, where the quality of service provided by different agents

is similar and the starting time is a critical parameter. One such

scenario is the mass casualty incident problem we address in our

experimental evaluation.

In our convergence proof we will use the following notations.

We will denote by 𝑇𝑆 the set of scheduled services that will not

change in following iterations (the set can only grow as the algo-

rithm proceeds). It includes scheduled services such as 𝑡𝑠𝑘
𝑖 𝑗𝑠

, which

indicates that the 𝑘’th service provided by 𝑆𝑃𝑖 will be to 𝑆𝑅 𝑗 on skill

𝑠 , and that this fact will not change later on. When 𝑇𝑆 includes all

provided service requests, the algorithm converges. We will further

denote by ℎ𝑏𝑘 the highest bid in iteration 𝑘 for a service that is not

yet in 𝑇𝑆 and by ℎ𝑏𝑘
𝑆𝑃

, ℎ𝑏𝑘
𝑆𝑅

and ℎ𝑏𝑠 the SP and SR and skill that

ℎ𝑏 corresponds to, respectively.

Observation 1. In iteration 𝑘 + 1, ℎ𝑏𝑘𝑠 of ℎ𝑏𝑘
𝑆𝑅

will be the first
service that is not in 𝑇𝑆 on ℎ𝑏𝑘

𝑆𝑃
’s schedule.

This is because SPs order services according to their bid sizes.

Observation 2. The only way that ℎ𝑏𝑘+1 can be smaller than
ℎ𝑏𝑘 is when the service that ℎ𝑏𝑘 corresponds to was added to 𝑇𝑆 .

As Observation 1 notes, the highest bid would be the first one (apart

from those in 𝑇𝑆) handled by SPs. If ℎ𝑏𝑘 is not the highest bid in

iteration 𝑘 + 1, it can only be if it was added to 𝑇𝑆 or if there is a

larger bid sent in iteration 𝑘 + 1.

Lemma 3.1. The number of consecutive iterations in which𝑇𝑆 does
not grow is bounded by 2|𝑆𝑃 | · |𝑆 |.

Proof. Under a given 𝑇𝑆 set, the highest possible bid not yet

in 𝑇𝑆 will be added to 𝑇𝑆 (since it is not surpassed, the 𝑆𝑃 agent

getting the bid will always give it a high priority, and the requesting

agent gets it as soon as possible (otherwise, it would have given a

higher bid). Thus, when discussing changes to 𝑇𝑆 we can focus on

looking at the highest possible bid that is not in 𝑇𝑆 yet.

Initially 𝑇𝑆 is empty. After the first iteration of the algorithm,

ℎ𝑏1
𝑆𝑃

schedules the corresponding request as a service. Since all 𝑆𝑅𝑠

in the first iteration considered the earliest possible arrival time of

each 𝑆𝑃 , this bid will remain the highest and will not change. Thus,

this scheduled service is added to 𝑇𝑆 .

In each of the following iterations, each SP has a schedule that

was determined according to the bids it received in the previous

iteration. According to Observation 1, following iteration 𝑘 , in

iteration 𝑘 +1, ℎ𝑏𝑘𝑠 will be scheduled first among all services not yet

in 𝑇𝑆 by ℎ𝑏𝑘
𝑆𝑃

. Thus, either ℎ𝑏𝑘+1 is the same as ℎ𝑏𝑘 , or, according

to Observation 2, it was replaced by a higher bid. In both cases,

ℎ𝑏𝑘
𝑆𝑃

will never submit an earlier arrival time to ℎ𝑏𝑘
𝑆𝑅

than the one

it submitted at iteration 𝑘 + 1 and therefore, it will never receive

a bid for this service that is higher than the one it got for it in

this iteration. Thus, the maximal number of different highest bids

between consecutive additions to 𝑇𝑆 is bounded by two iterations

for each SP on each skill, i.e., 2|𝑆𝑃 | · |𝑆 |. That is, after that number of

iterations, it is guaranteed that one of those bids was the maximal

possible one, and thus, would be added to 𝑇𝑆 . □

Proposition 3.2. RPA converges within 2|𝑆𝑃 |2 · |𝑆 |2 iterations.

