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ABSTRACT
Reliability of reinforcement learning (RL) agents is a largely un-
solved problem. Especially in situations that substantially differ
from their training environment, RL agents often exhibit unpre-
dictable behavior, potentially leading to performance loss, safety
violations or catastrophic failure. Reliable decision making agents
should therefore be able to cast an alert whenever they encounter
situations they have never seen before and do not know how to han-
dle. While the problem, also known as out-of-distribution (OOD)
detection, has received considerable attention in other domains
such as image classification or sensory data analysis, it is less fre-
quently studied in the context of RL. In fact, there is not even a
common understanding of what OOD actually means in RL. In this
work, we want to bridge this gap and approach the topic of OOD in
RL from a general perspective. For this, we formulate OOD in RL
as severe perturbations of the Markov decision process (MDP). To
detect such perturbations, we introduce a predictive algorithm uti-
lizing probabilistic dynamics models and bootstrapped ensembles.
Since existing benchmarks are sparse and limited in their com-
plexity, we also propose a set of evaluation scenarios with OOD
occurrences. A detailed analysis of our approach shows superior
detection performance compared to existing baselines from related
fields.
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1 INTRODUCTION
Reinforcement learning has been successfully applied to many do-
mains, achieving beyond human-level performance on a wide range
of complicated sequential decision-making problems [24, 26, 34].

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

While it offers a promising path to solving tasks that currently
cannot be solved by any other approach, RL is not yet commonly
applied to real-world scenarios. One of the main reasons for this is
the lack of reliability RL agents provide. Even though many efforts
have been made to ensure or even guarantee the desired behavior
of RL methods during runtime [1, 4, 8, 36], these assurances only
hold for situations that closely resemble those that were encoun-
tered during training. In situations that substantially differ from
the learning environment however, learned models and policies are
prone to produce unpredictable outputs, without signalizing any
uncertainty about the current inputs. This can lead to performance
loss, safety violations or even catastrophic failure. Detecting unseen
situations is, therefore, a necessary measure towards RL systems
that can be deployed in real-world scenarios [17].

Naturally, this problem not only applies to RL, but to learning-
based systems in general. In fact, understanding and detecting dif-
ferences between inputs a system was trained on and inputs a system
is deployed on, is a widely studied problem in the field of Machine
Learning (ML). Following [40], the problem can be generally sub-
divided into two major streams: 1) Covariate Shift Detection,
focusing mostly on sensory anomalies (e.g., sensor noise, sensor
drift), and 2) Semantic Shift Detection, focusing on semantic
anomalies (e.g., occurrence of new semantic concepts), often also
referred to as Out-of-distribution (OOD) inputs. But how does this
translate to the context of RL? Essentially, 1) is well understood,
since methods from classical sensor noise detection also directly
apply tomost RL setups. The equivalent of 2) however, i.e., recogniz-
ing semantically anomalous situations, is a largely underexplored
field. While some work does exist under the name of OOD Detection
for RL, they mostly cover sensor noise, limited evaluation scenarios
or narrow problem definitions.

The goal of our work is to provide a more general scheme of
how OOD can be approached for RL problems, in terms of problem
formulation, detection algorithms and evaluation scenarios. While
previous work often considers sensor noise as OOD, we argue that
this definition is not sufficient. Instead, we propose a formaliza-
tion of OOD as severe perturbations of the MDP, which effectively
change the semantics of the system. Although being relatively
simplistic, this formalization allows us to build clear expectations
towards the RL agent and the detection algorithm, which we can
evaluate. Our main contribution is a novel algorithm for detecting
semantic perturbations in MDPs, utilizing probabilistic dynamics
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models and bootstrapped ensembles. Whilst several previous works
have explored uncertainty-aware deep neural networks [23] for
learning dynamics models [9, 11, 14], our work is, to the best of our
knowledge, the first to link these approaches for OOD detection
in the context of RL. We analyze our approach both on existing
benchmarks with sensor noise, and novel evaluation environments
with semantic shift scenarios. Empirical results indicate superior de-
tection performance of our proposed detection algorithm compared
to baselines.

2 RELATEDWORK
According to [40], the goal of Out-of Distribution (OOD) detection is to
classify test samples within the label space and to reject samples with
semantics outside the support of the label space. Similarly, anomaly
detection (AD), is the task of identifying patterns that deviate sub-
stantially from the predefined normality. This can either be caused
by covariate or semantic shift. Most previous works are however
inconsistent, when referring to different types of anomalies and
hence, AD, novelty-detection, outlier-detection or OOD-detection
are often used interchangeably. In this work, we try to adhere to
the taxonomy from [40] as much as possible.

In a comprehensive survey, [7] provides a detailed analysis of
many classical algorithms for AD (both sensory and semantic), in-
cluding classification-, clustering-, nearest-neighbor-, and statistics-
based approaches. [18] introduces a baseline for OOD-detection in
classification tasks utilizing maximum SoftMax probabilities. In a
more recent work, [6] review deep-learning based techniques for
OOD detection. [22] specifically focus on time series and compare
both classical and modern techniques on a novel benchmark. Sur-
prisingly they find classical algorithms to be generally superior.
However, none of the works from these surveys and benchmarks
include RL as an area of application.

