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ABSTRACT
Action-constrained reinforcement learning (ACRL), where any ac-

tion taken in a state must satisfy given constraints, has several

practical applications such as resource allocation in supply-demand

matching, and path planning among others. A key challenge is to

enforce constraints when the action space is discrete and combinato-

rial. To address this, first, we assume an action is represented using

propositional variables, and action constraints are represented us-

ing Boolean functions. Second, we compactly encode the set of all
valid actions that satisfy action constraints using a probabilistic

sentential decision diagram (PSDD), a recently proposed knowl-

edge compilation framework. Parameters of the PSDD compactly

encode the probability distribution over all valid actions. Conse-

quently, the learning task becomes optimizing PSDD parameters

to maximize the RL objective. Third, we show how to embed the

PSDD parameters using deep neural networks, and optimize them

using a deep Q-learning based algorithm. By design, our approach

is guaranteed to never violate any constraint, and does not involve

any expensive projection step over the constraint space. Finally,

we show how practical resource allocation constraints can be en-

coded using a PSDD. Empirically, our approach works better than

previous ACRL methods, which often violate constraints, and are

not scalable as they involve computationally expensive projection-

over-constraints step.

KEYWORDS
Action-constrained RL; Neuro-symbolic AI

ACM Reference Format:
Jiajing Ling*, Moritz Lukas Schuler*, Akshat Kumar, and Pradeep Varakan-

tham. 2023. Knowledge Compilation for Constrained Combinatorial Action

Spaces in Reinforcement Learning. In Proc. of the 22nd International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2023), London,
United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Constrained Markov decision process and constrained reinforce-

ment learning (RL) [1] have become an active and emerging re-

search field, and are widely used to solve safety-critical or resource-

related decision making problems. For example, to ensure robots’
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safety when they are conducting tasks, robots’ motion must be

restricted in a certain range [14, 26]. Another example is resource

allocation in supply-demand matching [6, 32]. The allocation of re-

sources must satisfy some constraints (e.g., total assigned resources

should be within a limit). In constrained RL, the goal for the agent

is to find a policy that maximizes the expectation of cumulative

rewards under constraints that restrict the agent’s actions. There

are two popular types of constraints—cumulative cost constraints

and action constraints. Cumulative cost constraint considers an

entire episode, and requires the discounted cumulative cost or the

average of costs to be within a threshold) [33]. Action constraint is

also called an instantaneous constraint. This constraint is imposed

on the agent’s action in every time step (e.g., robot’s motion) [14].

Several recent approaches have been proposed to successfully

solve constrained RL with cumulative cost constraints. The most

popular method is Lagrangian Relaxation (LR) [13, 24, 33], which

converts the constrained RL problem into an unconstrained one [3].

Policy parameters and Lagrangian multipliers are updated itera-

tively using a gradient-based framework [33].

In solving action-constrained RL (ACRL), LR has also been at-

tempted [7]. However, scalability is challenging since Lagrange

multipliers are associated with different state-action pairs and they

all need to be optimized, which becomes intractable for large state-

action spaces. More importantly, although Lagrange multipliers

penalize for constraint violations, this approach cannot guarantee

zero constraint violation during training and policy execution.

Since directly applying LR to solve ACRL does not work very

well, other approaches have been proposed recently aiming to solve

ACRL and achieve zero constraint violation. These approaches

mostly focus on continuous action spaces. One natural approach is

to add a differentiable projection layer at the end of the policy net-

work [2, 26]. The projection layer projects original actions onto the

feasible action space to ensure zero constraint violation. However,

there are two main drawbacks of this approach. First, it does not

scale up well to problems with large action space since the projec-

tion layer typically solves a Quadratic Program (QP) in each RL step,

which significantly increases the runtime of RL algorithms. Second,

the projection layer could potentially result in the zero-gradient

issue during the end-to-end training of a policy network [22]. To

tackle the zero-gradient issue, a learning algorithm that decou-

ples policy gradients from action constraints is proposed in [22],

where policy parameters are updated by leveraging the Frank-Wolf

method [19]. Unfortunately, this approach does not scale up well

as it still requires solving a QP during RL training.
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When the action space is constrained, discrete, and combinato-

rial, very few effective algorithms exist for this setting. For a specific

type of action constraints, such as resource allocation, there are

somemethods [6]. However, suchmethods are not extendable easily

to a general constrained combinatorial action space setting. This is

precisely the gap that our work addresses by developing a general

RL algorithm for constrained combinatorial action spaces.

In constrained combinatorial action spaces, learning a policy is

quite challenging since the agent needs to explore the combinato-

rial action space to find feasible actions through trial and error. One

possible approach is to solve a Mixed Integer Quadratic Program

(MIQP) in the projection step to obtain feasible actions. However,

solving MIQP can be NP-hard [27]. Therefore, it is intractable to ap-

ply MIQP in RL since feasible actions need to be computed in each

time step. To address this issue, solving QP together with integer

rounding as action projection is proposed in [6]. Although solv-

ing QP can obtain an approximate solution of the MIQP, rounding

the solution to the nearest integers could cause constraint viola-

tions. Another recent attempt that is specialized for mutiagent path

finding (MAPF) problem is to compile all the routes where the

agent moves in the underlying graph into a decision diagram [23].

While this works well for MAPF problem, they do not handle the

general setting of ACRL, which we target. To summarize, several

approaches have been proposed to solve constrained RL with both

cumulative constraints and action constraints. However, most of

these approaches cannot be applied to solve action-constrained RL

with combinatorial action spaces. These approaches either cannot

guarantee zero constraint violation, or are not scalable due to the

computationally expensive projection step, or are specialized for a

particular domain.

Our Contributions: We make the following contributions.

