
Counterfactual Fairness Filter for
Fair-Delay Multi-Robot Navigation

Hikaru Asano
∗

The University of Tokyo

Tokyo, Japan

asano-hikaru19@g.ecc.u-tokyo.ac.jp

Ryo Yonetani

OMRON SINIC X

Tokyo, Japan

ryo.yonetani@sinicx.com

Mai Nishimura

OMRON SINIC X

Tokyo, Japan

mai.nishimura@sinicx.com

Tadashi Kozuno

OMRON SINIC X

Tokyo, Japan

tadashi.kozuno@sinicx.com

ABSTRACT

Multi-robot navigation is the task of finding trajectories for a team

of robotic agents to reach their destinations as quickly as possi-

ble without collisions. In this work, we introduce a new problem:

fair-delay multi-robot navigation, which aims not only to enable

such efficient, safe travels but also to equalize the travel delays

among agents in terms of actual trajectories as compared to the

best possible trajectories. The learning of a navigation policy to

achieve this objective requires resolving a nontrivial credit assign-

ment problem with robotic agents having continuous action spaces.

Hence, we developed a new algorithm called Navigation with Coun-

terfactual Fairness Filter (NCF2). With NCF2, each agent performs

counterfactual inference on whether it can advance toward its goal

or should stay still to let other agents go. Doing so allows us to effec-

tively address the aforementioned credit assignment problem and

improve fairness regarding travel delays while maintaining high

efficiency and safety. Our extensive experimental results in sev-

eral challenging multi-robot navigation environments demonstrate

the greater effectiveness of NCF2 as compared to state-of-the-art

fairness-aware multi-agent reinforcement learning methods.

Project webpage: https://omron-sinicx.github.io/ncf2/

KEYWORDS

Multi-agent navigation; Multi-agent reinforcement learning; Coun-

terfactual inference

ACM Reference Format:

Hikaru Asano
∗
, Ryo Yonetani, Mai Nishimura, and Tadashi Kozuno. 2023.

Counterfactual Fairness Filter for Fair-Delay Multi-Robot Navigation. In

Proc. of the 22nd International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June 2,
2023, IFAAMAS, 9 pages.

1 INTRODUCTION

Time is equally precious to everyone. Having only certain people

experience delays in services where efficiency is critical would

lead to unfairness. Familiar examples include food delivery and

cab dispatch services: imagine a situation in which your afternoon

∗
Work done during an internship at OMRON SINIC X.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

meeting is about to start, but only the food that you ordered has

not been delivered. Fairness regarding time is also be important in

life-threatening situations, such as disaster relief and evacuation.

We are interested in achieving such temporal fairness among

multiple autonomous mobile robotic agents. In particular, this work

proposes fair-delay multi-robot navigation, in which each robot

must travel to its destination as fairly as possible in terms of tem-

poral delays, e.g., by avoiding a situation where one agent is an

hour late in arriving while the other agents are only 10 minutes late.

In the fields of AI and robotics, multi-robot navigation has long

been studied as a practical application of multi-agent reinforce-

ment learning (MARL) (e.g., [29, 42]) or multi-agent pathfinding

(MAPF) [36]. Typically, each robot must navigate as quickly as pos-

sible to its destination while avoiding collisions with obstacles (e.g.,
walls, shelves) and other robots in motion. Furthermore, the layout

of obstacles may have changed since an environmental map was

first constructed. Even in such unknown environments, the robots

still have to cooperate with each other to reach their destinations

efficiently and safely.

By considering fairness for travel delays on top of such a nav-

igation objective, fair-delay multi-robot navigation can be viewed

as a novel extension of fairness-aware MARL problems for robot

navigation tasks. Specifically, we aim to find navigation policies that
can equalize the delays among agents between their actual trajectories
and the best possible trajectories they could have taken by ignoring the
presence of other agents, while also pursuing high efficiency and safety.

Achievement of the above goal requires solving a challenging

credit assignment problem of evaluating the impact of an agent’s

actions on the success of other agents with continuous action

spaces [44]. In multi-robot navigation, situations that require fair-

ness consideration emerge naturally but unpredictably. An agent

giving way in one place may cause another agent’s travel to become

blocked at another time in another place. For prior fairness-aware

MARLmethods that simply learn fairness through a reward [22, 48],

it would be hard to reason about which actions contribute to fair-

ness. Such reasoning could be possible via counterfactual inference,
which compares actual events to events that did not occur but could

have. Nevertheless, existing counterfactual methods for multi-agent

tasks often assume only discrete action spaces [26, 46], whichmakes

it nontrivial how to define default actions (i.e., replacement actions

for when agents do not take planned actions) for robotic agents

that are typically commanded with continuous values. Furthermore,

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

887

https://omron-sinicx.github.io/ncf2/

CF2 modules Navigation modules ActionsObservations

: high

: as high

: low

(filtered)

(a)

waited to make go

(b) (c) (d) (e)

Patience

Patience message State message
waited to make go

Obstacle

Figure 1: Example of fair-delay multi-robot navigation by NCF2. (a, b) Three agents perform a navigation task while giving way

to equalize their travel delays. (c) To do so, the agents first observe the situations around their current positions and share

their “patience,” which represents how much delay they have experienced so far. (d) The CF2 module processes the patience

information to decide and share whether each agent should move. (e) The agents take their next actions according to the

navigation module.

most counterfactual methods require centralized training with a

global critic evaluating the actions of all agents [11, 26, 37], which

is not feasible as the number of agents increases.

