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ABSTRACT
The Group Trip Planning Query Problem (GTP) is a well-researched

spatial database problem. Given a city road network with Point-

of-Interests (PoIs) representing vertices divided into different cate-

gories, GTP aims to suggest one PoI from each category to minimize

the group’s total distance traveled. This paper focuses on sequenced

GTP with pre-determined category visit order, studied under the

constraints of fairness, and referred to as sequenced Fair Group
Trip Planning Query Problem (Fair-GTP). While GTP aims to mini-

mize the group’s total travel time, Fair-GTP seeks to minimize the

maximum time difference between any two agents in the group. Al-

though solving group trip planning queries is NP-hard, we present

polynomial time algorithms for finding optimal paths for both se-

quenced GTP and Fair-GTP. Our second significant result provides

a bound on the price of fairness (PoF) representing the ratio of

optimal path cost in sequenced Fair-GTP to optimal path cost in

sequenced GTP. We show that while the PoF can go arbitrarily

bad for general sequenced Fair-GTP solutions, restricting to Pareto-

optimal solutions bounds the PoF by (2𝑏 − 1), where 𝑏 denotes the

number of agents traveling in the group. We further show that this

bound is tight. Finally, we present the performance analysis of our

algorithms on real-world datasets, demonstrating that our solution

approach recommends PoIs within reasonable computational time,

and in practice, PoF is below 2.
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1 INTRODUCTION
Due to the advancement of wireless internet and handheld devices

tracking the location of moving objects has become easy. Hence,

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

several trajectory datasets are publicly available on different repos-

itories [15, 21, 39]. These datasets are used to solve many real-life

problems, including driving behavior prediction [28], trip planning

problem [11], route recommendations [14], and many more. Hence

managing (storing, querying, etc.) and mining these datasets are

of utmost importance and have led to a new domain called Spatial

Database [33]. Several internet giants (such as Google) specialize

in analyzing spatial databases.

The Group Trip Planning Query Problem is a spatial database

challenge centered around a weighted, undirected graph represent-

ing a city’s road network. The graph comprises vertices denoting

point of interest (PoI), and edges indicating distance-weighted road

segments. PoIs are categorized according to various groups such as

parks, cafeterias, restaurants, bars, movie theaters, etc. To compre-

hend the GTP problem, one can consider a scenario where a group

of friends intends to plan a trip to the city, visiting distinct PoIs

from each category, beginning from their respective starting points

and concluding at their final destination. In sequenced GTP, the

order in which the friends visit each PoI category is predetermined.

For instance, they have decided to visit coffee, then a movie, fol-

lowed by lunch, bowling, and finally dinner in a particular order.

GTP or sequenced GTP aims to identify a path that includes at

least one node from each category. Until now, researchers have

focused on minimizing the total distance traveled by all the friends

in sequenced GTP [2, 6, 20, 37].

This paper studies the problem of sequenced GTP from the lens

of fairness. We quantify the fairness of a path by the maximum

difference in the distances traveled by any two friends. Thus, the

goal of the Fair-GTP problem is to output the path, minimizing the

maximum difference. In this paper, we show that an optimal path

(minimizing the aggregated distance) can be extremely unfair to an

agent, requiring an agent to travel a much larger distance than the

other agents. Such a path is not desirable due to two reasons. Firstly,

it makes one agent envy another agent, which may strain their

friendship or cause them not to take the trip altogether. Secondly,

this path requires one agent to travel a longer distance alone instead

of the other potentially longer path, but traveling together may be

more fun. Apart from the group trip planning problem, the Fair-

GTP problem finds its applications in other applications such as

supply chain[42] and federated learning[40]. To understand the

connection between the Fair-GTP and supply chain, consider the

source nodes representing the location of various producers from
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where the raw material is coming. Different categories represent

different manufacturing processes, with each node in one category

representing the same task. Finally, the combined products need to

reach a warehouse. In this case, the destinations will not be different

points but will be common points. Then a Fair-GTP problem will

lead to choosing that manufacturing process that will minimize

the maximum difference traveled by the raw material from any

producer, thus reducing envy among the producers. In the federated

learning application, consider that different clients possess the data

and are trying to learn a global model which could be trained on

several servers available. The problem is then to choose the server

for training the global model to minimize the envy between the

two clients; that is, a fair solution would be to choose a server

minimizing the difference between the communication times of

any two clients. Since the problem of Fair-GTP is useful in many

applications, we will refer to friends, producers, and clients as

agents for the remainder of the paper.

Motivated by real-world applications described above, we study

the problem of sequenced Fair-GTP. To the best of our knowledge,

the only work considering the fairness notion in sequenced GTP

[34] provides an exhaustive search method to find the solution to

Fair-GTP leading to a non-practical solution. Further, a naive fair

solution could be arbitrarily bad. To illustrate, imagine a path where

each agent travels an equal but extremely long distance versus a

slightly longer path for one agent but significantly shorter for all

others (see figure 2). To avoid this, we focus on Pareto-optimal

paths that offer a better outcome for at least one agent without

harming others. We also limit the price of fairness, the cost of the

fair path relative to the optimal path. Our findings show that while

the price of fairness can be poor for any fair path, it can be bounded

for the Pareto-optimal fair path.

It is also worth noting that all the current approaches to solve

sequenced GTP problem involve generating all possible paths for

each of the 𝑘 categories, resulting in a time complexity of 𝑂 (𝑛𝑘 )
where 𝑛 is the number of nodes in each category. To address this

issue, we create a complete (𝑘 + 2)−partite graph, providing the

shortest distance between nodes of categories 𝑖 and 𝑖 + 1. We then

observe that all agents travel via the same path once the PoIs from

the first and last categories are fixed, leading to a further reduction

of the graph to a complete 4−partite graph with nodes from the

source, the first category, last category, and the destination. These

constructions reduce the time complexity from 𝑂 (𝑛𝑘 ) to 𝑂 (𝑛4). To
this end, our specific contributions in sequenced Fair-GTP include:

• We demonstrate that naive implementation of Fair-GTP can

lead to poor solutions (Lemma 3).

• We introduce the problem of finding fair solutions in the

domain of Pareto-optimal solutions, with tight bounds on

the price of fairness (Lemma 6 and 7).

• We present polynomial-time algorithms for sequenced GTP

and sequenced Fair-GTP that produce Pareto-optimal and

fair solutions (Algorithm 2).