• We consider ACRL with discrete, constrained combinatorial ac-

tion space. We let an action be represented using a set of propo-

sitional variables, and action constraints be represented using

Boolean formulas. We leverage probabilistic sentential decision
diagrams (PSDDs) [21], a knowledge compilation framework,

to compactly encode a probability distribution over the set of all

the valid actions that satisfy action constraints. A key benefit is

that a PSDD can represent a combinatorial, constrained action

space compactly.

• We reformulate the task of optimizing a policy directly over con-

strained combinatorial action space to that of optimizing the pa-

rameters of the underlying PSDD, which is significantly smaller

than the action space, and thus computationally tractable.

• We show how to encode PSDD parameters using deep neural

networks, and optimize them using a deep Q-learning based

algorithm for factored actions [16]. We develop new techniques

that are needed to integrate optimization of PSDD parameters

with deep RL algorithms. By design, our approach is guaranteed

to output a feasible action in each RL stepwithout involving any
computationally expensive projection step over the constraint

space. Therefore, it is able to achieve zero constraint violation
during training and execution.

• We show how practical resource allocation constraints can be

encoded using a PSDD, and prove that the compiled PSDD has

a polynomial size in the number of resources and entities. Em-

pirically, we evaluate our approach with two previous ACRL

methods [6, 22]. Our approach can achieve zero constraint vio-

lation, is scalable since computationally expensive projection-

over-constraints step is not required during training, and also

provides better solution quality in several instances.

2 ACTION-CONSTRAINED RL
A Markov decision process (MDP) model is defined using tuple

(𝑆,𝐴,𝑇 , 𝑟, 𝛾, 𝑏0). An agent can be in one of the states 𝑠𝑡 ∈ 𝑆 at time

𝑡 . It takes an action 𝑎𝑡 ∈ 𝐴, receives a reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ), and the

world transitions stochastically to a new state 𝑠𝑡+1 with probability

𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )=𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). For the infinite-horizon setting, future
rewards are discounted using a factor 0 < 𝛾 < 1. The initial state

distribution is denoted by 𝑏0 (𝑠).
In our work, we consider discrete and combinatorial action space

𝐴. As an example, in resource allocation problems where𝑚 indis-

tinguishable resources must be assigned to 𝑛 entities, action space

is combinatorial—|𝐴|=
(𝑚+𝑛−1

𝑛−1
)
. We also assume that for any state

𝑠 , the set of valid actions is given by C(𝑠) ⊆ 𝐴. We shall discuss the

representation of the set C(𝑠) using Boolean constraints later. The

goal is to compute the stochastic policy parameterized by 𝜃 , 𝜋 (𝑠 ;𝜃 ),
that outputs a probability distribution over the valid actions ΔC(𝑠)
for 𝑠 ∈ 𝑆 , and maximizes the total expected rewards 𝐽 (𝜋) as:

𝐽 (𝜋 ) = E𝑠∼𝑏0
[
𝑉 (𝑠 ;𝜋 )

]
(1)

𝑉 (𝑠 ;𝜋 ) = E
[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠 ;𝜋
]

(2)

𝑄 (𝑠, 𝑎;𝜋 ) = E
[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠, 𝑎0 = 𝑎;𝜋
]

(3)

where 𝑉 is the state value function and 𝑄 is the state-action value

function as per policy 𝜋 . We assume a reinforcement learning set-

ting where transition and reward functions are not known to the

agent. Instead, the agent interacts with the environment simulator

and receives observations of the form (𝑠, 𝑎, 𝑠′, 𝑟 ) where (𝑠, 𝑎) is the
current state and action taken, 𝑠′ is the next state and 𝑟 is the reward
received.

Action constraints: There Let 𝑿𝑆 = {𝛽1, . . . , 𝛽𝑛} denote the set
of 𝑛 propositional variables defining a state; each 𝛽𝑖 ∈ {0, 1}. Let
𝑿𝐴 = {𝛼1, . . . , 𝛼𝑚} denote the set of 𝑚 propositional variables

defining an action; each 𝛼𝑖 ∈ {0, 1}. Any state is denoted by an

assignment of truth values, 𝑠𝛽 , to variables in 𝑿𝑆 ; any action is

similarly defined using 𝑎𝛼 . Such propositional logic based model

representation has also been used for planning in discrete factored

state and action spaces [28].

The set of valid actions in a state is defined using 𝐾 Boolean

functions 𝐶𝑘 (𝑿𝑆 ,𝑿𝐴) ∀𝑘 =1 : 𝐾 . Let 𝐶𝑘 |𝑠𝛽 represent the reduced

Boolean subfunction 𝐶𝑘 over variables 𝑿𝐴 where 𝑿𝑆 variables are

set to their respective instantiation in the state 𝑠𝛽 . The set of valid

actions in a state 𝑠𝛽 , C(𝑠𝛽 ), is given by:

C(𝑠𝛽 ) =
{
𝑎𝛼

��� 𝐾∧
𝑘=1

𝐶𝑘 |𝑠𝛽 (𝑎𝛼 ) = 1

}
(4)

We next give some examples showing how action constraints can

be represented in a variety of practical problems such as resource

allocation and path planning.
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Example 2.1 (Resource allocation constraints). Consider a resource

allocation setting where we need to allocate 𝑃 resources to 𝑄 enti-

ties, assuming a 0/1 allocation setting. For simplicity, we assume

that there are more entities than resources and each entity can only

have at most one resource (this is not a limitation; in our tested

domains we can allocate any number of resources to an entity).

We encode the set of all valid allocations using pseudo-Boolean
(PB) constraints (linear constraints over Boolean variables) [18]. A

PB-constraint is an inequality 𝐶0𝑝0 +𝐶1𝑝1 + . . . +𝐶𝑛−1𝑝𝑛−1 ≥ 𝐶𝑛 ,
where each 𝑝𝑖 is a literal and 𝐶𝑖 is an integer coefficient. A true

literal is denoted as 1 and false as 0. Note that it is easy to incorporate

≤ and = both as PB-constraints [18].