To address this challenge, we propose a decentralized, counter-

factual, multi-robot navigation algorithm called Navigation with

Counterfactual Fairness Filter (NCF2). The key idea is to equip

each agent with a policy comprising a navigation module and a

counterfactual fairness filter (CF2) module. While the navigation

module enables agents to take continuous actions to reach their

destinations efficiently and safely, the CF2 module enables them

to perform counterfactual inference on action choices to improve

fairness. Fig. 1 illustrates a typical case targeted by NCF2. In Fig. 1b,

agent 𝑃𝑖 wants to advance according to its navigation module, while

agent 𝑃𝑘 is trying to cut in along the way. As shown in Fig. 1a, 𝑃𝑖 ’s

travel already involved a delay to make room for another agent 𝑃 𝑗 .

Here, each agent’s CF2 module observes the local situations around

the agent and asks 𝑃𝑘 to suspend its next action and let 𝑃𝑖 go ahead.

By repeatedly resolving such small problems in every local situation,

we can expect to eventually achieve fairness across all agents.

In NCF2, agents learn a shared policy in a decentralized fashion

by communicating with each other as follows. At each timestep,

each agent partially observes the environment around its current

position and creates messages about its ‘patience’. This notion of pa-

tience indicates how much delay an agent has experienced so far in

comparison to the best possible actions it could have taken(Fig. 1c).

An agent’s CF2 module receives the patience information and de-

cides whether agents should move according to the difference in the

patience scores between each agent and its surroundings (Fig. 1d).

The CF2 module outputs are again shared across agents, and the

navigation module determines the actual next action while con-

sidering which agents are allowed to move (Fig. 1e). As a result of

the action, each agent receives a reward for efficiency, safety, and

the counterfactual measurement of fairness. The experience from

this procedure is accumulated over all agents and steps, and it is

used to learn the policy to maximize the cumulative rewards via

a reinforcement learning (RL) algorithm.

To evaluate the effectiveness of our approach, we constructed a

set of challenging, fair-delay, multi-agent navigation environments

involving multiple wheeled robotic agents with a simple but practi-

cal kinematics model and a continuous action space. Our results

show that the policy learned with NCF2 outperforms state-of-the-

art fairness-aware MARL methods [22, 48] in terms of the success

rate, travel time, and degree of fairness.

2 PROBLEM STATEMENT

This section introduces the proposed fair-delay multi-robot naviga-

tion problem step by step. We address a multi-agent setting with

a swarm of 𝑁 robotic agents, 𝑃1, . . . , 𝑃𝑁 , to simulate autonomous

mobile robots in a 2D environment with some static obstacles. We

begin by explaining a simpler case with only a single agent 𝑃𝑖 and

then extend it to the fair-delay multi-robot navigation problem.

Single-Robot Navigation: This problem is formulated as a tuple

Π𝑖 = (S𝑖 ,A𝑖 ,O𝑖 , 𝐼𝑖 ,𝑇𝑖 , 𝑅𝑖 ,Ω𝑖 , 𝑡max), where S𝑖 , A𝑖 , and O𝑖 are the

(individual) state, action, and observation spaces, respectively.
1

Specifically, S𝑖 = SE(2) = R2 × S1
, where SE(2) is the special Eu-

clidean group whose elements represent the robot’s position and

orientation. It comprises a set of invalid states, I𝑖 , and a set of valid
states,V𝑖 . Invalid states are those where the agent is too close to an

obstacle and is considered to be crashing into it, whereas all other

states are valid.
2
At the beginning of an “episode,” a start state 𝑠𝑖

1

and a goal region center 𝑐𝑖 ∈ R2
are sampled from a probability

distribution 𝐼𝑖 overV𝑖 × R2
. A ball (whose radius is environment-

dependent) around 𝑐𝑖 is defined as the goal region, and valid states

whose position belongs to the goal region are called goal states.