Proof. According to our assumption, each SP serves an SR on

a skill only once, i.e., the number of services that are added to 𝑇𝑆

is bounded by |𝑆𝑃 | · |𝑆 |. From Lemma 3.1, the maximal number of

iterations between each increment to the size of set 𝑇𝑆 is bounded

by 2|𝑆𝑃 | · |𝑆 |. Thus, the maximal number of iterations before the

algorithm converges is bounded by 2|𝑆𝑃 |2 · |𝑆 |2. □

Our assumption that each 𝑆𝑃 will serve a 𝑆𝑅 agent with skill 𝑠 at

most once can easily be relaxed to serving the 𝑆𝑅 agent with some

fixed number of times. The proof for Proposition 3.2 will only need

to be slightly changed, multiplying our convergence bound by a

fixed amount.
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3.2 Distributed Simulated Repeated Matching
Algorithm (DSRM)

The DSRM algorithm creates allocations of SPs to SRs by repeatedly

simulating the outcome of a matching algorithm over time. Each

agent (SP as well as SR) has an internal clock that begins at 𝑡 = 0

and progresses throughout the DSRM algorithm. Each iteration

considers a simulated time 𝑡 at which the agents execute an iterative

Gale Shapley inspired many-to-one matching algorithm [13] to

match SPs with SRs. The outcome of the matching algorithm is

translated to service tuples by the SRs and scheduled by the SPs.

Once a SP is matched to a service to a SR, it can determine when

it will finish providing the service, by calculating how long it will

take to complete its assigned workload (using 𝑡𝑠
𝑖
(𝑤)). This way it

can also know what its remaining workload will be at a future time.

At each iteration, we simulate as though the previous allocations

already happened, which means that the provided services and

workload are updated as well as the internal clock of each agent

(an explanation on how to distributedly synchronize the internal

clocks to the next relevant start time in each iteration follows). In

each iteration we want to make a decision for the next allocation at

this time. This simulated matching process will end when there are

no more SRs with remaining requested skills or no more SPs with

remaining providable skills. The final schedule is the solution to

the problem and will include the assignments that were ”executed”

during the simulated process in the order that they were simulated.

The iterative Gale Shapley inspired many-to-one matching algo-

rithm is performed as follows. In each iteration, the SR calculates a

bid value for each of its requested skills, for each neighboring SP

that can provide the service. This bid value expresses the utility it

could derive from receiving the service from the SP. The SRs share

the bids with the SPs. Then, a distributed version of the Gale Shap-

ley college admissions algorithm (DGS) [3] is executed to create a

many-to-one matching. Each SR acts separately and simultaneously

for each of its requested skills. Both the SPs and the SRs’ requested

skills rank one another according to the bid values. The SPs that

have been matched will not take part in the next iteration. The

SRs will take part in the next iteration if they have at least one

requested skill 𝑠 that has not been matched with 𝑞𝑠
0

𝑗
SPs (defined

by min{𝑞𝑠∗
𝑗
, number of SP neighbors with 𝑠 ∈ 𝑃𝑆𝑖 }), and there is

at least one neighboring SP to provide the skill. The iterative match-

ing algorithm ends when there are no SPs or SRs left to match.

Note that the algorithm does not aim to allocate just enough SPs to

provide the workload requested but rather 𝑞𝑠
∗
SPs for each skill.