Nevertheless, there also exist several efforts more closely related
to OOD in RL. [28] approach AD in RL on a conceptual level. [16]
study the problem of domain shift in RL in a broader sense and
suggest decomposing the disturbances into aspects of the MDP.
[35] provide a first approach to detect OOD in RL, using the en-
tropy of predicted actions of an agent as a score to detect novel
states. However, they only consider a simple GridWorld task or
the LunarLander environment with only two types of disturbances,
(changed grid-layout and changed target-platform position respec-
tively). Furthermore, their approach is limited to Q-value based
algorithms only. [27] make a step towards more semantically mean-
ingful disturbances (e.g. change of gravity, external forces) but
only consider Pong & discrete Cartpole as evaluation environments.
They do not propose a solution towards the benchmark they intro-
duce but instead evaluate [35] on it. Unfortunately however, this
benchmark is still proprietary. [3, 15] also introduce benchmarks
for detection in GridWorld environments. [10] coin the term Out-of-
Distribution Dynamics Detection (OODD) and propose a sequential
model based on agent observations to detect OOD states. However,
they construct these OOD states solely by adding observational
noise.

While in this work we deliberately focus on RL, AD also received
considerable attention in the closely related field of robotics. For in-
stance, [19] use an SVM on embeddings from an Encoder-Decoder

network to detect anomalies on synthetic data and real-world robot
manipulation tasks. [2] deploy variational autoencoders for anom-
aly detection in a supervised manner with outlier exposure. [39]
deploy a feature extractor and normalizing flow with an input of
RGB, depth and surface normals for robot navigation. [21] combine
outputs of a path-planner with visual inputs for robot navigation.
[32] use the reconstruction probability of an auto-regressive LSTM-
VAE as an anomaly score estimator for a robot assisted feeding
task. The latter three of these works are however designed for very
specific applications and are not generally applicable in other do-
mains. [19] on the other hand offers a more general approach but
unfortunately only uses proprietary data and code.

In summary, we make 3 important observations: 1) approaches
from the field of robotics are mostly very problem specific and are
not universally applicable to other tasks. 2) Existing evaluation
scenarios for semantic anomaly detection in RL are limited, either
in terms of task complexity or in the types of disturbances they
introduce. 3) Methods for OOD detection in RL are very sparse and
related approaches from other domains such as classification tasks
can not directly be translated to RL. What is more, there appears to
be no existing algorithm that aims at semantic OOD detection for
RL agents. We attempt to fill this gap by introducing a model-based
OOD detection algorithm for learning-based agents. To evaluate
this algorithm, we introduce a suite of evaluation scenarios that
are both more complex than existing works and encompass OOD
behavior deeply rooted in the semantics of RL tasks.

3 PRELIMINARIES
3.1 Problem Formulation
We consider RL agents as decision-making systems that sequentially
interact with their environment by taking actions. The standard
formalization of such problems is a discrete-time Markov decision
process (MDP) [33]. An MDP is a tupleM := (S,A, 𝑟 , 𝑓 , 𝜇0). S
denotes the state space,A the action space, and 𝑟 : S×A×S ↦→ R
the reward function. 𝑓 : S × A ↦→ S is the transition function
which describes the system dynamics, also called dynamics function.
𝜇0 : S ↦→ [0, 1] is the starting state distribution.

The agent’s goal in each time step is to take the action that
maximizes the sum of future rewards

∑𝑡→∞
𝑡 𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ), where 𝛾 ∈

[0, 1] is a discount factor that prioritizes near-term rewards.

3.2 Forward Dynamics Model Learning
Learning a forward dynamics model is the task of approximating a
system’s true (but unknown) dynamics function 𝑓 (𝑠, 𝑎). This can be
achieved by generating experience from the system via interaction
and fitting to the collected transitions [29]. More formally, let 𝑓𝜃
denote a learnable discrete dynamics function, parameterized by
𝜃 , that maps from the current state and action to the next state at
time 𝑡 + Δ𝑡 : 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ) = 𝑠𝑡+Δ𝑡 . Given an arbitrary control policy
𝜋 (𝑎𝑡 |𝑠𝑡 ), we can collect data from the environment, by rolling out
action sequences: D = {(𝑠𝑛, 𝑎𝑛), 𝑠𝑛+1}𝑁𝑛=1. To learn the dynamics
function, we can simply fit 𝑓𝜃 (𝑠, 𝑎) by minimizing the MSE loss:
argmin

𝜃

∑𝑁
𝑛=1∥ 𝑓𝜃 (𝑠𝑛, 𝑎𝑛) − 𝑠𝑛+1∥2.
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4 OOD FOR SEQUENTIAL DECISION MAKING
TASKS

As introduced in section 2, [40] provide a clear problem definition
for OOD in classification tasks. In sequential decision-making prob-
lems, however, there is no concept of a well-defined label space.
There is not a single correct class label for a given input, but in-
stead many different optimal decision-making policies can exist,
representing equally optimal decisions given the same observation
of the world. This makes the distinction between In-Distribution
(ID) and OOD inputs very subtle since we cannot simply define ID
and OOD classes. Instead, we turn to a scenario-based approach
and define ID and OOD scenarios following the MDP composition
introduced in [16]. That is, we sub-divide any anomalous scenarios
into the individual components that build up the anomalous MDP.
In other words, two tasksM𝐴 andM𝐵 , can be different only in the
aspects that construct the individual MDPs.