The set of all goal states is denoted by 𝑔𝑖 ⊂ V𝑖 . The agent’s aim

is to reach a goal state without entering I𝑖 . At each timestep 𝑡 ,

the agent receives partial information 𝑜𝑖𝑡 = Ω𝑖 (𝑠𝑖𝑡) ∈ O𝑖 about the

environment around its current location, where 𝑠𝑖𝑡 is the current

state. Then, it chooses and executes an action 𝑎𝑖𝑡 ∈ A𝑖 ⊂ R2
, which

entails the robot’s velocity and angular velocity. As a consequence,

the state 𝑠𝑖𝑡 transitions to 𝑠
𝑖
𝑡+1

= 𝑇𝑖 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝑐𝑖), and the agent receives
a reward 𝑟 𝑖𝑡 = 𝑅𝑖 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝑠𝑖𝑡+1

, 𝑐𝑖). When the agent reaches an invalid

or goal state, its next state is the same regardless of any action, i.e.,

1
We omit “individual” when it is clear from context.

2
The definition of a “crash” depends on the environment. All environment-specific

details, such as the definitions of a crash and the goal region, are given in Sec. 4.1.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

888

𝑇𝑖 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝑐𝑖) = 𝑠𝑖𝑡 . Each episode is reset at 𝑡 +1 = 𝑡max. If a trajectory,

𝜏𝑖 = (𝑠𝑖𝑡)
𝑡max

𝑡=1
, ends at a goal state, the trajectory is considered valid.

The length of a valid trajectory is defined as 𝑙𝑖 = min{𝑡 |𝑠𝑖𝑡 ∈ 𝑔𝑖 },
which indicates the travel time. For simplicity, we assume a homo-
geneous setup where Π1 = · · ·Π𝑁 = Π′

. Because this formulation

can be understood as a goal-conditional version [2] of a partially

observable Markov decision process (POMDP) [24], we refer to it

as an individual POMDP (for 𝑃𝑖).

Multi-Robot Navigation: This problem is formulated as a tuple

Π = (𝑁,S,A,O, 𝐼 ,𝑇 , 𝑅,Ω, 𝑡max), where S = ×𝑁
𝑖=1

S𝑖 , A = ×𝑁
𝑖=1

A𝑖 ,

and O = ×𝑁
𝑖=1

O𝑖 are the (joint) state, action, and observation spaces,

respectively.
3 4

While the state space can be partitioned as before

into a set of invalid states, I, and a set of valid states, V , I now

also includes states where an agent is crashing into another agent.

An initial state 𝑠1 = (𝑠𝑖
1
)𝑁
𝑖=1

∈ V , a goal center 𝑐 = (𝑐𝑖)𝑁𝑖=1
∈ (R2)𝑁 ,

and a goal state 𝑔 = (𝑔𝑖)𝑁𝑖=1
∈ V are determined as before.

5
The probability distribution 𝐼 of (𝑠1, 𝑐) is simply chosen to

be consistent with this construction. The aim of the agents in the

swarm is to reach 𝑔 without entering I. At each timestep 𝑡 , the

agents receive an observation 𝑜𝑡 = (𝑜𝑖𝑡)𝑁𝑖=1
= Ω(𝑠𝑡) ∈ O, where

𝑠𝑡 = (𝑠𝑖𝑡)𝑁𝑖=1
∈ S is the current state. Then, the agents exchange mes-

sages, possibly multiple times, to cooperate with each other. Each

message from 𝑃 𝑗 to 𝑃𝑖 at timestep 𝑡 is given by a𝐷-dimensional real-

valued vector𝑚
𝑗→𝑖
𝑡 ∈ R𝐷 . After message exchanges, the agents

choose and execute an action 𝑎𝑡 = (𝑎𝑖𝑡)𝑁𝑖=1
∈ A. As a consequence,

the state 𝑠𝑡 transitions to 𝑠𝑡+1 = (𝑠𝑖
𝑡+1

)𝑁
𝑖=1

= 𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝑐), and the

agents receive a global reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑐). We assume that

𝑠𝑖
𝑡+1

= 𝑇𝑖 (𝑠𝑖𝑡 , 𝑎𝑖𝑡), unless an agent (say 𝑃𝑖) is crashing into another

agent, in which case 𝑠𝑖
𝑡+1

= 𝑠𝑖𝑡 . Each episode is reset at 𝑡 + 1 = 𝑡max.

A trajectory 𝜏 = (𝑠𝑡)𝑡max

𝑡=1
is valid if it ends at a goal state, i.e., if all

agents arrived at their own goal. The length of a valid trajectory

is given by 𝑙 = min{𝑡 |𝑠𝑡 ∈ 𝑔} = max{min{𝑡𝑖 |𝑠𝑖𝑡 ∈ 𝑔𝑖 }} = max{𝑙𝑖 },
where 𝑙𝑖 here is the travel time of 𝑃𝑖 . Note that this trajectory

length is referred to as a makespan in the context of MAPF [36].

This formulation can be viewed as a goal-conditional version of a

decentralized POMDP [14], hereafter simply called a Dec-POMDP.