Algorithm 3 depicts the main procedure of the SPs. A SP initial-

izes the times 𝑡, 𝑡𝑙𝑎𝑠𝑡 to 0 and its assignment for time 𝑡 as empty (line

1). The algorithm ends when the SP no longer has SRs to provide

services to or no service left to provide (line 21). At each simulated

time 𝑡 , the SP updates its neighboring SRs regarding its providable

skills by sending service proposals for each skill (lines 3-6) and

receives bids from the SRs in response (line 9). These bids are used

to rank the SRs in the DGS algorithm. Then, the DGS algorithm is

performed iteratively until the SP has been matched or there are no

SRs left to match with (lines 11-13). Thereafter, the SP will receive

an allocation from its matched SR (if one exists) (line 15). Lastly, the

simulation time is updated, the SP assigns the completed portion of

Algorithm 3 DSRM: Service Provider 𝑆𝑃𝑖

1: 𝑡𝑙𝑎𝑠𝑡 ← 0, 𝑡 ← 0, 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑡 ← null

2: repeat
3: for 𝑆𝑅 𝑗 ∈ neighbors do
4: for 𝑠 ∈ 𝑃𝑆𝑖 ∩ 𝑅𝑆 𝑗 do
5: 𝑡

𝑗

𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡
← earliest time after 𝑡 that 𝑆𝑃𝑖 can begin serving 𝑆𝑅 𝑗

6: send proposal(𝑆𝑅 𝑗 , 𝑠, 𝑤
𝑠
𝑖
, 𝑡

𝑗

𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡
)

7: end for
8: end for
9: Receive bids from SRs and rank them accordingly

10: Update neighbors

11: while |neighbors | > 0 and has no match do
12: Run Distributed Gale Shapley
13: neighbors← neighboring SRs that require some skill from 𝑃𝑆𝑖 and haven’t completed

their matching

14: end while
15: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑡 ← receive assignment from matched 𝑆𝑅
16: 𝑡𝑙𝑎𝑠𝑡 ← 𝑡

17: 𝑡 =𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑆𝑃_𝑓 𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 ( )
18: 𝑝𝑎 ← partial 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑡 complete in 𝑡 − 𝑡𝑙𝑎𝑠𝑡
19: schedule(𝑝𝑎)

20: Update 𝑤
𝑠 (𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑡 )
𝑖

according to 𝑝𝑎

21: until |neighbors | = 0 or 𝑃𝑆𝑖 = ∅

Algorithm 4 DSRM: Service Requester 𝑆𝑅 𝑗

1: 𝑡𝑙𝑎𝑠𝑡 ← 0, 𝑡 ← 0, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑡 ← ∅
2: repeat
3: Receive service proposals from SPs

4: Update neighbors

5: Calculate bids for all SP neighbors and rank them accordingly

6: for 𝑆𝑃𝑖 ∈ neighbors do
7: for 𝑠 ∈ 𝑅𝑆 𝑗 ∩ 𝑃𝑆𝑖 do
8: send request(𝑆𝑃𝑖 , 𝑠 , 𝑤

𝑠
𝑗
, 𝑡𝑖
𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡

, 𝑏𝑖𝑑𝑠,𝑖 )

9: end for
10: end for
11: while |neighbors | > 0 and has 𝑠 ∈ 𝑅𝑆 𝑗 that has not been matched with 𝑞𝑠

0

𝑗
SPs do

12: for 𝑠 ∈ 𝑅𝑆 𝑗 do
13: 𝑞𝑠

0

𝑗
←𝑚𝑖𝑛{𝑞𝑠∗

𝑗
, |SP neighbors with 𝑠’s skill | }

14: end for
15: Run Distributed Gale Shapley
16: neighbors← all neighboring SPs that can provide some 𝑠 ∈ 𝑅𝑆 𝑗 and haven’t been

matched

17: end while
18: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑡 ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠(matched SPs)

19: 𝑡𝑙𝑎𝑠𝑡 ← 𝑡

20: 𝑡 =𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑆𝑃_𝑓 𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 ( )
21: for 𝑆𝑃𝑖 ∈ 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑡 do
22: 𝑝𝑎 ← partial assignment complete in 𝑡 − 𝑡𝑙𝑎𝑠𝑡 by 𝑆𝑃𝑖
23: Update 𝑤𝑠 (𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑡 ) 𝑗 according to 𝑝𝑎

24: end for
25: until |neighbors | = 0 or 𝑅𝑆 𝑗 = ∅

the service to its schedule according to the elapsed time (𝑡 − 𝑡𝑙𝑎𝑠𝑡 ),
and its remaining providable skills are updated (lines 17-20).