We create a Boolean variable 𝑋𝑝𝑞 denoting whether a resource

𝑝 is assigned to entity 𝑞. The set of PB constraints encoding a valid

assignment is denoted as:

𝑄∑︁
𝑞=1

𝑃∑︁
𝑝=1

𝑋𝑝𝑞 = 𝑃 ;

𝑄∑︁
𝑞=1

𝑋𝑝𝑞 = 1 ∀𝑝 = 1 : 𝑃

𝑃∑︁
𝑝=1

𝑋𝑝𝑞 ≤ 1 ∀𝑞 = 1 : 𝑄 (5)

It is shown in [18] how PB-constraints can be translated into

Boolean formulas which evaluate to true only if any given literal

assignment satisfies the PB-Constraints. Furthermore, it is possible

to represent the resulting Boolean functions using popular compact

data structures such as binary decision diagrams (BDDs) [9]. We

can also have a single BDD representing the conjunction of BDDs

for their respective PB-constraints, which encodes the set of all the

valid resource allocations.

Example 2.2 (Multistep path planning). Consider a multistep path

planning problem in a grid introduced in [17]. In their environ-

ment, the agent receives a fixed-size square window surrounding

its current position as the observation. Consider the action set to

be the set of all possible simple paths in the agent’s observation, or

all possible simple paths of a fixed length. The set of all possible

simple paths in a graph is combinatorial, which would make the

action space extremely large, and render standard deep RL algo-

rithms impractical. Fortunately, the Boolean formula representing

the set of all valid paths can be represented compactly using a data

structure called sentential decision diagrams (SDDs) [15]. Further-
more, it has been shown that even for large graphs, the size of the

SDD representing the set of paths remains tractable by using an

approximation scheme [12, 31].

As shown in the above two examples, our goal is to use compact

and general data structures such as BDDs and SDDs to implicitly

represent the set of all the valid actions without ever explicitly

enumerating them. And we also show how different steps in deep

RL algorithms can be implemented by using such data structures.

3 PROBABILITY DISTRIBUTION OVER VALID
ACTIONS USING DECISION DIAGRAMS

We represent an action constraint𝐶𝑘 (𝑿𝑆 ,𝑿𝐴) using a general data
structure called sentential decision diagrams (SDDs) [15]. An SDD

is a succinct and tractable representation of a Boolean formula

that generalizes the well-known ordered binary decision diagrams

(OBDDs) [9]. Succinctness refers to the size of the compiled knowl-

edge representation, and tractability implies that operations such

as conjunction (or conjoin) are polytime operations in the size of

SDDs [30]. It has also been shown that SDDs can be exponentially

more succinct than OBDDs [8], and can also be parameterized to

represent a probability distribution over its models (assignments

satisfying the Boolean formula represented by the SDD). The latter

property is crucial to represent the distribution Pr(𝑎 |𝑠) over valid
actions 𝑎 ∈ C(𝑠). Our goal is to represent each Boolean function

𝐶𝑘 using an SDD. A key benefit of this approach is that we can con-

struct a separate SDD for each 𝐶𝑘∀𝑘 = 1 : 𝐾 . Then we can conjoin

all such SDDs to represent the single Boolean function (in an SDD

form) that represents the set of all valid actions. Such an approach

is useful as it allows splitting complex constraints into multiple

simpler ones, which can be compactly represented using SDDs. We

next describe the SDD structure [15]. An SDD represented as a

decision diagram describes members of a combinatorial space (e.g.,

different valid resource allocations) using propositional logic in a

tractable manner.

An SDD represents a Boolean function 𝑓 (𝑨,𝑩) on some non-

overlapping variable sets 𝑨 and 𝑩 [15]. The function 𝑓 is repre-

sented as 𝑓 = (𝑝1 (𝑨) ∧ 𝑠1 (𝑩)) ∨ . . . ∨ (𝑝𝑛 (A) ∧ 𝑠𝑛 (B)), with each

element (𝑝𝑖 , 𝑠𝑖 ), 𝑖 = 1 . . . 𝑛 of the decomposition composed of a

prime 𝑝𝑖 and a sub 𝑠𝑖 , which themselves are SDDs. A model for a
given SDD is an instantiation for all the variables such that the

corresponding Boolean function 𝑓 evaluates to true.

An SDD is characterized by a vtree for the variable set 𝑿 =

𝑨∪𝑩. The vtree is a full binary tree whose leaves are in one-to-one

correspondence with variables in 𝑿 . An SDD respecting a vtree 𝑇

on the variable set 𝑿 = {𝑋1, 𝑋2, . . . , } is defined inductively as next.

It has two kinds of nodes:

- terminal node, which can be a literal (𝑋 or ¬𝑋 ), always true (⊤)
or always false (⊥), and

- decision node having 𝑛 branches. Decision node represents (𝑝1∧
𝑠1) ∨ . . .∨ (𝑝𝑛 ∧ 𝑠𝑛) where all (𝑝𝑖 , 𝑠𝑖 ) are recursively SDDs. The
primes for a decision node are always consistent, mutually

exclusive and exhaustive [15].

A vtree induces a total order on the variables from a left-right

traversal of the vtree. E.g., for the vtree in figure 1(c), the variable

order is (𝐴, 𝐵,𝐶, 𝐷). In the SDD shown in figure 1(b), every circular

node is a decision node. Its branches are denoted by outgoing ar-

rows denoting corresponding prime and sub (𝑝𝑖 , 𝑠𝑖 ). Given a fixed

vtree, the SDD is unique (or canonical). Every decision node of

an SDD is normalized for a vtree node 𝑣 . The number denoted in-

side each circular node in SDD in figure 1(b) shows the id of the

vtree node for which it is normalized for. Intuitively, a decision

node 𝑛 being normalized for vtree node 𝑣 implies that the Boolean

formula encoded by 𝑛 contains only those variables contained in

the sub-tree rooted at 𝑣 . E.g., for SDD in 1(b), two decision nodes

labeled 3 are normalized for node 3 in vtree in figure 1(c), and hence

their encoded formulas only contain variables 𝐵,𝐶 , 𝐷 . The Boolean

formula encoded by the whole SDD is given by the SDD root node.