Cooperative Policy: Given an observation 𝑜𝑖𝑡 ∈ Ω𝑖 and a collec-

tion of messages from neighboring agents, {𝑚 𝑗→𝑖
𝑡 | 𝑗 ∈ N𝑖

𝑡 }, where
the 𝑁 𝑖

𝑡 ⊂ {1, . . . , 𝑁 } are the indices of agents regarded as 𝑃𝑖 ’s neigh-
bors at time 𝑡 , each agent executes an action 𝑎𝑖𝑡 sampled from a

shared cooperative policy 𝜋 (· | 𝑜𝑖𝑡 , 𝑐𝑖 , {𝑚
𝑗→𝑖
𝑡 | 𝑗 ∈ N𝑖

𝑡 }) to move one

step toward the goal 𝑔𝑖 . If 𝜋 is trained properly and is running for

an episode with a start state 𝑠1 = (𝑠𝑖
1
)𝑁
𝑖=1

and a goal state𝑔 = (𝑔𝑖)𝑁𝑖=1
,

then a valid trajectory 𝜏𝜋 with length 𝑙𝜋 = max{𝑙𝜋
𝑖
} is obtained.

DelayMeasurementwith Solitary Policy: For a valid trajectory

𝜏𝜋 , each agent’s goal time 𝑙𝜋
𝑖
can be delayed in comparison to the

case when agents do not have to avoid collisions with each other.

To quantify this delay, we assume that another deterministic policy,

the solitary policy 𝜇 : O𝑖 ×𝑐𝑖 → A𝑖 , is pre-trained for an individual

3
We omit “joint” when it is clear from context.

4
Without loss of generality, we assume that each O𝑖 contains not only observations in

the single-agent case but also the multi-agent case considered here. Indeed, an agent’s

observation is the same in both cases when there are no neighboring agents.

5
To avoid pathological cases, we assume that the goal centers are sufficiently separated

from each other.

POMDP Π𝑖 to ensure safe, efficient actions in the absence of other

agents. By considering the interaction of a single agent 𝑃𝑖 with the

multi-robot environment Π and the solitary policy 𝜇 while freezing

the other agents, we obtain the the best possible trajectory 𝜏
𝜇

𝑖
, with

length 𝑙
𝜇

𝑖
, that 𝑃𝑖 could have taken. (The start and goal states here

are 𝑠𝑖
1
and 𝑔𝑖 , respectively.) Then, the delay for agent 𝑃𝑖 with the

cooperative policy 𝜋 can be calculated as 𝛿𝑖 = 𝑙𝜋
𝑖
− 𝑙

𝜇

𝑖
.

Fair-DelayMulti-RobotNavigation Problem: For a problem in-

stance modeled by a Dec-POMDP Π, the navigation task is regarded
as successful if we can find a valid cooperative trajectory 𝜏𝜋 . By con-

trast, navigation fails if any agent fails to reach its goal within 𝑡max

or collides with a static obstacle, or if any two agents collide with

each other. For a successful task, we define the degree of (un)fairness

in terms of the the variance of delays, i.e., 1

𝑁

∑
𝑖 (𝛿𝑖 − 1

𝑁

∑
𝑗 𝛿 𝑗)2

: the

smaller this variance is, the fairer the solution is. We also measure

the travel (in)efficiency in terms of the valid trajectory length 𝑙𝜋

(i.e., the makespan), where a shorter length is better.

The goal of the proposed fair-delay multi-robot navigation is

to find a cooperative policy that is successful with the highest

probability possible (i.e., the policy achieves a high safety level)

while also making the unfairness and inefficiency scores as low as

possible for the successful instances.

3 NCF2: NAVIGATIONWITH

COUNTERFACTUAL FAIRNESS FILTER

We construct the proposed cooperative policy, hereafter referred to

as the NCF2 policy, via two modules. The navigation module pro-
duces agent actions in a continuous space for travel efficiency and

safety, while the counterfactual fairness filter (CF2) module judges
whether agents should move by considering fairness and efficiency.

The CF2 module’s action is restricted to be binary, which makes it

easy to incorporate counterfactual reasoning while allowing agents

to move with the continuous action space. Below, we first describe

how to generate fairness-aware actions with the NCF2 policy in

Sec. 3.1; we then introduce reward designs to learn the policy in a

decentralized fashion via an RL algorithm in Sec. 3.2.

3.1 Generation of Fairness-Aware Actions

The NCF2 policy generates actions in the following three steps,

with multiple message exchanges between agents (see also Fig. 1).

Step 1: Calculate Patience as Proxy for Delays (Fig. 1c): The

first step is to measure the delay 𝛿𝑖 = 𝑙𝜋
𝑖
− 𝑙

𝜇

𝑖
as defined in Sec. 2.