Algorithm 4 depicts the main procedure of the SRs. At first, simi-

larly to the SPs, a SR initializes the times 𝑡, 𝑡𝑙𝑎𝑠𝑡 to 0 and its allocation

for time 𝑡 as empty (line 1). The algorithm will end when the SR has

no more requested skills or when the SR no longer has SPs that can

provide its requested skills (line 25). At each time 𝑡 in which the

simulation is performed, the SR receives the SP’s service proposals

(line 3), calculates bids (as described in the following sub-section)

for each of its neighbors per skill they have that the SR requires

and sends service requests to the SPs (lines 5-8). The calculated

bids are used to rank the SPs in the DGS algorithm. Then, the DGS

algorithm is performed iteratively for each of the requested skills

simultaneously, until each skill 𝑠 ∈ 𝑅𝑆 𝑗 has been matched with 𝑞𝑠
0

𝑗

SPs (defined by min{𝑞𝑠∗
𝑗
, number of SP neighbors with 𝑠 ∈ 𝑃𝑆𝑖 }),

or there are no SPs left to match with (lines 11-16). The SR allocates

services to be performed by the SPs by dispersing the load evenly
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between the matched SPs, considering their available providable

skills (line 18). Lastly, the simulation time is updated and the SR’s

remaining requested skills are updated according to the workload

that has been completed in the elapsed time (𝑡 − 𝑡𝑙𝑎𝑠𝑡 ) (lines 20-23).
To find the minimal next simulation time (line 17 in algorithm 3,

line 20 in algorithm 4), we use a simple distributed algorithm (in-

spired by [8]). Each agent (whether a SP or SR) holds a minimal

time (for a SP it will be initialized as the completion time of its allo-

cation; for a SR it will be initialized as the earliest completion time

of its allocated SPs) and sends this time to its neighbors. Each agent

receives its neighbors’ messages and saves the minimal time. When

the minimal time of an agent is revised, it is sent to its neighbors.

This algorithm (that finds the next minimal simulation time) will

converge in 𝑂 (𝑑) iterations (d being the diameter of the communi-

cation graph) , as agent 𝑎 that has the true minimal time will surely

never change it. Therefore, at most, the message will have to reach

the furthest agent from 𝑎 in the graph.

3.2.1 DSRMProperties. In order to establish the following property
we first assume that there is a minimal amount of workload that an

SP will perform when assigned to apply some skill, serving some

SR. We note this minimal fraction of workload by 𝜖 .

Proposition 3.3. DSRM converges to a solution in a pseudo-
polynomial number of iterations.

Proof. According to our assumption, the number of possible

assignments to apply a skill for some SR is bounded by the number

of SRs (m) times the number of skills (k) times the maximal number

of fractions of workload (
𝑤
𝜖 ), where 𝑤 is the maximal workload

requested for any skill. Since in every iteration of the algorithm

at least one SP is assigned to perform some skill in order to serve

some SR, and this assignment is not changed in later iterations, the

number of iterations is bounded by: 𝑛 ·𝑚 ·𝑘 · 𝑤𝜖 . Thus, the number of

iterations before the algorithm converges is pseudo polynomial. □

Proposition 3.4. The quality of the solutions found by DSRM as
a function of the number of iterations is monotonically increasing.

Proof. The solution is incrementally built. After beginning

empty, at each iteration, at least one assignment of a SP to per-

form a skill for an SR is added to the partial solution. Each such

assignment has positive utility. Therefore the quality of the solution

(which is the sum of the utilities derived for each such assignment)

is increasing with each iteration. □

3.2.2 Calculating DSRMAlgorithm Bids. Wepropose two functions

for calculating bidding values:

Simple assigns each SP neighbor a bid value for each of its

𝑠 ∈ 𝑅𝑆 𝑗 that represents the utility the SR would derive if

the SP was to provide as much of 𝑠 as possible to the SR

disregarding other SPs’ abilities and the Cap function.