With this, we formulate a conservative definition of OOD detec-
tion in the regime of decision-making problems as to process test
samples coming from the training MDP and reject samples coming
from any semantically distinct MDP.

More formally, let Γ : M ↦→ M be a semantic perturbation
to any aspect of an MDP. Samples drawn from the training MDP
S ∼ M𝐴 build up the ID space. Samples drawn from S ∼ Γ(M𝐴)
build up the OOD space.

But what is a semantic perturbation? We argue that a semantic
perturbation should effectively shift the transition function of an
MDP, i.e. by introducing new semantic concepts or changing the
environment dynamics. This in contrast to observational noise
(covariate shift), which can be interpreted as a way of introducing
partial observability, leaving the underlying dynamics of the MDP
unaffected.

This leaves open the question on how strong a perturbation must
be, before we expect to detect it. In this work we will mostly focus
on the two edge cases:

a) The perturbation is minor: Γ(M𝐴) ≈ M𝐴

b) The perturbation is severe: Γ(M𝐴) ≠M𝐴

Although this may oversimplify the problem in some cases, it al-
lows us to formulate a clear hypothesis on what behavior we expect
from an agent or OOD detector. That is, for a) we expect any con-
trol policy to perform just as if there was no perturbation present.
Coherently, we cannot expect an OOD detector to cast an alarm.
Vice versa, for b) we expect a control policy to suffer from the
disturbance, leading to performance degradation or unexpected
behavior. The OOD detector should however cast an alarm in this
case.

5 MODEL BASED OOD DETECTION
Recent advances in model-based RL (MBRL) [9, 29] have shown that
learned dynamics models can achieve high predictive performance
for short-term prediction horizons, but suffer severely for longer
prediction horizons [20]. We make the observation, however, that
due to the interactive nature of RL problems, we can frame OOD
detection as a 1-step prediction problem, classifying one transition
at a time. In the following, we outline the intuition behind our
approach.

Algorithm 1 Model-Based Out-of-Distribution detection
—Training—
Require: policy 𝜋𝐴 (𝑎 |𝑠)
1: generate dataset D by following 𝜋𝐴 (𝑎 |𝑠)
2: Split D into D𝑡𝑟𝑎𝑖𝑛 and D𝑣𝑎𝑙

3: fit 𝑓𝜃 on D𝑡𝑟𝑎𝑖𝑛 using eq. (2)
4: calculate threshold 𝜏 for similarity measure ℎ ( ·) on validation set D𝑣𝑎𝑙

—Testing—
Require: policy 𝜋𝐴 (𝑎 |𝑠) , dyn. model 𝑓𝜃 (𝑠, 𝑎) , threshold 𝜏
5: for Time 𝑡 = 0 to TaskHorizon do
6: predict 𝑠′

𝑡+1 = 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 )
7: apply action 𝑎𝑡 ∼ 𝜋𝐴 (𝑠𝑡 ) to obtain 𝑠𝑡+1
8: if ℎ ( ·) < 𝜏 then
9: {(𝑠𝑡 , 𝑎𝑡 ), 𝑠𝑡+1 } ← ID
10: else
11: {(𝑠𝑡 , 𝑎𝑡 ), 𝑠𝑡+1 } ← OOD
12: end if
13: end for

Given an arbitrary decision-making policy 𝜋𝐴 , which is ideally
already optimized to solve some taskM𝐴 , we generate experience
from taskM𝐴 by following the policy for𝑁 timesteps. The resulting
datasetD = {𝑠𝑛, 𝑎𝑛, 𝑠𝑛+1}𝑁𝑛=1 is then split into a training setD𝑡𝑟𝑎𝑖𝑛
and validation setD𝑣𝑎𝑙 . The training set is utilized to fit a dynamics
model 𝑓𝜃 , whereas the validation set is used to establish a threshold
𝜏 on the model’s prediction error.

During deployment of the policy 𝜋𝐴 in its target environment,
the procedure is as follows. At any given state 𝑠𝑡 , we query an
action 𝑎𝑡 from the policy 𝜋𝐴 and use the forward dynamics model
to predict the outcome of the action: 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ). This prediction
can be compared against the actual outcome 𝑠𝑡+1, observed after
applying 𝑎𝑡 in the environment. Transitions are thus labeled:

𝑦 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) =
{
ID, if ℎ(𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ), 𝑠𝑡+1) < 𝜏
𝑂𝑂𝐷, otherwise

(1)

where ℎ(·) is a similarity function that can be interpreted as an
anomaly score. Algorithm 1 summarizes the entire procedure. Ev-
idently, our approach requires two essential components: A) An
expressive function approximator to accurately model the system
dynamics and B) a discriminative similarity measure to compare
model predictions with actual outcomes in an environment. In the
following, we describe both in more detail.