However, the exact value is unavailable during task execution be-

cause the actual trajectory length 𝑙𝜋
𝑖
is unknown until each agent

arrives at the goal. Instead, we introduce a proxy measurement,

referred to as patience, which indicates how patient an agent has

been in being cooperative (i.e., moving by communicating with

others) rather than solitary (i.e., moving while ignoring others). We

calculate the patience as follows by using the action-value function

of the solitary policy 𝜇 on an individual POMDP Π𝑖 , i.e., 𝑄𝜇 :

𝜌𝑖𝑡 =

𝑡−1∑︁
𝑡 ′=1

(
𝑄𝜇 (𝑜𝑖𝑡 ′ , 𝑎

𝑖
𝑡 ′ , 𝑐𝑖) −𝑄𝜇 (𝑜𝑖𝑡 ′ , 𝑎

𝑖
𝑡 ′ , 𝑐𝑖)

)
, (1)

where 𝑎𝑖
𝑡 ′ = 𝜇 (𝑜𝑖

𝑡 ′ , 𝑐𝑖) and 𝑎𝑖
𝑡 ′ ∼ 𝜋 (· | 𝑜𝑖

𝑡 ′ , 𝑐𝑖 , {𝑚
𝑗→𝑖
𝑡 | 𝑗 ∈ N𝑖

𝑡 ′ })
are the actions produced by the solitary and cooperative policies,

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

889

respectively. Because 𝜇 is trained to enable efficient navigation in

a single-agent environment, as assumed in the previous section,

its action-value function evaluates how promising input actions

are from this perspective. As a small 𝑄𝜇 (𝑜𝑖𝑡 ′ , 𝑎
𝑖
𝑡 ′ , 𝑐𝑖) indicates that

action 𝑎𝑖
𝑡 ′ will not move the agent efficiently toward the goal, a

large 𝜌𝑖𝑡 implies that the delay will be as large.

Step 2: Process Patience with CF2 Module (Fig. 1d): The pa-

tience is included in a message that is shared among the agents and

used in the CF2 module to judge whether each agent should really

move. We define this message, hereafter referred to as a patience
message, as follows:

𝑒
𝑗→𝑖
𝑡 =

©«Δ(𝑠 𝑗𝑡 , 𝑠𝑖𝑡);
𝜌
𝑗
𝑡 − 𝜌𝑖𝑡∑
𝑗∈N𝑖

𝑗
𝜌
𝑗
𝑡

;Δ(𝑠 𝑗
𝑡+1

, 𝑠𝑖𝑡);
𝜌
𝑗
𝑡 − 𝜌𝑖𝑡∑
𝑗∈N𝑖

𝑗
𝜌
𝑗
𝑡

ª®¬ . (2)

Here, Δ(𝑎, 𝑏);𝑎, 𝑏 ∈ S𝑖 is the relative position of state 𝑎 with respect
to 𝑏, 𝑠𝑖

𝑡+1
is the next state sampled from an individual (i.e., single-

agent) POMDP Π′
with action 𝑎𝑖𝑡 , and (𝑢; 𝑣) is a vector obtained

by vertically concatenating column vectors 𝑢 and 𝑣 . Intuitively,

a patience message expresses where each agent is and where it

would go if it were allowed to ignore other agents, given the cur-

rent relative patience. We model the CF2 module as a sub-policy

𝜓 (· | 𝑜𝑖𝑡 , 𝑐𝑖 , {𝑒
𝑗→𝑖
𝑡 | 𝑗 ∈ N𝑖

𝑡 }), which provides a binary decision

𝑓 𝑖𝑡 ∈ {0, 1} based on the current observation and patience messages.

Once learned properly, it gives 𝑓 𝑖𝑡 = 1 to allow agents that have

been sufficiently patient to move, and it acts like a message filter

in the next step.

Step 3: Decide Next Actions (Fig. 1e): Given the output 𝑓 𝑖𝑡 from

the CF2 module, we define a state message as follows:

𝑚
𝑗→𝑖
𝑡 =

(
𝑓
𝑗
𝑡 Δ(𝑠

𝑗
𝑡 , 𝑠

𝑖
𝑡); 𝑓

𝑗
𝑡 Δ(𝑠

𝑗

𝑡+1
, 𝑠𝑖𝑡)

)
, (3)

which represents the relative state of agent 𝑃 𝑗 with respect to 𝑃𝑖 if 𝑃 𝑗

is allowed to move (i.e., 𝑓 𝑗𝑡 = 1) or contains all-zeros otherwise. This

message is again exchanged among the agents, and used to generate

each agent’s the next action. The navigation module 𝜙 is modeled

as another sub-policy to sample a continuous action 𝑎𝑖𝑡 from an

observation 𝑜𝑖𝑡 and state messages {𝑚 𝑗→𝑖
𝑡 | 𝑗 ∈ N𝑖

𝑡 }. The sampling

is filtered by 𝑓 𝑖𝑡 to stop agents that are not allowed to move:

𝑎𝑖𝑡 = 𝑓 𝑖𝑡 · 𝜈, 𝜈 ∼ 𝜙

(
· | 𝑜𝑖𝑡 , 𝑐𝑖 ,

{
𝑚

𝑗→𝑖
𝑡 | 𝑗 ∈ N𝑖

𝑡

})
. (4)

Encoding Messages: In the above action generation procedure,

collections of messages {𝑒 𝑗→𝑖
𝑡 | 𝑗 ∈ N𝑖

𝑡 } and {𝑚 𝑗→𝑖
𝑡 | 𝑗 ∈ N𝑖

𝑡 } are
each encoded into a single fixed-length vector representation via

the scaled dot-product attention mechanism [41] (see Appendix B.1

for more details). This is an effective approach for handling sets

with variable numbers of messages in multi-agent modeling [8].