Truncated assigns positive values only to a number of SPs

for each of its 𝑠 ∈ 𝑅𝑆 𝑗 . The number of SPs that will receive

positive bids is equal to 𝑞𝑠
0

𝑗
. The SR chooses the 𝑞𝑠

0

𝑗
SPs with

the earliest expected start times and assigns to each of them

a value that represents the marginal utility it should receive,

taking into account the SPs that could arrive before it as well

Figure 1: Abstract Simulator

Figure 2: MCI Simulator

as the effect of the Cap function (more details can be found

in the supplementary material).

4 EXPERIMENTAL EVALUATION
To evaluate the proposed algorithms’ performance, we created two

different simulators. The first simulates the coordination between

SPs and SRs of an abstract SOMAOP, with an objective of maximiz-

ing the global utility function. The second simulates a specific and

realistic instance of SOMAOP, the coordination between medical

units (SPs) and disaster sites (SRs) in a Mass Casualty Incident (MCI)

setting with an objective of minimizing the number of casualties

with a low survival probability [23].

All results presented are averages of solving attempts of the 50

simulated problems, by the algorithms. Figure 1 and 2 present the

global utility as a function of Non-Concurrent Logic Operations

(NCLOs) [18, 22, 32] for four scenarios in the abstract simulator

and the MCI simulator, respectively. Each scenario has a different

magnitude, or ratio of SP size to SR size. The scenarios in our

experiments had 40 and 20 SPs and a magnitude of 4 : 1 and 2 : 1.

In each scenario we compared five algorithms: RPA, DSRM using

the simple bid function, DSRM using the truncated bid function,

the Distributed Gale Shapley College Admissions algorithm (DGS)

as a one-shot schedule and a centralized greedy algorithm. In the
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Figure 3: Constraint coherence Abstract Simulator

centralized greedy algorithm pairs of SP and a requested skill of an

SR are selected and scheduled sequentially, ordered according to

the maximal utility per workload. The algorithm continues until

there are no more SRs with remaining requested skills that can be

served by the SPs.

4.1 Comparing SOMAOP Algorithms
The results presented in Figure 1 show a clear and consistent advan-

tage of the version of DSRM that uses the truncated bid function.

In comparison to DSRM, RPA converges earlier, but to solutions

with a lower global utility. The GS algorithm converges fastest,

since it only performs a single shot schedule. The DSRM version

that uses a simple bid function produced solutions with a lower

utility on average than the results produced by the version that

used truncated bid. Moreover, its runtime was longer due to the

larger number of iterations it performs in each execution of the

Distributed Gale Shapley algorithm. As the amount of SPs increases,

the runtime of DSRM increases (regardless of the type of utility

being used). In contrast, in RPA the convergence time is faster than

DSRM regardless of the amount of SPs. The solutions that DGS

produces have lower utility than the utility of solutions produced

by DSRM with a simple bid function when there are 20 SPs and

higher when there are 40. It seems that this is the effect of DSRM’s

readjustment each time SPs are planning to end a service. When

there are many SPs, such adjustments occur often. This results in

SPs abandoning their services for higher bidders, meaning their

time is wasted and thus, the utility decreases. In these cases, DGS

performs better despite creating a single-SR-schedule for the SPs,

as the scheduled services are completed at the earliest available

time with no delay. DSRM with a truncated bid is not fazed by

the amount of SPs as the bids are calculated in a way that is less

sensitive to changes. The centralized greedy algorithm is shown as

a horizontal line describing the average final utility of the algorithm

(as opposed to utility over NCLOs). This approach produced lower

utility results in all of the problem sizes shown.