5.1 Function Approximator
Prior work has shown that high-capacity parametric models such
as Deep Neural Networks (DNNs) can accurately learn complex dy-
namics functions [30]. Especially in combination with uncertainty
estimation techniques [23], DNNs have been shown to be highly
precise and relatively sample efficient. Most importantly, and in
contrast to simpler approaches such as time-varying linear models
or Gaussian processes, they also scale well to high-dimensional
problems [9]. We, therefore, adopt the Probabilistic DNN Ensemble
introduced in [23] as our forward dynamics model.

A probabilistic DNN parameterizes a probability distribution.
The type of distribution can be arbitrarily complex though in our
case we simply induce a Gaussian distribution, predicting the mean
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and the variance of each output feature. For training we use the
negative log prediction probability as our loss function:

− log𝑝𝜃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ) =
log𝜎2

𝜃
(𝑠𝑡 , 𝑎𝑡 )
2

+ (𝑠𝑡+1 − 𝜇𝜃 (𝑠𝑡 , 𝑎𝑡 ))
2

2𝜎2
𝜃
(𝑠𝑡 , 𝑎𝑡 )

+ const. (2)

Probabilistic outputs can model aleatoric uncertainty, i.e., the in-
herent stochasticity in the system. However, they can not model
epistemic uncertainty, i.e., uncertainty about the model parame-
ters. A simple but highly effective technique to model epistemic
uncertainty is via bootstrapped ensembles [12, 31]. We consider an
ensemble of 𝐵 models, and define the ensemble output as the set of
predictive probability distributions 𝑧𝜃 = {𝑓𝜃,𝑏 (𝑠, 𝑎)}𝐵𝑏=1, where the
subscript 𝜃, 𝑏 to refers the parameters of the “𝑏𝑡ℎ" model in the en-
semble. Each ensemble member starts from different initialization
parameters and is trained on a different bootstrap of the dataset
D𝑡𝑟𝑎𝑖𝑛 . The individual datasets D𝑡𝑟𝑎𝑖𝑛,𝑏 are generated by drawing
fromD𝑡𝑟𝑎𝑖𝑛 with replacement. We found B = 5 sufficient for all our
experiments. By using an ensemble of probabilistic models we can
appropriately model both epistemic and aleatoric uncertainty. We
coin this model Probabilistic Ensemble Dynamics Model (PEDM).
We found B = 5 sufficient for all our experiments. By using an en-
semble of probabilistic models we can appropriately model both
epistemic and aleatoric uncertainty. We coin this model Probabilis-
tic Ensemble Dynamics Model (PEDM).

5.2 Anomaly Score (Similarity Measure)
Each ensmble member maps from the current state and action to
the feature-wise mean and variance of a Gaussian distribution over
the next state:

𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ) = N (𝜇𝜃 (𝑠𝑡 , 𝑎𝑡 ), 𝜎𝜃 (𝑠𝑡 , 𝑎𝑡 )) , (3)

where 𝜎 are the entries of a diagonal covariance matrix. The re-
sulting set of probability distributions can be used to calculate an
anomaly score as follows: Given (𝑠𝑡 , 𝑎𝑡 ), we draw from each en-
semble member’s output distribution 𝐾 times, resulting in a set of
𝐵 ∗ 𝐾 representative particles:{

𝑠 ′𝑡+1
}𝐾,𝐵

=

{{
𝑓𝜃,𝑏 (𝑠𝑡 , 𝑎𝑡 )

}𝐾
𝑘=1

}𝐵
𝑏=1

. (4)

Each particle represents a possible outcome of the action 𝑎𝑡 applied
in the current state 𝑠𝑡 and all particles together represent a non-
continuous distribution of possible outcomes. We can then calculate
the prediction error for each particle:

𝑑 (𝑠 ′𝑡+1,𝑖 , 𝑠𝑡+1,𝑖 ) =
1
|𝑠 |

|𝑠 |∑︁
𝑖=1

(
𝑠 ′𝑡+1,𝑖 − 𝑠𝑡+1,𝑖

)2
. (5)

In all our experiments, we found 𝐾 = 200 particles per ensemble
member to be sufficient. The final anomaly score is obtained by
aggregating over all ensemble member scores:

ℎ(𝑧𝜃 (𝑠𝑡 , 𝑎𝑡 ), 𝑠𝑡+1) = aggr.
({
𝑑 (𝑠 ′𝑡+1, 𝑠𝑡+1)

}𝐾,𝐵 )
. (6)

The choice of aggregation function effectively influences the
sensitivity of the resulting detector and is nontrivial. We provide a
more detailed discussion on this in section 5. Furthermore, wewould
like to mention that there are certainly other methods to calculate
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Figure 1: Individual particle’s prediction error of the PEDM
on Pusher with anomalous force applied to the robot arm
after 50 timesteps. Independent of the environment, an opti-
mal anomaly score should be zero when there is no anomaly
and high otherwise.

a meaningful anomaly score from the predicted distributions. In
section 5 we also compare our approach against three alternative
methods.