3.2 Decentralized Learning of NCF2 Policy

The NCF2 policy is learned in a decentralized fashion to ensure

scalability for the number of agents. Specifically, to improve the

fairness regarding delays while maintaining navigation efficiency

and safety, we design a local reward 𝑟 𝑖𝑡 that is given to each agent,

instead of explicitly designing a global reward function 𝑅 for the

Dec-POMDP Π.

Crucially, the navigation and CF2 modules each act as sub-

policies that pursue different objectives, and thus, they should be

evaluated differently. To this end, we use the hybrid reward ar-

chitecture [40] and define the local reward 𝑟 𝑖𝑡 as the sum of two

rewards: an efficiency-safety reward and a fairness-efficiency reward.
As explained below, they are given separately to the two modules.

Efficiency-Safety Reward: The navigation module is trained

with the following reward:

𝑟 𝑖𝑡 =

𝑟

goal
− 𝑟time upon reaching the goal

−𝑟
crash

− 𝑟time if crashing into an obstacle or another agent

0 after reaching the goal or crashing

−𝑟time otherwise.

(5)

Here, 𝑟
goal

> 0 and 𝑟
crash

> 0 are respectively the goal reward and

crash penalty given sparsely, and 𝑟time > 0 is a time penalty to

encourage agents to reach the goal in the shortest possible time.

Fairness-Efficiency Reward: On the other hand, the CF2 module

is given a counterfactual reward to improve fairness while maintain-

ing efficiency. We consider the most cooperative action that could

happen if all agents were allowed to move by their CF2 modules as

a default action, i.e., a replacement for the planned action:

𝑎𝑖𝑡 ∼ 𝜙

(
· | 𝑜𝑖𝑡 , 𝑐𝑖 ,

{(
Δ(𝑠 𝑗𝑡 , 𝑠

𝑖
𝑡),Δ(𝑠

𝑗

𝑡+1
, 𝑠𝑖𝑡)

)
| 𝑗 ∈ N𝑖

𝑡

})
. (6)

This enables us to define the improvement for an actual action 𝑎𝑖𝑡
by applying the action-value function of the solitary policy 𝑄𝜇 to

an individual POMDP Π𝑖 as follows:

𝜉𝑖𝑡 = 𝑄𝜇 (𝑜𝑖𝑡 , 𝑎𝑖𝑡 , 𝑐𝑖) −𝑄𝜇 (𝑜𝑖𝑡 , 𝑎𝑖𝑡 , 𝑐𝑖) . (7)

Similarly to how the patience 𝜌𝑖𝑡 is characterized by 𝑄𝜇 in Eq. (1),

this improvement 𝜉𝑖𝑡 indicates how much better the actual action

𝑎𝑖𝑡 has become compared to the default action, by preventing some

agents from moving via𝑚
𝑗→𝑖
𝑡 in Eq. (4). It is then aggregated across

neighboring agents, while being weighted by the relative patience,

𝜌
𝑗
𝑡 − 𝜌𝑖𝑡 , to form a sparse fairness-efficiency reward that is given

when a CF2 module takes 𝑓 𝑖𝑡 = 0:

𝑟 𝑖𝑡 = (1 − 𝑓 𝑖𝑡)
©«𝛼

∑
𝑗∈N𝑖

𝑡
(𝜌 𝑗𝑡 − 𝜌𝑖𝑡) · 𝜉

𝑗
𝑡∑

𝑗∈N𝑖
𝑗
𝜌
𝑗
𝑡

− 𝛽
𝜌𝑖𝑡∑

𝑗∈N𝑖
𝑗
𝜌
𝑗
𝑡

ª®¬ . (8)

Intuitively, this reward becomes higher for agents that decide to

stop when their surrounding agents have been more patient and

also can improve their action values by moving. The second term is

a penalty to prevent excessive encouragement of agents to stop and

sacrifice efficiency. Here, 𝛼, 𝛽 are user-specified constants to control

the balance between fairness and efficiency. Further analysis of this

reward design is presented in Appendix A.

4 EXPERIMENTS

4.1 Environments

Our work targets multi-robot navigation tasks in which robotic

agents with practical kinematics move in a 2D environment with

some static obstacles. This kind of task requires a new multi-agent

environment that is completely different from previous ones that

only support discrete movements on a grid map, as what was used

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

890

in [22]. To this end, we extend a multi-agent path planning envi-

ronment [31, 45] with crowd-aware single-robot navigation [5] to

construct environments with the following features.