Figure 2 presents similar results of the algorithms solving MCI

problems. Again, DSRM using truncated bid yields the highest qual-

ity results, and RPA converges fast regardless of the amount of SPs.

However, DSRM with simple bid converges much faster on this

simulator. The reason is that there are strict ordering constraints be-

tween skills applied by SPs in this simulator, e.g., medical treatment

must be given before evacuation to the hospital. Thus, optional

outcomes are ruled out and the size of the solution space is much

smaller than that of the abstract simulator. This is also the reason

for the clear difference between the results of DSRM with a simple

bid function and the results of DGS.

4.2 Comparing SOMAOP and DCOP Algorithms
To compare SOMAOP algorithms with DCOP algorithms, we need

to describe how an instance of SOMAOP is modeled as a DCOP

(similar to how multi agent task allocation problems were modeled

as DCOPs in [2]). First, we note that in a DCOP there is only one

type of agents, i.e., the DCOP agents are the SPs and there are

no agents representing the SRs. Thus, in DCOP, each of the SP

agents must be able to communicate with the other SP agents. A SP

agent neighbors another SP agent if they can both provide the same

skill to a SR. Additionally, besides holding variables and variable

domains as they do in SOMAOP, the SPs must also hold the con-

straint information (the utility derived from different combinations

of decisions regarding service providing). Moreover, many DCOP

algorithms require the SP to correctly calculate the utility from an

assignment to its variables, thus, it must also know the assignments

of its neighboring SPs.

Information coherence of a DCOP as the extent to which each

agent is aware of the characteristics of the DCOP (i.e., other agents’

assignments or the constraints of the problem). High coherence is

associated with the agents having a more complete and intelligible

awareness of the state of other agents in the DCOP and the con-

straints among them. Low coherence is associated with the agents

having an incomplete and unintelligible awareness of the DCOP

elements. One possible reason for low coherence is the attempt to

preserve agents’ privacy. Low coherence may also be associated

with imperfect communication [25, 34]. We distinguish two types

of coherence, inspired by [9]’s definitions of privacy guarantees in

DCOPs: 1) Assignment coherence: The extent to which an agent is

aware of the assignments chosen by other agents to their variables.

2) Constraint coherence: The extent to which an agent is aware of

the cost incurred by the constraints in the problem.

The separation of the responsibilities between the two sets of

agents in SOMAOP such that only the SRs need to be able to evalu-

ate possible solutions and be aware only of the utility calculation

regarding their own set of requested skills, allows the SPs to focus

only on their own current state. All the SP needs to know is the

information regarding the utility derived from its own choice of

assignments. This information is delivered to the SP by its neigh-

boring SRs in SOMAOP. Thus, the required information coherence

in SOMAOP is negligible for both forms of coherence defined.

In DCOP algorithms, in order for the agents to be able to eval-

uate the quality of their value assignments, they must know all

the constraints they are involved in. Thus, the required constraint

coherence of standard DCOP algorithms is high. In terms of as-

signment coherence, the SOMAOP model eliminates the need for

the SPs to know of other SPs’ assignments as SRs are the only

ones that must see the "bigger picture" of assignments in the sys-

tem. Therefore, the SOMAOP algorithms do not require assignment
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coherence for the SPs. DCOP algorithms, on the other hand, re-

quires the agents to know all its neighbor’s assignments, i.e., the

assignment coherence requirement in DCOP is also high.

The high requirement for the coherence of the information held

by the SP agents in DCOP violates the essential distributed proper-

ties, which are preserved in SOMAOP. If each SP has access to all

constraints regarding each of the neighboring SRs as well as access

to all of the other SPs’ assignments, perhaps a centralized approach

is equivalently appropriate.

Using the same scenarios as in the experiments presented above,

we compare the SOMAOP algorithms – RPA andDSRM– to DCOP’s

DSA [31] and Max-Sum [10, 33]. We begin with DSA: we used DSA-

C with a probability 𝑝 = 0.7 for replacing a value assignment. In

each iteration each agent selected a random variable 𝑥𝑖 to which it

considered whether to replace its assignment to the best alternative.