• We provide empirical evidence of the superiority of our pro-

posed algorithms over existing approaches in terms of opti-

mal cost and running time.

The paper is structured as follows. Section 2 reviews related

literature. Section 3 introduces preliminary concepts related to

group trip planning queries, fairness, and other definitions. Section

4 shows theoretical guarantees. Section 5 presents the proposed

solution approach with detailed analysis and illustrations. Section

6 reports on the experimental evaluation of the proposed approach.

Section 7 concludes the study and outlines future research direc-

tions.

2 RELATEDWORK
2.1 Group Trip Planning
When considering road networks, trip, and route planning queries

are primarily viewed from the lens of the traveling salesman prob-

lem [19]. In a typical trip planning problem, a single user needs

to travel PoIs from each category and wants to minimize the total

travel time. Since this problem is a special version of the traveling

salesman problem, it is NP-hard to compute the optimal trip. Several

works propose the approximation algorithm [23]. While general

trip planning is hard to solve, it has been shown that sequenced

trip planning exhibit polynomial time algorithms[32]. All these

techniques primarily assume a single user and only work for group

trip planning. The group trip planning problem was first intro-

duced by Hashem et al. [20] and has been extensively studied after

that through various techniques, including nearest neighbor (NN),

group nearest neighbor (GNN), trip planning (TP)[24] queries in

both euclidean space and road networks. Many of these techniques

use spatial data structures such as R-tree or R*-tree. Subsequent

techniques were proposed to obtain the solutions to group trip

planning much more efficiently. Ahmadi and Nascimento [1] stud-

ied this problem and introduced the Progressive Group Neighbour

Exploration framework that leads to the optimal solution. Ahmadi

and Nascimento [2] proposed a dynamic programming-based so-

lution, Iterative Backward Search, which uses the suffix optimal-

ity principle. Many techniques provide efficient algorithms using

the pruning technique based on geometric properties of ellipses

[12, 19, 23, 25, 32] of efficient paper. None of the existing works

propose a polynomial-time efficient algorithm to produce the op-

timal solution to the group trip planning problem. In this paper,

we fill this research gap and propose a graph-based algorithm that

provides the optimal solution in polynomial time.

2.2 Variants of Group Trip Planning
Many variants to group trip planning problems have been looked at

in the literature. For example, Barua et al. [6] studied the weighted

version where the PoIs are associated with the weights that signify

the utility if the PoI is visited. The goal is, thus, not to minimize the

total traveled distance but to maximize the overall utility. Tabassum

et al. [37] introduced the concept of dynamic group in the Group

Trip Planning Query Problem. In contrast with the traditional GTP

Query Problem, in this case, the group can change dynamically

throughout the trip, i.e., members can leave or join the group. The

proposed solution methodology works for Euclidean Plane only.

Mahin and Hashem [30] introduced the notion of flexible PoI in

the GTP Query Problem. In particular, they studied the GTP Query

Problem considering the following three noble features: (i) ensures

a complete trip for visiting more than two locations, (ii) allows

visiting both fixed and flexible locations, and (iii) provides true

ridesharing services instead of taxi like ride-sourcing services by
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matching a group of riders’ flexible trips with a driver’s fixed trip.

Their proposed solution methodology process the queries in real-

time, and its efficiency depends upon the number of riders and the

PoIs to be explored. Lima and Hashem [26] studied a variant of the

GTP Query Problem where the group can expand and shrink during

the trip, and the underlying space is obstructed. Even though many

variants were considered, the primary goal remained the same, i.e.,

to minimize the total travel time to the agents.

We study the following variant of the group trip planning prob-

lem. Instead of minimizing the total travel distance to the agents, we

aim to find the Pareto-optimal path, i.e., the path that is not worst

for all the agents and minimizes the maximum envy between any

two agents. An elementary study of Minimizing the maximum envy

in group trip planning is considered by Singhal and Banerjee [34],

but this paper does not consider the Pareto-optimal solution. We

show that a naive path with minimum envy can lead to a path with

arbitrary high cost, so it is necessary to consider a Pareto-optimal

solution. Apart from considering Pareto-optimal solutions, we sig-

nificantly contribute over Singhal and Banerjee [34] by providing

the polynomial time optimal algorithm to sequenced Fair-GTP prob-

lem and by theoretically bounding the price of fairness.

2.3 Fairness in Other Domains
The concept of envy-free is not new and has been extensively stud-

ied in the context of resource allocation to multiple agents. Course

matching, rent sharing among roommates, spitting tax fees, and

division on the contested territory are a few instances of equi-

table division in the actual world. This includes divisible goods

allocation[5, 17, 36] and indivisible goods allocation [3, 7, 8, 27] . In

the resource allocation problem, envy-freeness implies the value of

the good that one agent is receiving should not be more than the

value of the good received by another agent. While there are some

algorithms to find envy-free solutions in divisible good setting[4, 5],

it is shown that envy-free solutions may not exist in indivisible

good setting[9]. To circumvent this, appropriate relaxations (envy-

free up to one good) are proposed in the literature [9]. An envy-free

solution could be really bad in terms of the primary objective of

maximizing social welfare. Recent works [10] have also studied the

impact of fairness on social welfare in the form of the price of fair-

ness. Our problem is fundamentally different from the fair division

problem, as in GTP, the edges (resources) are shared amongst the

agents as opposed to the distribution of the resources.

When considering a graph or road network, the fairness issue has

been considered while solving routing and load balancing problems

in the literature. These studies fit into the broad spectrum ranging

from fair resource allocation in optical networks [31] to fair network

design for hazmat road transportation [41]. In particular, several

kinds of problems have been studied under different fairness notions

such as Fair BandwidthAllocation [13], Fair Routing for Underwater

Networks [16], Fair Cost Allocation for Ride-sharing Services [29],

Fairness-Aware Load Balancing [22] and many more. The setting

is fundamentally different from our setting since, in all the above

cases, fairness concerning edges is considered, whereas we are

considering fairness among the agents traveling through this road

network.

This paper defines the appropriate notion of envy-freeness in

GTP and shows that an envy-free solution may not exist. We also

provide appropriate relaxation to envy-free solution 𝜖−envy free

solution. Finally, we connect fairness with the primary goal of

minimizing the total travel time and study the price of fairness in

this setting.