Agent Design: Each agent simulates a wheeled robot equipped

with a simulated lidar sensor. The sensor perceives the distances

to surrounding obstacles and other agents at equal-angle inter-

vals with a maximum scan range of 0.1 × map-size to obtain 64-

dimensional scan data. The robot is modeled as a circle of fixed

size (0.02 × map-size), and we determine that a collision occurs

if an obstacle or another agent enters the circle. The agent can

exchange messages with other agents within a range of 0.15 ×
map-size. Finally, an agent’s motion follows a non-holonomic

kinematics model that is characterized by a maximum velocity

(0.05 × map-size/timestep) and a maximum angular velocity

(0.25𝜋/timestep). The agent accepts continuous-valued velocity

and angular velocity commands to move forward.

Environment Design: The environment is a map of size 128×128

(i.e., map-size = 128) and includes static circular obstacles. In our

experiments, the goal radius was set to 0.02 × map-size, and the

time limit was set to 𝑡max = 100. As shown in Fig. 2, we constructed

the following four environments:

• Uniform-𝑁 -25 comprised 𝑁 ∈ {8, 12, 16} agents with start

and goal positions sampled uniformly in the environment. It

included 25 circular obstacles of random size ([0.05, 0.08] ×
map-size) and location.

• Corner-𝑁 -25 also comprised 𝑁 agents and 25 random cir-

cular obstacles, but the agent’s start positions were sampled

randomly from the four corner regions, and the goal posi-

tions were diagonally opposite the starts. This environment

requires agents to give way to each other in the center, thus

giving a more challenging case than Uniform-𝑁 -25.

• Uniform-𝑁 -50 and Corner-𝑁 -50 increased the number

of random obstacles from 25 to 50, making the navigation

task more difficult.

4.2 Implementation Overview

Because of space limitations, we give only a brief overview of the

implementation here. Further details are described in Appendix B.

Navigation Module: We constructed the navigation module by

extending a state-of-the-art RL-based navigation algorithm called

residual reactive navigation [32], which is an application of residual

RL [23, 35] to navigation tasks. Specifically, we used the classical

dynamic window approach (DWA) [12] as a base controller, and we

then applied learning of a residual policy given by a multi-layer per-

ceptron (MLP), which added residual actions to DWA’s outputs. An

observation of this module, 𝑜𝑖𝑡 , comprised the current state, a lidar

scan as described in Sec. 4.1, the relative displacement of the goal

position with respect to the current position, and the DWA output.

CF2 Module: The CF2 module was also modeled by a standard

MLP but had a binary output given by the softmax activation. An

observation was the same as for the navigation module.

Solitary Policy: The solitary policy had the same form as that

of the navigation module, but without taking messages from other

agents as input.

Reward: The reward and penalty values for the safety-efficiency

reward in Eq. (5) were 𝑟
goal

= 3.0, 𝑟
crash

= 10.0, and 𝑟time = 0.1, such

that crashes were penalized more than timeouts. The constants 𝛼, 𝛽

in the fairness-efficiency reward in Eq. (8) were set empirically to

𝛼 = 0.5, 𝛽 = 0.1, where 𝛼 was selected from 𝛼 ∈ [0.1, 5] in our pilot

experiment.

Learning Algorithm: We used soft actor-critic (SAC) [16, 17]

as the RL algorithm to achieve high sample efficiency and learn-

ing stability. Crucially, our implementation adopted the distributed

experience-generating strategy of Ape-X [19] to achieve high data

throughput, whichwe found effective for alleviating the non-stationarity

of gathered experiences in off-policy MARL. To learn the NCF2

policy, we first warmed up the navigation module by itself for 1M

iterations and then conducted learning by both modules for 1M

iterations. This allowed the CF2 module to make a valid decision to

pursue fairness by leveraging the safety and efficiency provided by

the trained navigation module. The solitary policy was trained for

1M iterations by limiting the number of agents to one in the learn-

ing environment. All experiments were conducted with a single

GPU (NVIDIA V100) and a single CPU (Intel Xeon Gold 6252).

4.3 Baselines

We used the following state-of-the-art fairness-aware MARL meth-

ods as baselines.

• Fair-Efficient Network (FEN) [22] is a hierarchical MARL

algorithm that simultaneously learns fairness and efficiency.

FEN comprises a controller and multiple sub-polices, where

the controller first selects a sub-policy and then the selected

sub-policy outputs an action. While one of the sub-policies

is learned with an efficiency-safety reward 𝑟 𝑖𝑡 as defined in

Eq. (5), the remaining sub-policies receive the log-probability

of being selected by the controller as a reward. Furthermore,

the average reward over the elapsed timesteps is calculated

as a utility, and to pursue fairness, the controller is learned

to minimize the difference between its own utility and the

average utilities of all agents.

• Self-Oriented Team-Oriented Network (SOTO) [48] is

another hierarchical algorithm, which seeks to maximize the

generalized Gini social welfare function (GGF) to simulta-

neously quantify efficiency and fairness. SOTO learns two

policies: a self-oriented policy and a team-oriented policy.