To evaluate the relation between information coherence and the

quality of solutions reported by DSA, we limited the information

coherence of the agents performing the algorithm and compared

the results to the outcomes of the SOMAOP algorithms.

To limit information coherence we define 𝑝𝑐 , 𝑝𝑎 ∈ [0, 1], which
determine the amount of information an agent knows regarding its

neighbors’ constraints and assignments respectively. For example,

𝑝𝑐 = 0.5 translates to a 50% chance of an agent being aware of the

cost incurred by a specific constraint in the problem.

Figures 3 and 4 present the results for constraint coherence, and

assignment coherence, respectively. We varied only one parameter,

thus, in the experiments presented in Figure 3, 𝑝𝑎 was set to 1

and in the experiments presented in Figure 4, 𝑝𝑐 = 1. The results

in Figure 3 show that for problems with a 4:1 ratio between SPs

and SRs respectively, DSA outperforms DSRM with a truncated

bid function when the constraint coherence (𝑝𝑐 ) is above 0.75. In

problems with a 2:1 ratio, even with 𝑝𝑐 = 1, our algorithms provide

a better average final global utility. The results presented in Figure 4

show similar outcomes. For problems with a 4:1 ratio between SPs

and SRs respectively, DSA outperforms DSRM with a truncated

bid function only when the assignment coherence (𝑝𝑎) is above

0.75 when there are 20 SPs, and above 0.5 for 40 SPs. In problems

with a 2:1 ratio, even with 𝑝𝑎 = 1, our algorithms provide a better

average final global utility. Similar results were also shown in the

MCI simulator see appendix in the full version for more details).

The results show that although the DCOP framework can be used

to solve SOMAOPs, it requires a high information coherence from

the agents in order to achieve similar (or worse) results than those

of SOMAOP algorithms.

The Max-Sum algorithm operates on a bipartite factor graph

[10, 33]. This characteristic makes Max-Sum seem like a natural

choice for solving service-oriented multi-agent problems. However,

when used to solve problems whose inherent structure is of a bi-

partite graph (including service providers and service requesting

agents), the algorithm fails to overcome its inherent symmetry and

performs poorly [7, 29]. Additionally, since the constraints held by

SRs in SOMAOP can involve a large number of SPs, i.e., they are

constraints with high arity, the function-nodes in Max-Sum must

use exponential runtime in order to generate messages.

To see how well Max-Sum can handle instances of SOMAOP,

the algorithm was implemented on the abstract simulator and com-

pared with our proposed algorithms. Here too, we implemented

Figure 4: Assignment Coherence Abstract Simulator

Figure 5: Max-Sum Comparison in the Abstract Simulator

an iterative approach (which significantly outperformed a single

shot approach) in which the solution was built incrementally by

performing Max-Sum in each iteration in order to allow the SPs to

select their next action.

Figure 5 presents the average quality of the solutions produced

by the algorithms, solving 30 problems, with 20 SPs and 5 SRs. The

exponential runtime of Max-sum prevented us from experimenting

with larger problems. The results indicate that Max-sum produces

solutions with far lower quality than the SOMAOP algorithms.

5 CONCLUSIONS
Many realistic distributed problems include service requesters and

service providers. In the last two decades, distributed optimiza-

tion problems have been represented and solved using the DCOP

model and algorithms, which are not suitable for representing the

two types of agents in service oriented multi agent optimization

problems. Additionally, they require high information coherence,

which is often unwanted or simply unrealistic in the environments

of real-life problems. We proposed SOMAOP, a novel model for

representing such problems and algorithms for solving them. The

algorithms use well studied allocation methods as building blocks,

and update the agents’ estimations (bids) of the utility they will

derive from the services available following each iteration. Our em-

pirical results demonstrate the advantages of the proposed iterative

processes for solving this type of problem.
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