Figure 1 visualizes our approach on an exemplary anomalous
scenario. Independent of the environment, an optimal anomaly
score should be zero when there is no anomaly and high otherwise.
Visibly, the prediction error of most particles shows this behavior
and amplifies as soon as the anomaly is introduced. This indicates
a sharp boundary between ID and OOD transitions as well as high
confidence of the predictor, since all particles show similar behavior.

6 EXPERIMENTAL RESULTS
This section provides a detailed evaluation of our approach on
relevant testing scenarios, for which we consider the following
procedure and metrics:

Evaluation Procedure: We consider a given policy 𝜋𝐴 (𝑎 |𝑠)
that is optimized for some episodic taskM𝐴 with episode length
𝐻 ∈ N. In each episode, we introduce an anomaly Γ(M𝐴) at a ran-
dom time point 𝑡𝑎 ∈ (𝑡0, 𝑡𝐻 ) and apply this anomaly until the end
of the episode. Transitions [(𝑠𝑡0 , 𝑠𝑡1 ), ..., (𝑠𝑡𝑎−1 , 𝑠𝑡𝑎 )] are labeled as
ID, transitions [(𝑠𝑡𝑎 , 𝑠𝑡𝑎+1 ), ..., (𝑠𝑡𝐻−1 , 𝑠𝑡𝐻 )] are treated as OOD. This
procedure is repeated for multiple random time points and different
initial environment states to account for the effects injection time
and initial values can have on the dynamics. Thus, the resulting
dataset is balanced (in expectation).

Evaluation Metrics: Analogous to literature on binary classifi-
cation, we consider the Area under the Receiver Operator Character-
istic (AUC) and the F1-score as our primary evaluation metrics. All
metrics are calculated for transitions and labels from 100 episodes
with random injection times and random environment seeds.

6.1 Environments with Semantic Perturbations
Given the limitations of existing benchmarks depicted in section
2, we introduce a set of OOD scenarios based on established, high-
dimensional continuous robotic control tasks in the mujoco physics
engine [38]. Specifically, we consider CartPole,HalfCheetah, Reacher
and Pusher from [9].
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Table 1:Minor Disturbances - AUC of the detection algorithm
and reward difference of the control policy averaged over
scenarios with minor disturbances (100 episodes with ran-
dom injection times for each disturbance type).

AUC Cartpole HalfCheetah Pusher Reacher
reward 0% 0% -1% -1%
GAUSSIAN 0.27 0.48 0.23 0.43
GMM 0.25 0.47 0.32 0.42
IFOREST 0.23 0.47 0.25 0.39
KNN 0.27 0.50 0.44 0.60
KNN+ 0.29 0.50 0.44 0.55
LSTM 0.35 0.49 0.29 0.31
LSTM+ 0.30 0.50 0.27 0.31
RIQN 0.46 0.47 0.25 0.40
PEDM 0.55 0.53 0.58 0.47

In each environment we apply the same types of semantic dis-
turbances (only one at a time):
• Body Mass factor: The mass of all body parts is multiplied
by some constant factor.
• Action factor: The action vector 𝑎 produced by the policy
is multiplied by some constant factor.
• Action Offset: Some constant is added to the action vector
𝑎 produced by the policy.
• Action noise: Gaussian noise is applied to the action cen-
tering around the original 𝑎 with constant variance.
• Force Vector: External constant force vector applied to a
single body part of the robot. In Cartpole the force is ap-
plied to the pole, in HalfCheetah to the front foot and in
Reacher/Pusher to the forearm of the robot.

It is worth noting that actions also actively influence the dynamic
behavior of an MDP and therefore we argue, that modifying the
action before it is applied can be regarded as a semantic disturbance.
This is in contrast to observational noise, which can be interpreted
as a way of introducing partial observability. The dynamic behavior
of the MDP however is unaffected by the observations of the agent.

As stated in section 3, we focus on two edge cases of anomalous
behavior for this work, namely minor and severe perturbations. For
minor instances of the disturbances described above, we change
the original environment parameters or action values by 1% in mag-
nitude. For severe disturbances, the original values are perturbed
up to 100% in magnitude. Coherently, for the force applied distur-
bance, relatively weak forces are applied as minor disturbances
while strong force vectors are applied for severe cases. These pa-
rameters are carefully selected for every environment such that
they visibly influence the control policy, while not degrading it
entirely, making anomalies non-trivial to detect. A detailed list of
these parameters is provided in the appendix. 1

6.2 Evaluation on Environments with OOD
We compare our approach against several baselines from the AD
literature. As described in section 2 and to the best of our knowledge,
only two approaches specifically targeted at OOD in RL exist: RIQN

1Code and supplementary material are publicly available at: https://github.com/
FraunhoferIKS/pedm-ood

Table 2: Severe Disturbances - AUC of the detection algorithm
and reward difference of the control policy averaged over
scenarios with severe disturbances (100 episodes with random
injection times for each disturbance type).