SDD for resource allocation: Now we show an example of how

the constraints in resource allocation are represented using an SDD.

Assume there is one resource and four entities. We create four

Boolean variables 𝑋11, 𝑋12, 𝑋13, 𝑋14 denoting whether the resource

should be assigned to entity 𝑞, 𝑞 = 1, . . . , 4 or not. To have better

viewing of the SDD graph, we rename these four Boolean variables

as 𝐴, 𝐵,𝐶, 𝐷 respectively. The resource constraints and correspond-

ing Boolean formula are shown in figure 1(a). Given the Boolean

Session 3A: Reinforcement Learning
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

862



𝐴+ 𝐵 +𝐶+ 𝐷 = 1,
𝐴 ≤ 1,𝐵 ≤ 1,𝐶 ≤ 1,𝐷 ≤ 1

𝐴∧ ¬𝐵∧ ¬𝐶 ∧ ¬𝐷
∨ ¬𝐴 ∧ 𝐵∧ ¬𝐶 ∧ ¬𝐷
∨ ¬𝐴 ∧ ¬𝐵 ∧𝐶 ∧ ¬𝐷
∨ (¬𝐴 ∧¬𝐵 ∧¬𝐶 ∧ 𝐷)

Resource	Constraints:	

Boolean	Formula:	

(a)

5

C ¬D ¬C D

5

¬C¬D C ⊥

3

¬B  B

3

¬B  B ⊥

1

¬A  A

(b)

1

A

0

3

B

2

5

C

4

D

6

(c)

5

C ¬D ¬C D

5

¬C¬D C ⊥

3

¬B  B

3

¬B  B ⊥

1

¬A  A

0.7 0.3

0.2 1

0.4 10.6 0

0

D1

0.8

D2 D3

D4 D5

(d)

Figure 1: (a) Resource allocation constraints and Boolean formula, (b) SDD for this constraint, each circular node is a decision node with
outgoing arrows denoting its different branches (c) Vtree for the SDD, (d) Parameterized PSDD. Red arrows denote a sampled action from this
PSDD. We associate a unique id for each decision node (D1–D5).

formula, figure 1(b) shows the constructed SDD, figure 1(c) is the

vtree for the SDD. The red circle in figure 1(b) is a decision node

with two branches: (a) (𝐶 ∧ ¬𝐷) with 𝐶 as prime and ¬𝐷 as sub,

and (b) (¬𝐶 ∧ 𝐷). The formula this decision node represents is

(𝐶 ∧ ¬𝐷) ∨ (¬𝐶 ∧ 𝐷). In this example, one model for the SDD is

(¬𝐴,¬𝐵,𝐶,¬𝐷), which means the resource is assigned to the third

entity. A model can be obtained by traversing the SDD from top to

bottom. For each decision node, we select a branch whose sub is not

false to visit. Traversal terminates after we have the instantiation

for all the variables.

Boolean formulas encoding different action constraints𝐶𝑘 can be

compiled into SDDs using the SDD compilers [11, 25], and the open

source SDD library is available for such compilation which we used

in our experiments [10]. The resulting SDDmay not be exponential

in size even though it represents an exponential number of objects.

We show in Section 6 how resource allocation constraints can be

tractably represented using an SDD, even though the total number

of valid resource allocations is combinatorial.

3.1 PSDD for distribution over valid actions
Once we conjoin the SDDs for all the action constraints𝐶𝑘∀𝑘 =1 :𝐾 ,
we get the final SDD S for the Boolean formula over (𝑋𝑆 , 𝑋𝐴) en-
coding all the action constraints. To represent a probability distri-

bution over valid actions, ΔC, so that it can be optimized using an

RL algorithm, we need to parameterize the SDD. A Probabilistic
sentential decision diagram (PSDD) is the parameterized SDD that

induces a probability distribution over themodels of the underlying
SDD. That is, a PSDD assigns a strictly positive probability to an

instantiation that satisfies the Boolean formula for the underlying

SDD; and zero probability to instantiations that do not satisfy the

underlying SDD. Thus, by parameterizing the SDD S, we obtain a

valid probabilistic distribution only over the valid action set, which

is our key objective. We next describe the structure of a PSDD.

If we parameterize each decision node of the SDD, such that

the local parameters form a distribution, the resulting probabilistic

structure is called a PSDD or a probabilistic SDD [21]. It can be

used to represent discrete probability distributions 𝑃𝑟 (X) where
several instantiations x have zero probability 𝑃𝑟 (x) = 0 because

of the constraints imposed on the space. More concretely, a PSDD

normalized for an SDD is defined as follows:

- For each decision node (𝑝1, 𝑠1), . . . , (𝑝𝑛, 𝑠𝑛), there are non neg-

ative parameters 𝜃𝑖 such that

∑𝑛
𝑖=1 𝜃𝑖 = 1 and 𝜃𝑖 = 0 iff 𝑠𝑖 = ⊥.

- For each terminal node ⊤, there is a parameter 0 < 𝜃 < 1.

Parameters 𝜃𝑖 , 𝑖 = 1, . . . , 𝑛 are also called the local distribution
associated with a decision node. PSDDs are tractable structures

of probability distributions as several probabilistic queries can be

performed in poly-time such as computing marginal probabilities,

conditional probabilities, and sampling from the distribution 𝑃𝑟 (X)
represented by the PSDD. Given a world state 𝑠𝛽 , we can set vari-

ables 𝑋𝑆 as per 𝛽 as evidence. To obtain the distribution ΔC(𝑠𝛽 ) (4),
we need to compute the probability of evidence for every node

in the PSDD, and renormalize the PSDD parameters based on the

probability of evidence [21].