3 PRELIMINARIES
Let 𝐵 = {1, 2, . . . , 𝑏} be the set of agents planning a trip to visit

one PoI from each of the 𝑘 categories. These 𝑘 categories may in-

clude coffee shops, theatres, shopping malls, game zones, etc. The

set of PoIs, therefore, partitions all the nodes in 𝑘 sets denoted

by {𝑉 1,𝑉 2, . . . ,𝑉𝑘 }. Let the origin and destination of 𝐵 agents be

denoted by sets 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑏 } and 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑏 } re-

spectively. Note that the number of sources and the number of

destinations could be different, as in the case of distributed learning

with 𝑏 sources and 1 destination. Such cases can always be tackled

by keeping 𝑡1 = 𝑡2 = . . . = 𝑡𝑏 . Let 𝐺 be a weighted graph represent-

ing a city’s road network and is provided in the group trip planning

(GTP) problem. The vertices of interest are the sequenced vertices

𝑉 = {𝑂 ∪𝑇 ∪𝑉 1 ∪ . . . ∪𝑉𝑘 }. The edges 𝐸 (𝐺) = {𝑒1, 𝑒2, 𝑒3, ....., 𝑒𝑚}
of graph 𝐺 are the highways connecting the PoIs, sources, and des-

tinations of these agents. Each edge weight represents the distance

of one vertex to another. For notation convenience, we will further

denote 𝑣
𝑗
𝑖
to be the 𝑖𝑡ℎ PoI from 𝑗𝑡ℎ category. The agents plan to

travel in a predetermined order, such as first going to a coffee shop,

then a movie, lunch, gaming area, etc. Without loss of generality,

we assume that the sets of PoIs are arranged in this predetermined

sequence, i.e., 𝑉 1
represents the set of vertices where the agents

plan to visit first, and𝑉𝑘
represents the set of vertices from the last

category. We can now define a valid path for sequenced group trip

planning as follows:

Definition 1 (Valid Path). We say a path 𝑃 = {𝑣1𝛼1

, 𝑝1, 𝑣
2

𝛼2

, 𝑝2, . . . , 𝑣
𝑘
𝛼𝑘

}
is valid for sequenced set of vertices {𝑉 1,𝑉 2, . . . ,𝑉𝑘 } iff each 𝑣 𝑗𝛼 𝑗

be-

long to 𝑗𝑡ℎ category, i.e., 𝑣 𝑗𝛼 𝑗
∈ 𝑉 𝑗 . Here, 𝑝𝑖 represent an arbitrary

path connection 𝑣𝑖𝛼𝑖 and 𝑣
𝑖+1
𝛼𝑖+1 .

A valid path is thus a path that visits at least one PoI from each

category in a predetermined sequence. Note that fixing the set of

PoIs visited may make different paths possible. For example, one

valid path could be 𝑃 = {𝑣1𝛼1

, 𝑝1, 𝑣
2

𝛼2

, 𝑝2, . . . , 𝑣
𝑘
𝛼𝑘

} and another path

could be 𝑃 ′ = {𝑣1𝛼1

, 𝑝′
1
, 𝑣2𝛼2

, 𝑝′
2
, . . . , 𝑣𝑘𝛼𝑘 }. Out of all these possible

paths, the paths of interest are the ones having the shortest distance,

and such paths are denoted by 𝑃 = {𝑣1𝛼1

, 𝑣2𝛼2

, . . . , 𝑣𝑘𝛼𝑘 }. Path con-

necting vertices from different categories does not impact fairness.

Fairness comes only from source and destination nodes. Let the

shortest route from PoI 𝑣
𝑗1
𝛼 to PoI 𝑣

𝑗2
𝛽
be denoted by the 𝐷 (𝑣 𝑗1𝛼 , 𝑣

𝑗2
𝛽
).

Then the cost of 𝑝 = {𝑣1𝛼1

, 𝑣2𝛼2

, . . . 𝑣𝑘𝛼𝑘 } is given by:

𝐶 (𝑝) =
∑︁
𝑖∈𝐵

𝐷 (𝑜𝑖 , 𝑣1𝛼1

) + 𝑏
∑︁

𝑗∈[𝑘−1]
𝐷 (𝑣 𝑗𝛼 𝑗

, 𝑣
𝑗+1
𝛼 𝑗+1 ) +

∑︁
𝑖∈𝐵

𝐷 (𝑣𝑘𝛼𝑘 , 𝑡𝑖 ) (1)

Let P denote the set of all valid paths. The fundamental problem of

sequenced group trip planning is to find a valid path to minimize

the total distance of the trip, which is defined as follows:
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Figure 1: Motivation for Studying Fairness in Group Trip
Planning

Definition 2 (Optimal Sequenced Group Trip Planning Problem).
Given the graph, 𝐺 , Sets 𝑂,𝑉 1,𝑉 2, . . . ,𝑉𝑘 ,𝑇 , the optimal sequenced
group trip planning problem is to find an optimal valid path 𝑝∗ that
minimizes the aggregated sum of the distances traveled by agents, i.e.,
𝑝∗ = argmin𝑝∈P 𝐶 (𝑝).

A naive algorithm focused on finding the path and minimizing

the total distance could be heavily biased and may result in agents

envying each other. Consider a simple example in Figure 1. This

figure represents the two agents 𝑖 and 𝑗 planning to visit two PoIs

from the respective sources to the respective destinations. The

(𝑣1
1
, 𝑣2

2
) path (total cost from𝑂 to𝑇 21) shows the optimal path that

any group trip planning algorithm will produce. However, in this

path, agent 𝑗 will travel significantly higher than agent 𝑖 . Whereas

an alternative (𝑣1
2
, 𝑣2

2
) path (total cost from 𝑂 to 𝑇 24) is a better

option in terms of fairness due to two reasons, first, the distance

covered by both the agents is comparable. Second, they are traveling

more distance together (in the company of each other) rather than

traveling alone. In order to tackle such issues, we introduce the

problem of sequenced fair GTP problem. Our work aligns with the

work by Singhal and Banerjee [34] where the authors formulated

the envy-free trip planning problem. However, there are several

things that could be improved in that work. First, it enumerates all

possible paths, checks for feasibility, and subsequently searches for

the optimal path. As a whole, it is based upon the exhaustive search

approach, which leads to the running time of O(𝑛𝑘 ) where 𝑛 is the

number of PoIs and 𝑘 is the number of categories. Secondly, apart

from providing the path with minimum envy, we also provide the

price of fairness, which bounds the ratio of the cost of the path with

minimum envy to the optimal cost. In particular, our results show

that the price of fairness can go arbitrarily bad in general. Imagine

an example where there is a path minimizing envy but arbitrarily

bad for all the agents. Any of the agents will never prefer such a

path. Hence we restrict to the paths that are Pareto-optimal. We

then show that, when restricted to the domain of Pareto-optimal

solution, one can guarantee a constant price of fairness. Finally,

we provide a polynomial time algorithm to find a Pareto-optimal

path with minimum envy. We first define a Pareto-optimal path,

followed by the fairness notions we use in our paper.