AUC Cartpole HalfCheetah Pusher Reacher
reward -2% -15% -9% 12%
GAUSSIAN 0.39 0.69 0.58 0.5
GMM 0.48 0.75 0.71 0.66
IFOREST 0.42 0.76 0.57 0.49
KNN 0.49 0.92 0.80 0.78
KNN+ 0.65 0.93 0.81 0.76
LSTM 0.55 0.84 0.59 0.55
LSTM+ 0.64 0.84 0.68 0.57
RIQN 0.55 0.67 0.42 0.46
PEDM 0.96 0.93 0.85 0.90

[10] and UBOOD [35]. Since the latter can only apply to discrete
action problems, only RIQN is included in our benchmarks. This
results in the following baselines:

• GAUSSIAN: Likelihood estimation on a (multivariate) Gauss-
ian distribution;
• GMM: Likelihood estimation on a mixture of (multivariate)
Gaussian distributions;
• IFOREST: Anomaly score estimation via Isolation Forest
algorithm;
• KNN: Distance calculation t the k-Nearest Neighbors in the
nominal training data;
• LSTM: Distance calculation based on the predictions of a
regressive LSTM-RNN;
• RIQN: from [10] with mean L1-prediction error as anomaly
score.

To account for the fact that our proposed approach considers
states and actions as inputs, we also add the same information to
two of the baseline models. KNN+ refers to a KNN on (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
tuples, LSTM+ to an LSTM with actions as additional model inputs.
More details on each baseline are provided in the appendix.

For testing, we train an RL agent until convergence in the nomi-
nal task. This serves as a control-policy the OOD detector aims to
monitor. In all our experiments use Twin Delayed DDPG (TD3) [13],
a direct successor of DDPG [25] and a state-of-the-art policy gra-
dient algorithm for continuous action spaces. Since our approach
is agnostic to the control policy, it can be replaced by any other
controller in practice. To generate data, we collect experience with
the TD3 agent in each nominal environment for 50 episodes. 90
percent of the data is used for training the prediction models and
the rest is only used for validation/thresholding. The results for
minor and severe disturbances are shown in table 1 and table 2
respectively and are discussed in the following.

6.2.1 Minor Disturbances. The AUC scores in table 1 indicate that
all approaches struggle to differentiate normal from perturbed tran-
sitions on scenarios with minor disturbances.

Analyzing the environment reward, however, it appears that the
performance of the policy is unaffected by all disturbances, yielding
nearly the same average accumulated reward as in the respective
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Table 3: Existing Benchmark AUC of the detection algorithm and reward of the control policy on existing benchmark for
scenarios from [10]. Results for RIQN are taken directly from the original publication. All values are averaged over 100 episodes
with random anomaly injection timepoints.

Acrobot CartPole LunarLander Ant HalfCheetah Hopper Walker
Anomaly/metric AUC rew. AUC rew. AUC rew. AUC rew. AUC rew. AUC rew. AUC rew.
Nominal - -79 - 500 - 213.55 - 3297 - 2821 - 2678 - 2241RIQN Anom Avg. 0.95 -96 0.91 431 0.91 139.20 0.94 2164 0.92 2062 0.92 1877 0.92 1634
Nominal - -81 - 500 - 222.33 - 3293 - 2824 - 2658 - 2238
Gaussian Noise 1.00 -191 1.00 311 1.00 -129.41 1.00 1882 0.99 2011 1.00 1320 1.00 1511
Sensor Shutdown 1.00 -96 0.89 296 0.87 29.71 0.99 1863 0.99 1003 0.99 1244 0.99 1095
Calibr. Failure 1.00 -101 0.96 381 0.89 136.42 1.00 2221 0.96 2164 0.95 1558 0.93 1413
Sensor Drift 1.00 -80 0.57 468 0.74 192.81 0.87 3173 0.65 2807 0.77 2599 0.63 2217

ours

Anom Avg. 1.00 -117 0.85 364 0.87 57.38 0.97 2285 0.90 1996 0.93 1680 0.89 1559

nominal scenario. This is a strong indication, that minor pertur-
bations do not substantially affect the behavior of the deployed
control policy. Thus it can be acceptable, under most circumstances,
that these instances are not detected.

What is also peculiar is that most baselines perform even worse
than average, especially in Cartpole and Pusher. While this might be
counter intuitive at first, we have a clear explanation for this: These
environments include a short but prominent transient phase, where
the robot moves from its initial state to a stable position, where
it stays for the rest of the episode. This initial phase is therefore
a region of relatively low density, compared to the stable phase.
Approaches following the density of the data therefore yield a high
anomaly score for the initial phase, which is even higher than for
the actual OOD phase. Since the transient phase is only a small part
of the episode, however, this leads to observed low AUC scores. A
more detailed investigation of this phenomenon can be found in the
appendix. For PEDM this is not the case since it effectively learns
the dynamics of the environment, not only looking at the data
density. While it also has a slightly higher prediction error initially,
the difference is not as prominent as in other approaches. Since the
PEDM prediction error is however very stable over the course of
an episode and not notably different when a minor disturbance is
present, this leads to an AUC of ∼ 0.5.