Benefits of PSDD representation in RL: There are several signifi-
cant benefits of using a PSDD for constrained, combinatorial action

spaces in RL. First, we can decompose complex constraints over

valid actions into multiple simpler constraints. We can construct an

SDD independently for each constraint, and later conjoin such SDDs
in a tractable manner to get the final SDD representing all the action

constraints [30]. Second, we can sample from the distribution ΔC
over valid actions by following a simple top-down procedure in the

PSDD S that has complexity linear in the depth of the PSDD [21],

which is crucial for fast simulation in an RL environment. Third,
each generated action sample is guaranteed to satisfy all the ac-

tion constraints by design. This is a major benefit over previous

ACRL methods [6, 22] where there is no guarantee that sampled

actions will always satisfy constraints, and guaranteeing action

constraint satisfaction requires solving expensive mixed-integer

math programs for each RL step. Finally, the number of parameters

in a PSDD is linear in the number of edges in the PSDD [21]. Thus,

for compact PSDDs, we can represent the distribution over an ex-

ponentially large number of models it encodes using a tractable

number of parameters. Therefore, PSDD parameters can also be

optimized relatively easily using RL algorithms compared with

directly optimizing over the space of combinatorial actions. We

also note that the whole SDD-based knowledge compilation can be
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done offline before the training of the RL agent starts. Thus, during

training, there is no overhead involving manipulation of PSDDs

other than updating its parameters manipulation of PSDDs other

than updating its parameters using the RL algorithm and sampling

actions from it. We also show in Section 6 that SDD for common

types of resource constraints remains tractable, which shows the

usefulness of this method for practical applications.

4 INTEGRATING PSDD IN POLICY NETWORK
Consider the parameterized SDD (PSDD) that encodes all the action

constraints. For example, consider the PSDD in figure 1(d). The

parameters of this PSDD determine a probability distribution over

the models of the underlying SDD, which is precisely the set of

all valid actions. Thus, PSDD parameters compactly encode the

distribution over all the valid actions. Our key insight is that, as

optimizing directly over all valid actions is intractable, we optimize

parameters of the PSDD for action constraints, which is tractable

given that number of parameters in a PSDD is linear in the number

of PSDD edges [21]. For this purpose, we embed PSDD parameters

in a deep neural net (which can be later optimized using RL).

We use the PSDD shown in figure 1(d) as an example. Figure 2

shows the neural network policy which has integrated the param-

eters. The policy network takes the state as input. The input is

followed by two fully connected layers with ReLU activation func-

tion. Here, we consider fully connected layers for simplicity, in

practice, any other kind (and number) of hidden layers can be used.

At the end of the policy network, we create different heads for dif-

ferent PSDD decision nodes. Each head has a fully connected layer

with Softmax activation function, and it outputs the parameters of

its corresponding decision node. For example, 𝐷1 (in figure 1(d))

has two branches, as per PSDD semantics, there are two parameters

of 𝐷1, and the Softmax layer for 𝐷1 has 2 units in policy network.

Each policy network head must output a valid probability distri-

bution since the parameters of a decision node are non negative

and sum to 1, and determine a distribution (as noted in Section 3.1).

Here, each head is also independent of others given the fact that

each decision node has its separate local probability distribution

(as noted in Section 3.1). In this example, there are three heads for

𝐷1, 𝐷2, and 𝐷4 respectively in figure 2. 𝐷3 and 𝐷5 only have 2

branches, and the sub of their second branch is false (in figure 1(d)).

Therefore, the parameter for their second branch is always zero,

and we do not have to create a Softmax layer for 𝐷3 and 𝐷5.

Sampling valid action from PSDD distribution: Sampling a

valid action from the probability distribution encoded by the PSDD

can be done using a fast and top-down procedure, which is critical

for fast simulation in RL. We take the PSDD for resource allocation

constraints and its parameters as shown in figure 1(d) as a running

example. We follow the below process for action sampling [21].

We start from the PSDD root node i.e., 𝐷1. Since 𝐷1 is a decision

node, we sample one of its branches according to its local distri-

bution (0.7, 0.3). Suppose we have selected the first branch, then

we get ¬𝐴 (which is a terminal node) and decision node 𝐷2. We

conduct the same sampling process for 𝐷2. Assume we have se-

lected the first branch of 𝐷2 with probability 0.2, we get ¬𝐵 and

decision node 𝐷4. We continue the sampling process for 𝐷4. As-

sume that we sample the first branch of 𝐷4 with probability 0.4,

Fully	Connected	Layer

ReLU

Fully	Connected	Layer

ReLU

Softmax (2	units)

Fully	Connected	Layer	(D1)

Softmax (2	units) Softmax (2	units)

𝑠

Fully	Connected	Layer	(D2) Fully	Connected	Layer	(D4)

Figure 2: PSDD integrated Policy Network. Each softmax output
head is a distribution over different branches of the corresponding
PSDD decision node

and get 𝐶 and ¬𝐷 . We have now completed the sampling process

since we have obtained a model (assignment for all the literals). In

this example, the sampled model is (¬𝐴,¬𝐵,𝐶,¬𝐷). To compute

the probability of this model, we just need to multiply all param-

eters that we have encountered during sampling, and we have

𝑃𝑟 (¬𝐴,¬𝐵,𝐶,¬𝐷) = 0.7 × 0.2 × 0.4 = 0.056. The complexity of the

sampling is linear in the depth of the PSDD [21], which is signifi-

cantly cheaper than sampling naively from a tabular distribution

over the combinatorial action space.