Definition 3 (Pareto-optimal Path). In a sequenced Group trip
planning (GTP), a path 𝑝′ is called a Pareto-optimal path if there does
not exist any other path 𝑝′′ such that:

∀𝑖 ∈ [𝑏], 𝐷𝑖 (𝑝′′) ≤ 𝐷𝑖 (𝑝′) and ∃ 𝑗 ∈ [𝑏] s.t. 𝐷 𝑗 (𝑝′′) < 𝐷 𝑗 (𝑝′)

Here, 𝐷𝑖 (𝑝) denotes the distance traveled by 𝑖𝑡ℎ agent in path 𝑝 .

3.1 Fairness notions
We now define the fairness notion, which we call Envy-freeness

motivated by resource allocation problem [18, 38].

Definition 4 (Envy-Free Path (EFP)). We say that a given path 𝑝 is
an envy-free path (EFP) iff 𝐷𝑖 (𝑝) ≤ 𝐷 𝑗 (𝑝) ∀𝑖, 𝑗 ∈ [𝑏].

It is easy to see that each agent will travel an equal distance,

irrespective of their source and destination, in an envy-free path.

Further, such a path may not even exist (Figure 1). The reason is

that there may be an agent far from all the vertices of each of the

PoIs, and hence they will have to travel a longer distance. There

are two possibilities to circumvent the issue: minimizing the envy

or defining an approximate envy-free path. We now define envy of

a valid path and approximate envy-free path below. For a pair of

agents 𝑖 and 𝑗 , and a given path 𝑝 , define the envy by agent 𝑖 from

agent 𝑗 as follows: E𝑖→𝑗 (𝑝) = max{𝐷𝑖 (𝑝) − 𝐷 𝑗 (𝑝), 0}.

Definition 5 (Envy of a Path). Envy of a path 𝑝 is defined as
max𝑖, 𝑗 E𝑖→𝑗 (𝑝). It is the maximum difference of distances traveled
by a pair of agents in the path 𝑝 .

In some cases, a minimum envy path may result in a very high

total path cost (See Figure 2 for example). Therefore, it may be

required to define a trade-off parameter between the envy and the

total path length. This leads us to have the following definition:

Definition 6 (𝜀−Envy-Free Path (𝜀−EFP)). We say that a given path
𝑝 is 𝜀−envy-free path iff 𝐷𝑖 (𝑝) ≤ 𝐷 𝑗 (𝑝) + 𝜀 ∀𝑖, 𝑗 ∈ 𝐵.

It is interesting to ask the following question. For what value of

𝜀 does the 𝜀−EFP exist? It is easy to see the following result:

Lemma 1. 𝜀−EFP always exists for 𝜀 ≥ 𝑚𝑖𝑛𝑝∈P max𝑖, 𝑗 E𝑖→𝑗 (𝑝).

Proof. Let 𝑝∗ = argmin𝑝∈P max𝑖, 𝑗 E𝑖→𝑗 (𝑝) be the path mini-

mizing the maximum envy and let 𝑖∗, 𝑗∗ be the pair of agents having
maximum envy in 𝑝∗ i.e. (𝑖∗, 𝑗∗) = argmax𝑖, 𝑗 E𝑖→𝑗 (𝑝∗). Then for

any pair of agents 𝑖 and 𝑗 , we have 𝐷𝑖 (𝑝∗) ≤ 𝐷 𝑗 (𝑝∗) + E𝑖→𝑗 (𝑝∗) ≤
𝐷 𝑗 (𝑝∗) + E𝑖∗→𝑗∗ (𝑝∗) ≤ 𝐷 𝑗 (𝑝∗) + 𝜀. □

Finally, we define a minimum envy path as follows:

Definition 7. (Minimum Envy Path) We say that a path 𝑝 is a
minimum envy path (MEP) iff it is 𝜀−envy free path with
𝜀 =𝑚𝑖𝑛𝑝∈P max𝑖, 𝑗 E𝑖→𝑗 (𝑝).

One could also ask for the cost of friendship, which captures

how much extra distance an individual has to travel to enjoy the

company of friends.

Definition 8 (Cost of Friendship). Let 𝑝∗
𝑖
denote the optimal shortest

valid path for agent 𝑖 , which he would have preferred if he traveled
alone. Then, for a given path 𝑝 , we define the cost of friendship of an
agent 𝑖 as 𝑐𝑜 𝑓𝑖 (𝑝) = 𝐷𝑖 (𝑝) − 𝐷𝑖 (𝑝∗𝑖 ). The cost of friendship for the
path 𝑝 is then given as 𝑐𝑜 𝑓 (𝑝) = ∑

𝑖∈[𝑏 ] 𝑐𝑜 𝑓𝑖 (𝑝).

The cost of friendship for an agent 𝑖 will always be positive

because, if the agent were traveling alone, she would have always

chosen the quickest route from her source, even though it is likely

that she would have had to cover a greater distance with her group.
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It is easy to see that the path that minimizes the cost of friendship

will also minimize the sum of the distances. And this could lead to

high envy between the pair of agents.

Lemma 2. The path that minimizes the cost of friendship is also a
path that minimizes the total distance.

Proof. For any path 𝑝 , the Cost of Friendship is given as:

𝑐𝑜 𝑓 (𝑝) =
∑︁
𝑖∈𝐵

𝑐𝑜 𝑓𝑖 (𝑝) =
∑︁
𝑖∈𝐵

[
𝐷𝑖 (𝑝) − 𝐷𝑖 (𝑝∗𝑖 )

]
=
∑︁
𝑖∈𝐵

𝐷𝑖 (𝑝) −
∑︁
𝑖∈𝐵

𝐷𝑖 (𝑝∗𝑖 )

Here, the second term denotes the sum of optimal distances by

taking optimal individual paths for a given graph which is a con-

stant irrespective of the chosen path. Hence minimizing the cost of

friendship is equivalent to minimizing the total distance. □

Therefore, we will focus on minimizing envy in the rest of the

paper. Based on the fairness and efficiency notions defined above,

we describe the following problems.