6.2.2 Severe disturbances. For severe disturbances, the pattern is
considerably different. As apparent from table 2, most approaches
achieve beyond average performance. Most notably, the reward
of the control policy visibly suffers in the majority of scenarios,
the exception being Cartpole. Apparently, the TD3 policy is rel-
atively robust on Cartpole, countering even strong disturbances.
Thus, baselines struggle for the same reason as for minor distur-
bances. PEDM on the other hand, has a strong AUC score on all
environments. It is conditioned on the policy’s actions, and thus,
highly sensitive to the direct outcomes of actions. This is the case
even if the policy is robust enough to correct smaller control errors
and never leaves the high density region it already encountered
during training. This is also the reason why KNN+ and LSTM+
perform slightly better than the default versions. Conditioning
these models on the action pushes them closer towards an actual
dynamics model. Overall LSTM+ and especially KNN+ are very
strong baselines already. KNN+ is even on par with our approach
on HalfCheetah.

Table 4: Comparison of different techniques for computing
an anomaly score from model predictions. A-dim, S-dim
refer to the dimensions of the Action- and State-space.

AUC Cartpole HalfCheetah Pusher Reacher
A-dim,S-dim 1, 5 5, 23 7, 20 7, 17
PEDM-var 0.49 0.7 0.74 0.48
PEDM-pdf 0.95 0.84 0.81 0.87
PEDM-cdf 0.95 0.85 0.8 0.87
PEDM-samp. 0.96 0.93 0.85 0.89

At this point we want to mention that while the lower reward
is a direct indicator for some changes to the MDP, the opposite is
not the case. The MDP can in theory be altered drastically without
altering the policy reward at all. However, we do not consider such
hidden cases in this work, and only focus on scenarios where the
reward is directly correlated with the magnitude of a disturbance
to the MDP.

6.3 Evaluation on Benchmark with Sensor Noise
We also evaluate our approach on the scenarios from [10] where
different types of sensor noise are applied. Results are presented in
table 3. Looking only at the aggregate AUC over all disturbances
our approach appears comparable with the baseline - surpassing it
in 3, and getting outperformed in 4 of the 7 environments. Interest-
ingly, our approach achieves high AUC values for all disturbances
but Sensor Drift. This is however the disturbance that appears to
affect the reward of the control policy the least, indicating only a
minor perturbation of the nominal MDP. Unfortunately, we were
unable to reproduce the results from the original publication and
therefore cannot make any more accurate comparisons at this point.
In summary, our approach also works well for severe cases of co-
variate shift and is at least comparable to the existing baseline in
this setting.

6.4 Ablation Studies
6.4.1 Analysis of Anomaly Score techniques. As mentioned above,
there are also other techniques to map the model predictions 𝑧𝜃 to
an anomaly score. In the following, we describe three alternatives
to our sampling-based approach:
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Figure 2: ROC - Influence of dynamics model onHalfCheetah
with anomalous force applied

(1) Prediction-error-based, analytical pdf:
Directly estimating the likelihood of the observed state 𝑠𝑡+1
under the predicted distribution.

(2) Prediction-error-based, analytical cdf (hypothesis test):
Computing the probability of observing a sample at least as
extreme as 𝑠𝑡+1 w.r.t. the predicted distribution.

(3) Prediction-variance-based:
Computing the variance over all predicted particles and use
this as the final anomaly score.

In table 4 we compare these different techniques. The variance-
based technique consistently performs worse than techniques using
the prediction error. We conjecture that ensemble members often
make similar but erroneous and over-confident (low-variance) pre-
dictions on anomalous states. The aggregated variance is therefore
also very low for OOD samples and only serves as a weak anomaly
score.

The sampling-based technique also consistently outperforms the
two analytical approaches. This is can be explained by the mismatch
between likelihood and probability mass in high dimensional mul-
tivariate distributions [5, 37], which results in very low likelihood
estimates even for ID samples. Tiny prediction errors can therefore
completely deter these estimates. The sampling based approach on
the other hand is simply an empirical solution of calculating the
distance to the typical set. This also scales well to higher dimen-
sions, resulting in a much more robust anomaly score. The higher
the dimension of the problem, the more pronounced is this effect.
The results from table 4 also directly reflect this. We provide a more
detailed explanation of this phenomenon in the appendix.

6.4.2 Dynamics Model. The type of dynamics model is central to
ourmethod. In figure 2 we visualize this on an exemplary evaluation
scenario for different dynamics model choices: a single determinis-
tic DNN, a single probabilistic DNN, an ensemble of deterministic
DNNs, and an ensemble of probabilistic DNNs. The results indicate
the importance of accounting for uncertainty in the model predic-
tions, especially the combination of both aleatoric and epistemic
uncertainty.

6.4.3 Aggregation Function. In our approach, individual prediction
particles are aggregated for the final anomaly score. In this work,
we investigated several statistics for this and visualize the impact
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Figure 3: ROC- Different aggregation methods for individual
model predictions on Reacher with disturbed action magni-
tude
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Figure 4: Detector performance (auc) and policy reward over
forcemagnitude forReacher. Grey dashed line: policy reward;
pink dotted line: minor disturbance setting; brown dotted
line: severe disturbance setting. All datapoints represent an
average over 100 episodes with random injecton times.

of a few of these measures in figure 3. The results indicate that the
minimum-mse performs best, since one correct prediction suffices
for an ID label and not all/the majority of predictions have to be
correct. We found this to be consistent over all evaluation scenarios.
In theory, if the sample size is large enough, the minimum distance
between samples and the true observation approximates 0, even for
OOD samples. However, we did not experience this behavior with
the used sampling sizes of ∼ 200 particles per ensemble member -
which is a relatively low value w.r.t. to the dimensionality of the
problems.