Proposition 1. Let the sampled decision branches for all decision
nodes from the policy network be denoted using 𝑎PSDD. There exists a
unique environment action 𝑎 corresponding to 𝑎PSDD which satisfies
all the action constraints encoded by the underlying PSDD.

Proof Sketch. The sampled action 𝑎PSDD tells which branch to

follow for each decision node in the PSDD. Consider the sampling

process in Section 4. Starting from the root node of the PSDD, we

choose the branch as denoted in 𝑎PSDD. This gives us a unique path
from root to a leaf node in the PSDD. All the literals encountered on

this path constitute the unique environment action 𝑎 corresponding

to 𝑎PSDD. We also know that 𝑃𝑟 (𝑎) > 0 (i.e., the action 𝑎 satisfies

all the constraints), as probability of action 𝑎 is the multiplication

of the local probabilities of the chosen branches in 𝑎PSDD (as noted

earlier, details in [21]), which are non-zero by definition (as they

are the output of a Softmax layer). □

5 PUTTING IT ALL TOGETHER:
FACTORED ACTION Q-LEARNING

We have shown that the policy network outputs the parameters for

each decision node in a PSDD and that sampling decision branch

of each decision node gives us a PSDD action 𝑎PSDD. Technically,

this action cannot be accepted by the RL simulator. However, based

on Proposition 1, PSDD action 𝑎PSDD can be mapped into a unique

environment action 𝑎. Environment actions are the actions that

can be fed into RL simulator. At each step, given the current state

𝑠 , we can obtain the parameters of the PSDD from the policy net-

work. Then we sample the PSDD action 𝑎PSDD and get the uniquely

mapped environment action 𝑎. We pass 𝑎 to the RL simulator and

receive a reward 𝑟 . The environment transitions to a new state 𝑠′.
The transition sample (𝑠, 𝑎, 𝑟, 𝑠′) can be stored in an experience

replay buffer, and used to train a critic i.e., the 𝑄 function. The

critic will guide the update of PSDD parameters using the policy

network as in figure 2.

Policy update:Next, we show how to update the PSDD parameters
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using a recently proposed Q-learning based approach for factored

action spaces (named AQL) [16]. The high-level idea is as follows.

Given a state 𝑠 , we first search for the PSDD action 𝑎PSDD with the

highest𝑄-value approximately [16], where the𝑄-value is computed

using 𝑎PSDD’s corresponding environment action 𝑎. As the action

space is combinatorial, the AQL algorithm uses two heuristics to

sample actions:

• Sample actions 𝑎PSDD using the current policy network.

• Sample actions uniformly from the action space. This is chal-

lenging as the action space is both constrained and combinato-

rial. However, this can be addressed easily using the underlying

SDD. The open source library
1
provides functionality to sample

variables (environment actions in our case) uniformly from a

given SDD, which is fast and tractable in the size of the SDD.

From the action samples collected as above, we can get the best

action 𝑎∗
PSDD

that has the highest Q-value. We then update the

PSDD parameters by maximizing the probability of getting the best

action 𝑎∗
PSDD

. To prevent the output distribution of each decision

node from becoming deterministic, we also add an entropy regu-

larization. Assume the policy network 𝜋 which outputs the PSDD

parameters is parameterized by 𝜃 . The loss function for training

the policy is given as follows.

L(𝜋𝜃 ; 𝑠) = − log𝜋 (𝑎∗
PSDD

|𝑠, 𝜃 ) − 𝜆𝐻 (𝜋 (·|𝑠, 𝜃 )) (6)

The first term in the above loss function is the negative log-

likelihood with 𝑎∗
PSDD

as the target (similar to the cross-entropy

for classification task). By minimizing it, it is more likely to sample

a PSDD action from the policy network with the highest 𝑄-value.

The second term is the regularization term which makes the policy

network output more diverse distributions for decision nodes. 𝜆 is

a hyperparameter for the regularization term.

Critic update: As we mentioned, the 𝑄-value is computed using

the environment action 𝑎 instead of 𝑎PSDD due to the deterministic

mapping shown in Proposition 1. We use function 𝑔 to denote the

mapping i.e.,𝑎 = 𝑔(𝑎PSDD). Assume the𝑄 function is parameterized

by 𝜙 , and we have the loss function for updating the𝑄 function as:

L(𝜙𝑄 ) = E𝜋
[ (
(𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎∗𝑡+1)) −𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜙𝑄 )

)
2

]
(7)

where 𝑎∗
𝑡+1 = 𝑔(𝑎

∗
PSDD,𝑡+1) and 𝑎𝑡 = 𝑔(𝑎PSDD,𝑡 ).

The original AQL algorithm is designed for large action spaces.

However, it is not specialized to handle combinatorial action spaces

with complex logical constraints. A key benefit of our combination

of AQL with PSDD is that we can address rich constrained and

combinatorial action spaces. Key insights that have helped are to

re-interpret PSDD parameters as actions to be optimized by AQL,

use Proposition 1 to extract the unique environment action, and

modify the policy and critic loss functions appropriately. Finally, we

emphasize that AQL algorithm is not the only algorithm that can

be used to train the policy network in our case. Most RL algorithms

designed for factored action spaces can be applied as the sampled

action 𝑎PSDD maps deterministically to an environment action 𝑎. It

also shows the generality of our developed techniques to optimize

PSDD parameters.

1
https://github.com/art-ai/pypsdd

Table 1: Table for Boolean constraint for the setting with total 3
resources and 2 entities. Each entity can get 0-3 resources.

𝑏11 𝑏12 𝑏13 ⊤
𝑏12 𝑏13 𝑏21 ⊤
𝑏13 𝑏21 𝑏22 ⊤
𝑏21 𝑏22 𝑏23 ⊤
⊥ ⊥ ⊥

6 COMPACT SDD ENCODING OF
RESOURCE CONSTRAINTS

In this section, we describe different resource constraints on integer

variables. We also introduce how to translate integer variables to

Boolean variables, and constraints to Pseudo-Boolean constraints

in a scalable fashion.