3.2 Problem Definitions
Definition 9 (Sequenced Fair Group Trip Planning Query Prob-

lem). Given a sequenced GTP Query Problem instance I, a sequenced
fair group trip planning query problem asks to recommend one PoI
from every category such that the envy of the path is minimum. If
multiple such paths exist, then output a path that minimizes the cost
of friendship.

Definition 10 (Sequenced 𝜖-Fair Group Trip Planning Query Prob-

lem). Given a sequenced GTP Query Problem instance I along with
a value 𝜖 , the sequenced 𝜖-Fair Group Trip Planning Query Problem
asks to recommend one PoI from every category such that the total
distance traveled by the group is minimized and for any pair of agents
the difference between their distance travelled is less than or equal to
𝜖 .

The envy-freeness property comes with a price. We quantify this

via the price of fairness, which is defined as follows:

Definition 11 (Price of Fairness). In a group trip planning problem,
the price of fairness (PoF) is the ratio of the total distance of the fair
path to the total distance of the optimal path traveled by the group.
The PoF is a numerical representation of the welfare loss (here, defined
as distance) that the group must incur to ensure fairness.

Let the optimal path be denoted by 𝑝∗ and the fair path with the
least cost be denoted by 𝑝∗

𝑓
. Then, PoF is given by:

𝑃𝑜𝐹 =

∑
𝑖∈𝐵 𝐷𝑖 (𝑝∗𝑓 )∑
𝑖∈𝐵 𝐷𝑖 (𝑝∗)

(2)

It is clear that PoF is always greater than or equal to 1. In the

next section, we provide the upper and lower bounds on the price

of fairness in sequenced group trip planning problems.

4 THEORETICAL RESULTS
Our first result is a negative result which suggests that, in general,

the price of fairness can be arbitrarily high.

Lemma 3. In group trip planning, the price of fairness is unbounded.

Figure 2: Figure showing PoF is unbounded (Lemma 3)

Figure 3: First Case for Lemma 4

Proof. Consider the example shown in figure 2. For any value

of 𝑥 ∈ R+, with 𝑥 > 2, the path 𝑝∗ via the edge 𝑒 (𝑣1
1
, 𝑣2

1
) incurs a

total cost of 10 with total envy of 4. While minimum envy path 𝑝∗
𝑓

with the least cost is the path via the edge 𝑒 (𝑣1
2
, 𝑣2

2
) incurs the total

cost of 2𝑥 + 4 with envy of 2. Thus, the price of fairness is given as

2𝑥+4
9

, which can be arbitrarily high as 𝑥 increases. □

The above example is not very good as the minimum envy path

leads to agents traveling much more distance which is not favor-

able to any of the agents. Therefore, it makes more sense to ask the

following question. Does there exist a bound on the price of fair-

ness among all Pareto-optimal solutions? We answer this question

affirmatively in the below lemma:

Lemma 4. The price of fairness among all Pareto-optimal solutions
is bounded by 3 when the number of agents is 2.

Proof. For any path 𝑝 = {𝑣1𝛼1

, 𝑣2𝛼2

, . . . , 𝑣𝑘𝛼𝑘 }, let us denote the
cost incurred by an agent in traveling from 𝑣1𝛼1

to 𝑣𝑘𝛼𝑘 as 𝑐𝑝 . The

total cost of the path can then be written as𝐶 (𝑝) = 𝑂 (𝑝) +𝑐𝑝 +𝑇 (𝑝).
Here 𝑂 (𝑝) denotes the sum of the distance of all the agents from

the respective source nodes to the first PoI 𝑣1𝛼1

, and 𝑇 (𝑝) denotes
the sum of the distances of all the agents from the last PoI 𝑣𝑘𝛼𝑘
to the respective destinations. Let us compare an optimal path

𝑝∗ with any Pareto-optimal path 𝑝′ with minimum envy. Since

we are considering a simple case of two agents, we further split

𝑂 (𝑝∗) = 𝑠∗
1
+ 𝑠∗

2
and𝑇 (𝑝∗) = 𝑑∗

1
+𝑑∗

2
. Here, 𝑠∗

1
, 𝑠∗
2
(𝑑∗
1
, 𝑑∗

2
) denote the

distance of the two agents to the first PoI in 𝑝∗ from their respective

sources (destinations). Similarly, for path 𝑝′, we have𝑂 (𝑝′) = 𝑠1+𝑠2
and 𝑇 (𝑝′) = 𝑑1 + 𝑑2. Further, without loss of generality, assume

that 𝑠∗
1
+ 𝑑∗

1
≥ 𝑠∗

2
+ 𝑑∗

2
. The proof for the other case will be similar.

If we plot these distances on a real line (Figure 3 and 4), it is easy to

see that there are only two possibilities for a Pareto optimal path

𝑝′ with 𝐶 (𝑝′) > 𝐶 (𝑝∗).
Case 1 (Figure 3):When 𝑠2+𝑑2+𝑐𝑝′ < 𝑠∗

2
+𝑑∗

2
+𝑐𝑝∗ and 𝑠1+𝑑1+𝑐𝑝′ >

𝑠∗
1
+ 𝑑∗

1
+ 𝑐𝑝∗ . For this case, we have E(𝑝′) > E(𝑝∗), which leads to

contradiction to 𝑝′ being the minimum envy path.

Case 2 (Figure 4): When 𝑠2 + 𝑑2 + 𝑐𝑝′ > 𝑠∗
2
+ 𝑑∗

2
+ 𝑐𝑝∗ and 𝑠1 +

𝑑1 + 𝑐𝑝′ < 𝑠∗
1
+ 𝑑∗

1
+ 𝑐𝑝∗ . For this case, the cost can be bounded
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Figure 4: Second Case for Lemma 4

Figure 5: Understanding Triangular Inequality for Lemma 4

by triangular inequality, which can be best explained from Figure

5. Let path 𝑝∗ = {𝑣1
1
, 𝑣2

1
} and path 𝑝′ = {𝑣1

2
, 𝑣2

2
}. We have 𝑠2 ≤

𝑠∗
2
+ 𝑠1 + 𝑠∗

1
and 𝑑2 ≤ 𝑑∗

2
+ 𝑑1 + 𝑑∗

1
Then:

𝐶 (𝑝′) = 𝑠1 + 𝑑1 + 𝑐𝑝′ + 𝑠2 + 𝑑2 + 𝑐𝑝′ ≤ 𝑠∗
1
+ 𝑑∗

1
+ 𝑐𝑝∗ + 𝑠2 + 𝑑2 + 𝑐𝑝′

≤ 𝑠∗
1
+ 𝑑∗

1
+ 𝑐𝑝∗ + 𝑠∗

1
+ 𝑑∗

1
+ 𝑠∗

2
+ 𝑑∗

2
+ 𝑠1 + 𝑑1 + 𝑐𝑝′

≤ 2(𝑠∗
1
+ 𝑑∗

1
+ 𝑐𝑝∗ ) + 𝑠∗

1
+ 𝑑∗

1
+ 𝑠∗

2
+ 𝑑∗

2
≤ 3𝐶 (𝑝∗) □

We now prove that the bound on the price of fairness is tight.