6.4.4 Disturbance Magnitude. The OOD detector should cast an
alert if a normal behavior of the policy can not be expected. In
the environments we consider, the magnitude of a disturbance
roughly controls how much the behavior of the policy is influenced,
which directly manifests in the accumulated reward. The OOD
detector should therefore be able to recognize a disturbance in
scenarios where the reward drops significantly. Figure 4 shows that
the performance of all detectors indeed increases as the disturbance
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Table 5: F1 score resulting fromdifferent classification thresh-
olds in Algorithm 1 averaged all severe instances of our eval-
uation environments.

F1 Cartpole HalfCheetah Pusher Reacher
agg-max 0.92 0.60 0.75 0.82
agg-max·1.5 0.91 0.53 0.74 0.80
agg-mean 0.62 0.83 0.71 0.78

gets bigger and the reward diminishes. In this example, we can also
observe that PEDM already shows very good detection performance
for small reductions of the reward. This means that it can detect
disturbances before they affect the performance of the nominal
policy beyond an acceptable level.

Figure 4 also visualizes the values for minor and severe perturba-
tions. Although they are somewhat arbitrary single point descrip-
tions of a complex relationship, they are still good representations
of the overall trends and at the same time allow for better aggregate
comparisons.

6.4.5 Threshold. So far we investigated only AUC, which is a the-
oretical measure considering all possible thresholds for a detector.
However, for a real world deployment, a specific threshold on ℎ(·)
needs to be established during validation. Assuming that we do
not have access to any OOD data, we compare the following ap-
proaches.
• mean validation score: 𝜏 = 1

𝑁

∑
𝑁𝑣𝑎𝑙

ℎ(·)
• max. validation score: 𝜏 = max {ℎ(·)}𝑁𝑣𝑎𝑙

𝑛=1
• 1.5 max. validation score: 𝜏 = 1.5 ·max {ℎ(·)}𝑁𝑣𝑎𝑙

𝑛=1 .

Intuitively the mean anomaly score on the validation set (which
does not contain OOD instances) is a very conservative metric, pri-
oritizing recall over specificity. Therefore, to in increase specificity,
we also consider the max validation score and the 1.5 fold of the
max validation score as an alternative.

The results are presented in table 5. For Cartpole, Pusher and
Reacher, the max validation error appears to be a reasonable, though
not perfect threshold. For HalfCheetah on the other hand, the mean
validation error seems to be the better choice. We explain this by
the amount of validation data that is available. For all experiments,
we use 5 of the 50 available episodes for validation. While Cartpole,
Pusher and Reacher have episode lengths of 200, 150 and 150 re-
spectively, HalfCheetah episodes are 1000 steps long. The increased
amount of resulting validation data causes more peaks in the val-
idation error, making the max. error much too conservative of a
measure. We, therefore, see our thresholding only as a first step
and acknowledge its considerable shortcomings, especially in low
data regimes, where calibrating the classification threshold in ID
data alone can be difficult.

7 CONCLUSION
In this work, we studied the problem of OOD detection in the con-
text of RL and provided a general approach towards problem formu-
lation, detection algorithms and evaluation scenarios. We started
with a simple problem formulation in terms of severe perturbations
of the MDP. Building on this understanding of the problem, we in-
troduced a model-based OOD detection algorithm that allows us to
assess how much an observed transition differs from situations the

agents was trained for. To evaluate this method, we introduced a set
of OOD scenarios based on well-established robotic control tasks.
In contrast to previous work studying anomaly detection in RL, the
disturbances we consider in this work are deeply rooted in the se-
mantics of each task, effectively changing its underlying transition
function. Results show that our approach works well in cases of
severe disturbances but struggles in cases, that do not visibly influ-
ence the behavior of the control policy it monitors. We accept this
as a tolerable shortcoming since such perturbations have weaker
implications on the reliability of an agent. In contrast, we see the
detection of severe disturbances (which do influence the behavior
of a control policy) as a necessary measure towards confirming an
agent’s functioning during deployment. We acknowledge, that a
clear distinction between minor and severe disturbances can not
always be made. This classification is only a starting point and fur-
ther efforts are required to study borderline cases. Nonetheless, we
believe that this approach is an important step towards real word
applications of RL, as it can mitigate failures caused by disturbances
that are severe but non-trivial to detect.

It is important to note that OOD detection alone does not give
any guarantees about the agent performance on ID data. Also, it
does not provide any answers on how to react to OOD samples
once detected and therefore still requires suitable fallback policy
(e.g. handing over to a human operator). It is therefore only a first
step towards more reliable RL methods.

Finally, our work only considers fully observable tasks without
any long-term dependencies or observational abstraction. An ex-
citing avenue for future research is therefore to investigate how
our approach can be adapted to partially observable scenarios or
scenarios with OOD behavior that can only be observed over longer
time horizons.
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