Types of resource constraints: Three types of resource con-

straints we consider in this paper are global, regional, and local

constraints, as introduced by [6]. Global constraints are also known

as equality constraints. They ensure that all available resources𝑚

are allocated to the 𝑛 entities:

∑𝑛
𝑑=1

𝑎𝑑 = 𝑚 where 𝑑 ∈ 𝐷 is one

of the entities and 𝑎𝑑 ∈ Z≥0 represents the number of resources

allocated to it. Regional constraints require a grouping of entities

𝐺 , so that constraints can be enforced on each group 𝐺 𝑗 ∈ 𝐺 . E.g.,
the case of a regional minimum bound 𝐺𝑚𝑖𝑛

𝑗
:

∑
𝑑∈𝐺 𝑗 𝑎𝑑 ≥ 𝐺𝑚𝑖𝑛

𝑗
.

Local constraints limit the number of resources that can be allocated

to a single entity. E.g., an entity has a maximum capacity 𝑑𝑚𝑎𝑥
:

𝑎𝑑 ≤ 𝑑𝑚𝑎𝑥
. For both local and regional constraints, maximum,

minimum, and equality constraints are possible. Other sensible

constraints do also exist, such as resource flow constraints. They

are not presented here, even though it is possible to represent them

using an SDD.

Resource constraints as Boolean constraints: We translate the

action representation from an integer vector 𝑎 to a Boolean repre-

sentation 𝑋𝐴 by creating a Boolean variable 𝑏𝑑𝑖 for every integer

𝑖 ∈ {1, ..., 𝑢𝑑 }, where 𝑢𝑑 is the highest value 𝑎𝑑 can take. We do

this for all entities 𝑑 ∈ 𝐷 . If we consider a global constraint for𝑚
resources and 𝑛 entities, this will lead to𝑂 (𝑚×𝑛) Boolean variables
𝑏𝑑𝑖 where 𝑑 ∈ {1, ..., 𝑛} and 𝑖 ∈ {1, ...,𝑚}, as 𝑢𝑑 = 𝑚, ∀𝑑 . A corre-

sponding less than or equal to constraint is

∑
𝑑,𝑖 𝑏𝑑𝑖 ≤ 𝑚. Local and

regional constraints can be constructed in a similar fashion using

analogous Boolean variables.

Translating Boolean constraints into decision diagrams: We

show a scalable method to compile these Boolean constraints into

a compact SDD. Translating these constraints into Boolean for-

mulas and then compiling these into SDDs using standard pack-

ages [10, 29] did not scale; The resulting SDDwas extremely large in

size. Instead, we developed a way to create SDDs for these Boolean

constraints which is inspired by pseudo-Boolean constraints [18]:

First, we create a table that represents the Boolean constraint. In

the case of a less than or equal to constraint, it has𝑚 + 2 rows and

𝑚 ∗ 𝑛 −𝑚 + 1 columns. An example for𝑚 = 3 (total resources) and

𝑛 = 2 (total entities) is shown in table 1.

In order to check whether an instantiation of all Boolean vari-

ables is valid from this table, we must start in the top left corner. If

we want to set the variable in the current cell to ⊤ (true) (i.e., one

unit of resource is consumed), we must move one cell downwards.
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If we want to set it to ⊥ (false) (i.e., no resource is consumed), we

move to the right. This process is repeated until we reach a cell with

⊤ (true) or⊥ (false), which tells us whether the variable assignment

we tested is valid. We encode this logic into an SDD structure.

This table representation allows us to efficiently compute the

information needed to construct an SDD. For space reasons, we

provide steps for the construction of the SDD in supplementary. The

total number of decision nodes in this SDD is (𝑚+1) ∗ (𝑛∗𝑚−𝑚)−1.
With this SDD, we can encode

∑𝑛∗𝑚−𝑚
𝑖=0

(𝑛∗𝑚
𝑚+𝑖

)
models. Thus, in a

polynomial-sized SDD (in the number of resources and entities), we

can represent combinatorial number of valid resource allocations.

Multiplication of PSDDs: For all the constraints, we create SDDs
in this fashion. We then conjoin (or multiply) all such SDDs (which

is also a poly-time operation as noted earlier) to encode all the

constraints into a single SDD. We parameterize the resulting SDD

to obtain the PSDD, which is incorporated into our algorithm.

7 EXPERIMENTS
We evaluate our approach on two developed simulation environ-

ments for resource allocation: an emergency response system (ERS) [5]

and a bike sharing system (BSS) [4]. These environments are used

in evaluating the previous proposed resource allocation approaches

in [6, 22]. Our code is publicly available in GitHub repository
2
.

Emergency response system: This system was originally pro-

posed in [34]. The task here is to provide a target allocation of

ambulances to stations in a day. The allocation of ambulances de-

pends on the observation of emergency request demand, the current

allocation of ambulances to stations, and the time of the day. This

environment also considers adding Gaussian noise (called surge) to

the demand request, occurring at a random zone (which a station

belongs to) and random time once per day.

Bike sharing system: The bike sharing system was originally

introduced in [20]. The task is to provide a target allocation of

bicycles to stations to minimize the lost customer demand (no

bicycle or no empty parking spot at the station) in a day.

Baselines: We compare our proposed framework KCAC against

two previous approaches: DDPG with projection using Quadratic

Programming [6] and NFWPO [22] where MIQP is used to enforce

constraints on resource allocations. The implementations for both

approaches are publicly available. There are two other methods

developed in [6]: DDPG with constrained Softmax and DDPG ap-

proximate OptLayer. However, these two approaches are restricted

in the types of resource constraints they can handle (i.e., they can-

not be easily extended to more complicated regional constraints).

Therefore, we compare against the most general DDPG with QP-

based projection.