Lemma 5. The price of fairness among all Pareto-optimal solutions
with 2 agents is approximately equal to 3.

Proof. The idea is motivated from the example provided in

Figure 4. The price of fairness will be worst when the distance

between 𝑠∗
2
+𝑑∗

2
+𝑐𝑝∗ and 𝑠2 ∗+𝑑∗

2
+𝑐𝑝′ is maximum and the distance

between 𝑠∗
1
+𝑑∗

1
+ 𝑐𝑝∗ and 𝑠1 +𝑑1 + 𝑐𝑝′ is minimum while satisfying

the triangular inequality. Let 𝑠∗
2
= 𝑑∗

2
= 𝜖

2
, 𝑠∗

1
= 𝑑∗

1
= 𝑥 , 𝑐𝑝∗ = 𝑦.

Further, let 𝑠1 = 𝑑1 = 𝑥 − 𝜖 , 𝑠2 = 𝑑2 = 2𝑥 − 7

2
𝜖 , and 𝑐𝑝′ = 𝑦 + 𝜖 . It is

easy to see that these values satisfy triangular inequality. Since the

values mimic Figure 4, we have 𝑝∗ as the optimal path and 𝑝′ as
the Pareto-optimal path minimizing the envy. The price of fairness

is given as: 𝑃𝑜𝐹 =
6𝑥+2𝑦−7𝜖
2𝑥+2𝑦+𝜖 =

3𝑥+𝑦−7/2𝜖
𝑥+𝑦+𝜖/2 As 𝜖 tends to 0 and the

value of 𝑥 is sufficiently large, the PoF will tend to 3. □

We now extend the result for general 𝑏 agents in the next lemma:

Lemma 6. The price of fairness among all Pareto-optimal solutions
is bounded by (2𝑏 − 1) when the number of agents is 𝑏.

Proof. We can bound the price of fairness for 𝑏 agents using

the idea presented for 2 agents case. From Pareto-optimality, we

know at least one agent 𝑖 such that 𝑠𝑖 + 𝑑𝑖 + 𝑑 < 𝑠∗
𝑖
+ 𝑑∗

𝑖
+ 𝑑∗. We

can now bound the cost of any agent 𝑗 ≠ 𝑖 as follows:

𝑠 𝑗 + 𝑑 𝑗 + 𝑑 ≤ 𝑠∗𝑗 + 𝑠
∗
𝑖 + 𝑠𝑖 + 𝑑∗𝑗 + 𝑑

∗
𝑖 + 𝑑𝑖 + 𝑑

≤ 𝑠∗𝑗 + 𝑑
∗
𝑗 + 𝑠

∗
𝑖 + 𝑑∗𝑖 + 𝑠∗𝑖 + 𝑑∗𝑖 + 𝑑∗

Summing over all the agents, wewill get the following:

∑
𝑗∈𝐵 𝐷 𝑗 (𝑝∗𝑓 )

≤ 2(𝑏 − 1) (𝑑∗
𝑖
+ 𝑠∗

𝑖
) +∑

𝑗∈𝐵 𝐷𝑖 (𝑝∗) ≤ (2𝑏 − 1)∑𝑗∈𝐵 𝐷 𝑗 (𝑝∗). □

Lemma 7. The price of fairness among all Pareto-optimal solutions
with 𝑏 agents is approximately equal to (2𝑏 − 1).

Proof. The example is similar to the one considered in Lemma

5, but an extension to 𝑏 agents. Consider agent 𝑖 as considered in

Lemma 6. We can now assign similar values as was assigned in

Lemma 4 by considering agent 1 as 𝑖 and agent 2 as other agents.

This gives us the following values 𝑠∗
𝑗
= 𝑑∗

𝑗
= 𝜖

2
∀𝑗 ≠ 𝑖 , 𝑠∗

𝑖
= 𝑑∗

𝑖
= 𝑥 ,

𝑐𝑝∗ = 𝑦. Further, let 𝑠𝑖 = 𝑑𝑖 = 𝑥 − 𝜖 , 𝑠 𝑗 = 𝑑 𝑗 = 2𝑥 − 7

2
𝜖 ∀𝑗 ≠ 𝑖 , and

𝑐𝑝′ = 𝑦 + 𝜖 . The price of fairness is then given as:

𝑃𝑜𝐹 =
2(𝑏 − 1) (2𝑥 − 7/2𝜖) + 2(𝑥 − 𝜖) + 𝑏 (𝑦 − 𝜖)

2𝑥 + 2(𝑏 − 1)𝜖/2 + 𝑏𝑦

=
2𝑥 (2𝑏 − 1) − 𝜖 (8𝑏 − 5) + 𝑏𝑦

2𝑥 + 𝑏𝑦 + (𝑏 − 1)𝜖
Substituting 𝑦 = 0, and 𝜖 close to 0, we get the bound of 2𝑏 − 1. □

We now present the algorithm for finding the Pareto-optimal

solution to minimize envy.