7.1 Emergency Response System
In ERS, we consider total 32 ambulances and 25 stations as in [6].

We consider three types of resource constraints as follows.

• Global sum: This constraint says the total resource assigned to

all stations must be equal to total available resources.

• Local min and max: This constraint specifies the lower bound

and upper bound for the resources assigned to a station.

2
https://github.com/lingkaching/kcac

2 4
Local Max

10

0

10

20

30

40

Co
ns

tra
in

t V
io

la
tio

ns
 P

er
 It

er
at

io
n

(a) Non-surge

2 4
Local Max

0

10

20

30

40

50

60

Co
ns

tra
in

t V
io

la
tio

ns
 P

er
 It

er
at

io
n

50%
75%
100%

(b) Surge

Figure 3: The number of average constraint violations in DDPG-QP
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Figure 4: Learning process w.r.t run time on ERS with surge

• Group min and max: In this constraint, several stations are

grouped together (which is common in reality), and total re-

source assigned to stations belonging to the same group should

be bounded.

In our experiments, the local min is always 0, and local max is 2 or

4 in different instances for all stations. We also generate different

group minimal values in a systematic way as follows. We start with

assuming all ambulances are uniformly allocated over all stations

so that each station will be assigned 1.28 (32/25) ambulances. Then

we modify this average assignment with different percentages e.g.,

50%, 75%, and 100%, and we get the group min by multiplying

the modified average assignment with total number of stations in

the group. Intuitively, the higher the percentage is, the tighter the

group min constraint is. In the experiments, we do not consider

the group max since we assume a group is able to accommodate a

large number of ambulances. Considering the combination of these

local max and group min constraints, we have total 6 instances

e.g, 2-50%, 4-50% etc. For each instance, we first generate different

PSDDs to encode different constraints separately as described in

Section 6. And we multiply all generated PSDDs to obtain a single

PSDD which encodes the actions that satisfy all constraints. In

the experiments, we keep the neural network architecture of our

policy network and critic network the same as the architecture

in DDPG-QP except for the last layer in the policy network for

our approach (as noted in figure 2). For NFWPO, we use their

default neural network architecture (we changed their architecture

to the one used in DDPG-QP, however, it performed worst). We

also tune the learning rates for all approaches using grid search

over {10−2, 10−3, 10−4}.
We evaluate all approaches on two ERS scenarios: non-surge and

surge, and we run each approach on all instances with 5 different

random seeds and report the average. In each run, there are 10k
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Figure 5: Learning process w.r.t iteration on ERS with surge
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Figure 6: Learning process w.r.t iteration on BSS

iterations. Figure 3 shows the number of average constraint viola-

tions per iteration during testing using the final trained policy in

DDPG-QP. In both figure 3(a) and (b), x-axis denotes the local max-

imum resource threshold, y-axis denotes the number of constraint

violations, and different bars denote different group min thresh-

old values (50%, 75%, 100%). We can see that there are constraint

violations in all instances. The number of constraint violations

is getting higher when the group min constraints are becoming

tighter. When the percentage for group min is 100%, we see the

most constraint violations (except for the non-surge, ‘2’ as local

max case). The constraint violations are caused by the rounding

procedure after solving a QP in each RL step, and it is very hard

to control the rounding given the combinatorial action space. In

KCAC and NFWPO, there are zero constraint violations during

testing. However, zero constraint violation is achieved via different

methods. In our approach KCAC, the action is sampled from the

PSDD which encodes all valid actions, and it will never violate

constraints. However, in NFWPO, MIQP is used to project the ac-

tion from the policy network to a valid action. Solving a MIQP is

NP-hard and is computationally expensive. Therefore, it takes more

time in NFWPO to obtain the same solution quality compared with

our approach. In figure 4, we show the learning process of all ap-

proaches on the most difficult environments for DDPG-QP (surge,

and 100% used in computing group min). In both figure 4(a) and

(b), x-axis denotes the relative time elapsed during training w.r.t

the starting time, and y-axis denotes the return. We can see that it

takes 5 times longer for NFWPO to finish the whole 10k iterations

compared with our approach KCAC (∼40hrs v.s. ∼8hrs). To achieve
the same solution quality, NFWPO will take more time as well. In

other instances for both surge and non-surge cases, NFWPO was 4-

5 times slower on average than our method KCAC. Finally, we show

the learning process w.r.t. the iteration for all approaches on the

surge environment in figure 5. We show results on the non-surge

environment in the supplementary as they are very similar. As we

can see in figure 5, our approach KCAC and DDPG-QP can achieve

very close average returns when convergence occurs. However,

there are many constraint violations during testing using the final

policy in NFWPO. When compared with NFWPO, our approach

achieves better solution quality and runs much faster.

7.2 Bike Sharing System
In BSS experiments, we use the same number of bike stations as

in [22] i.e, 5 stations, but we vary the number of bikes e.g, 100,

150 and 200. We consider the global sum constraint and local max

constraint in BSS environment. The local max is 23, 35 and 47 for

the instance with 100 bikes, 150 bikes and 200 bikes respectively.

We evaluate the final trained policy of all three approaches for

1K episodes. In testing, all three approaches can achieve zero con-

straint violation since the constraints are not complex . However,

our approach KCAC performs better in terms of average return. Fig-

ure 6 shows the learning process by different methods. Our method

provides the best return over both DDPG-QP and NFWPO.

8 CONCLUSION
We have presented a new approach that combined propositional

logic based decision diagrams with action-constrained RL for large

combinatorial action spaces. Key benefits of our approach are that

it can encode complex logical action constraints compactly us-

ing sentential decision diagrams and in the context of RL, always

guaranteed to provide valid actions without using any expensive

projection operation over the constraint space. Empirically, our

approach worked much better than previous methods for differ-

ent resource allocation problems, often providing higher solution

quality and is much faster on challenging instances.
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