5 PO-MINENVYGTP: PROPOSED ALGORITHM
We begin by providing a polynomial time algorithm to find the opti-

mal cost path. We will later see how this algorithm can be extended

to find a Pareto-optimal path with minimum envy. Even without

fairness constraints, the best-known algorithm in this literature is

large polynomial 𝑂 (𝑛𝑘 ) [34], which checks for each possible valid

path (number of such paths is 𝑂 (𝑛𝑘 )) and outputs the path that

has the minimum distance with 𝑛 being the number of nodes in

each category. In general, there can be different numbers of nodes

in each category. However, it can be shown that the worst time

complexity occurs when all the categories contain an equal number

of nodes[34]. Hence, we show our complexity results when the

number of nodes in each category is equally distributed. However,

our algorithms run for any number of nodes in each category. Our

algorithm first creates a complete (𝑘 + 2)−partite representing the

shortest path between the vertices in the sets 𝑂 , 𝑉1, 𝑉2, . . . , 𝑉𝑘 ,

and 𝑇 , respectively. Such a complete (𝑘 + 2)−partite graph can

be computed by running a Floyd-Warshall algorithm once on the

complete graph with a time complexity of 𝑂 (𝑛3). If the number of

vertices of interests is much smaller than the complete city network

graph, then a complete (k+2)-partite graph can also be obtained by

running a single source shortest path algorithm on the vertices of

interests. Upon completion of the Floyd-Warshall, we will have the

shortest distance between all possible pairs of nodes in 𝐺 , but we

are only interested in the shortest distance between each pair of

nodes (𝑖, 𝑗) ∈ {(𝑂,𝑉1), (𝑉1,𝑉2), . . . , (𝑉𝑘 ,𝑇 )} so we will keep only

these edges and remove the other edges.

Once such a (𝑘 + 2)−partite graph is formed, our algorithm

4partiteGTP again runs the Floyd Warshall algorithm on the ob-

tained (𝑘 + 2)−partite graph from the vertex set 𝑉1 to 𝑉𝑘 to form a

4−partite graph containing the shortest distance edge for each pair

of nodes (𝑖, 𝑗) ∈ {(𝑂,𝑉1), (𝑉1,𝑉𝑘 ), (𝑉𝑘 ,𝑇 )}. If 𝑘 = 1, add a dummy

category 𝑉𝑘 between (𝑉1,𝑇 ) such that |𝑉1 | = |𝑉𝑘 | and connect

(𝑖, 𝑗) ∈ |𝑉1 | × |𝑉𝑘 | with weight 0 to obtain the required 4−partite
graph.

Lemma 8. Any edge (𝛼, 𝛽) connecting a vertex in 𝑉1 and a vertex
in 𝑉𝑘 in 4−partite graph will represent a valid path.
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Proof. Any edge in 4−partite graph connecting a vertex 𝛼 in

𝑉1 to a vertex 𝛽 in𝑉𝑘 is obtained by complete (𝑘 + 2)−partite graph
where the only possible paths from 𝑉1 to 𝑉𝑘 are the ones which

cover exactly one vertex from intermediary categories. Hence, the

resulting path will be a valid path. □

Lemma 9. The set of all Pareto-optimal paths will be preserved in
the 4−partite graph.

Proof. Note that the 4−partite graph contains all shortest paths

from each vertex in 𝑉1 to each vertex in 𝑉𝑘 . Since all the agents are

taking the same path from category 1 vertices to category 𝑘 , we

are not losing any Pareto-optimal path. □

From the above Lemma, it is enough to restrict to the final com-

plete 4−partite graph. We next compute the path matrix presented

in line numbers 6-11 of algorithm 1, which essentially saves the cost

incurred by each agent for each path present in obtained 4−partite
graph. We now have the following main theorem:

Theorem 10. There exists an 𝑂 (𝑛3) algorithm (4partiteGTP) which
produces the efficient path in polynomial time.

Proof. The Floyd-Warshall method on the graph takes 𝑂 (𝑛3).
Construction of (𝑘 + 2)−partite graph and 4−partite graph con-

struction take 𝑂 ((𝑘 + 2)𝑛2) and 𝑂 (𝑛3) time respectively. Finally,

the minimum cost path can be computed via the path matrix in

𝑂 (𝑏𝑛2) time. □

Algorithm 1 4partiteGTP

Input: The road network 𝐺 (𝑉 , 𝐸,𝑊 ), Source and Destination ver-

tices sets, 𝑂 = {𝑜1, 𝑜2, ..., 𝑜𝑏 } and 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑏 }, PoI cate-
gories {𝑉 1,𝑉 2, . . . ,𝑉𝑘 }

Output: A 4 − 𝑝𝑎𝑟𝑡𝑖𝑡𝑒 graph and a path-matrix 𝑃

1: Run Floyd-Warshall algorithm on the road network graph 𝐺

and let the matrix representing the shortest path be denoted

by𝑀

2: Generate a complete (𝑘 + 2)-partite graph (𝐾𝑂,𝑉 1,...,𝑉 𝑘 ,𝑇 ) from
𝑀 retaining the edges connecting 𝑂 to 𝑉 1

, 𝑉 1
to 𝑉 2

, . . . , 𝑉𝑘−1

to 𝑉𝑘
, and 𝑉𝑘

to 𝑇

3: Run Floyd-Warshall algorithm again on (𝑘 + 2) −𝑝𝑎𝑟𝑡𝑖𝑡𝑒 graph
(𝐾𝑂,𝑉 1,...,𝑉 𝑘 ,𝑇 ) to generate the matrix𝑀1

4: Generate a complete 4-partite graph (𝐾𝑂,𝑉 1,𝑉 𝑘 ,𝑇 ) by retaining

the edges from𝑀1 connecting 𝑂 to 𝑉 1
, 𝑉 1

to 𝑉𝑘
, and 𝑉𝑘

to 𝑇 .

5: Let𝑀2 be the matrix representing edge weights in (𝐾𝑂,𝑉 1,𝑉 𝑘 ,𝑇 )
6: for (𝑖, 𝑗) ∈ |𝑉 1 ×𝑉𝑘 | do ⊲ Path-matrix computation

7: 𝑝 = 0

8: for each agent 𝑏 ∈ 𝐵 do
9: 𝑃 [𝑏] [𝑝] = 𝑀2 [𝑜𝑏 ] [𝑖] +𝑀2 [𝑖] [ 𝑗] +𝑀2 [ 𝑗] [𝑡𝑏 ]
10: end for
11: 𝑝 = 𝑝 + 1

12: end for

5.1 Computing Desired Paths from Path Matrix
From path matrix 𝑃 , one can compute the following:

Optimal Path: The columnwith aminimum sum in the pathmatrix

𝑃 will give the optimal path.

Pareto-optimal path with minimum envy: The algorithm for

the same is provided in Algorithm 2. It can again be computed from

the path matrix 𝑃 as follows: For any path 𝑝 , check if there exists a

path 𝑝′ such that the distance of all the agents in path 𝑝 is greater

than or equal to the distance of all the path in 𝑝′ (checked with

flag parameter). If such a path exists, then 𝑝 cannot be a Pareto-

optimal path. It should also be checked that for at least one agent,

the distance in path 𝑝′ should be strictly greater than the distance

in path 𝑝 . This is taken care of by the flag1 parameter. Once we have

identified that a path is a Pareto-optimal path, we also save the envy

of that path which is essentially the maximum difference in the

distances traveled by any two agents. Finally, the algorithm returns

that Pareto-optimal path and minimizes envy. We require to check

all possible combinations of 𝑂 (𝑛2) paths in 4-partite graphs, then

the algorithm 2 will take 𝑂 (𝑛4𝑏) time to compute Pareto-optimal

paths. We now present the experimental results on real-world city

graph datasets.

Algorithm 2 PO-MinEnvyGTP

Input: The path-matrix 𝑃 produced by Algorithm 1

Output: Set of Pareto-optimal paths 𝑃𝑂

1: flag = 0

2: for 𝑝 ∈ 𝑃 do
3: for 𝑝′ ∈ 𝑃 \ 𝑝 do
4: flag1 = 1

5: for each agent 𝑏 ∈ 𝐵 do
6: if 𝑃 [𝑏] [𝑝] ≥ 𝑃 [𝑏] [𝑝′] then
7: flag = 0

8: else
9: flag = 1

10: Break

11: end if
12: if 𝑃 [𝑏] [𝑝] > 𝑃 [𝑏] [𝑝′] then flag1 = 0

13: end for
14: if flag = 0 And flag1 = 0 then
15: Break

16: end if
17: end for
18: if flag = 0 and flag1 = 0 then
19: Break

20: else
21: 𝑝𝑎𝑟𝑒𝑡𝑜 = {𝑝𝑎𝑟𝑒𝑡𝑜 ∪ 𝑝}
22: for each (𝑖, 𝑗) ∈ 𝐵 do
23: 𝑀 [𝑖] [ 𝑗] = |𝑃 [𝑖] [𝑝] − 𝑃 [ 𝑗] [𝑝] |
24: end for
25: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚[𝑝] =𝑚𝑎𝑥 (𝑀)
26: end if
27: end for
28: Return the Pareto-path 𝑝 with minimum value of𝑚𝑎𝑥 [𝑝]
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(a) Fixed number of Agents (b) Fixed Number of Categories

Figure 6: Runtime Comparison with existing approaches

6 EXPERIMENTAL EVALUATION
We now discuss the performance of the proposed algorithm PO-

MinEnvyGTP on real-world datasets. The PO-MinEnvyGTP algo-

rithm is compared with the existing naive algorithms such as brute

force and GNN [34]. We first show the run-time comparison on the

road network dataset of Oldenburg city [24]. We then show the

effect of the change in the number of agents and the number of

categories on the price of fairness. The codes of the experiments

are publicly available on Github[35].

Figure 7 shows the run time comparison of PO-MinEnvyGTP

against brute force and GNN over 100 runs. In Figure 6a, the number

of agents is fixed to 15, and the number of categories is increased

from 2 to 6. In each experiment, the number of options is increased

by the interval of five in each category, i.e., category-1 contains

five options, category-2 contains ten options, and following similar

lines, category-6 contains thirty options. These values are in-line

with the existing literature [34]. We chose fewer options for com-

parison against the brute-force technique, although our algorithms

work well for any number of options and categories. It can be seen

that the run-time of PO-MinEnvyGTP has no significant impact on

the increased number of categories, whereas brute-force [34] grows

drastically with the number of categories. It can also be seen that

the run-time of GNN also grows (not drastically compared to brute

force) as the number of categories increases. Similarly, in Figure 6b,

when the number of categories is fixed to 4, PO-MinEnvyGTP has

a little impact with the increase in the number of agents, whereas

the run-time of GNN increases steeply with the number of agents.

This shows the efficiency of our proposed algorithm. Not only on

efficiency, but PO-MinEnvyGTP also ensures fairness, and we show

that the price of fairness is not much. Our algorithm computes the

Pareto-optimal path with minimum envy and gives the price of

fairness for different sizes of categories and a different number of

agents. Here in Figure 7a, the algorithm computes the price of fair-

ness for different sizes of categories. In this figure, Y-axis represents

the average price of fairness, and X-axis represents the number

of categories for 100 runs. Similarly, Figure 7b shows the price of

fairness for the different number of agents. In both cases, it is seen

that though the worst price of fairness is bounded by (2𝑏 − 1), the
price of fairness never goes beyond 2 on a real-world dataset. Simi-

lar trends can be observed in San Joaquin County dataset. Figure 8

computes the cost of the optimal path by varying the value of 𝜖 for

15 agents and 4 categories. 𝜖−envy-free path can be computed from

(a) Fixed number of Agents (b) Fixed Number of Categories

Figure 7: Impact on PoF with an increase in the number of
agents and number of categories

Figure 8: Epsilon-Envy Free path cost

the path matrix returned by Algorithm 1 where a path with minimal

cost is returned which has envy less than 𝜖 . Each time we increase

the 𝜖 , the number of paths satisfying the 𝜖−increases, and thus

the solution converges to the optimal unrestricted solution. One

interesting observation is that the average distance traveled by one

agent increased from 11000(≈ 165000/15) to 13000(≈ 185000/15)
only; thereby, leading to a significant reduction of envy from 11000

to 6000 which denotes the additional distance traveled by a single

agent.

7 CONCLUSION AND FUTUREWORK
This paper proposed a polynomial time algorithm 4partiteGTP

to sequenced group trip planning problems in spatial databases.

Through the experiments on real-world datasets, we showed that

the proposed algorithm is much faster than existing algorithms. We

further proposed a polynomial time algorithm PO-MinEnvyGTP

that produces the path with minimum envy. We then showed that

the price of fairness depicting the ratio of cost of the Pareto-optimal

and minimum envy path to that of the optimal path is bounded by

(2𝑏 − 1), with 𝑏 being the number of agents.

This is the first step towards providing an efficient, fair solution

to the group-trip planning problem. We believe such solutions also

apply to numerous applications ranging from the supply chain,

distributed learning, route planning, etc. We considered the notion

of envy; one could also look for maximizing the minimum distance

by any agent. It would be interesting to see the relationship between

these two notions. One natural extension is to unordered group trip

planning where there is no pre-determined order of the categories.

We leave such extensions to the future.
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