The self-oriented policy first samples an action, which is

then used as an input to the team-oriented policy to sam-

ple a cooperative action. While the self-oriented policy is

learned from the efficiency-safety reward, the team-oriented

policy receives as a reward comprising the weighted sum

of the other agent’s cumulative rewards to maximize the

GGF. Here, the weights are determined such that agents

with larger cumulative rewards are given smaller values.

Note that in our initial study, we realized that direct adaptations

of the above methods did not solve our navigation tasks at all. To

mitigate this problem, we extended these methods by (1) replacing

the base RL algorithm from proximal policy optimization (PPO) [33]

with our SAC implementation to achieve high data throughput; (2)

limiting each agent’s communication to a few agents in its vicinity;

and (3) using the warmed-up navigation module as one of these

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

891

Un
ifo

rm
-8

-2
5

Problem FEN SOTO Nav Only NCF2 (Ours)
Un

ifo
rm

-1
6-

25
Un

ifo
rm

-1
6-

50
Co

rn
er

-1
2-

25
Co

rn
er

-1
6-

50

Figure 2: Qualitative comparisons of the methods and environments (best viewed in color). Start positions and goal centers are

represented by filled andwhite circles, respectively, with different colors for different agents. The histories of the agent positions

are indicated by small circles connected by line segments. For the case of NCF2, moments when the CF2 module decided to stop

an agent are annotated by gray circles. Collisions and timeouts are shown by gray crosses and triangles respectively. The black

circles are obstacles.

methods’ sub-policies. For another baseline, we used a degraded

version of our approach, referred to as Nav-Only, which used only

the trained navigation module to control the agents. To make the

experiment fair, the hyperparameters of the RL algorithm were

identical to those of the proposed method. The number of training

iterations was doubled for Nav-Only to compensate for the warm-

ups of the other methods.

4.4 Evaluation Metrics

For each method, a cooperative policy was learned five times with

different random seeds, and we evaluated each learned policy on a

set of 100 new episodes. The following metrics were calculated and

averaged over all episodes to measure the fairness, efficiency, and

safety of multi-robot navigation by each method.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

892

• Success Rate (SR) measures the proportion of successful

evaluation episodes, which indicates a method’s safety.

• Makespan (MS) is the length of a valid trajectory 𝑙𝜋 for

successful episodes, which indicates a method’s efficiency.

• Variance of Delays (VD) is our fairness indicator that

was introduced in Sec. 2. It is calculated for each success-

ful episode as the variance of the differences between the

lengths of a cooperative trajectory 𝑙𝜋
𝑖
and the best possible

trajectory 𝜏
𝜇

𝑖
obtained by the solitary policy.

• Maximum Delay (MAXD) and Mean Delay (MEAND)

are themaximum andmean delay for each successful episode,

thus giving another set of efficiency metrics.

4.5 Results

Quantitative Results: Tab. 1 summarizes the quantitative com-

parison results. Overall, the proposed NCF2 performed well on

every metric. In contrast, for challenging environments with 50

obstacles and more than 12 agents, it was hard or almost impossible

for the baseline methods to successfully complete the navigation

tasks. For SOTO, this was possibly because it is difficult to resolve a

credit assignment problem by learning a team-oriented sub-policy

just to balance the cumulative rewards among neighboring agents.

FEN could perform better than SOTO and was sometimes com-

parable to or better than NCF2 in terms of the MS, VD, MAXD,

and MEAND scores. Nevertheless, its SR scores were quite lim-

ited as the numbers of agents and obstacles both increased; that

is, fair-delay navigation was possible only in a limited number of

successful episodes. For FEN, we also observed many situations in

which only the efficiency-oriented sub-policy was selected by the

controller, rather than other sub-policies that would have allowed

agents to give way to each other, thus limiting the SR. Nav-Only,

the degraded version of NCF2, demonstrated comparable success

rates in environments that were not very difficult (e.g., Uniform-8-
25, Uniform-12-25, Uniform-16-25, Corner-8-25, Corner-16-25).

Nevertheless, its VD scores were worse than those of NCF2, espe-

cially in Corner environments, because of the lack of a mechanism

to maintain fairness regarding delays. Interestingly, in difficult envi-

ronments with 50 obstacles, NCF2 could succeed in more episodes

than Nav-Only, apart from the fairness. This was because the NCF2

policy gave agents a wider choice of actions, including “staying still,”

and allowed the agents to consider the actions of selected agents

who will move in the next step. On the other hand, the Nav-Only

agents had to consider the actions of all neighboring agents. This

limited the options for the Nav-Only agents’ next actions and could

result in collisions or timeouts in congested environments.

Qualitative Results: Fig. 2 shows some visual examples of solu-

tions by each method. For NCF2, agents could stop properly when

another agent was moving just ahead of them, as indicated by gray

circles on their trajectories. On the other hand, agents tended to get

stuck (gray triangles) or even collided with other obstacles (gray

crosses) with the other baselines.

Ablation Study: We additionally evaluated the following de-

graded versions of NCF2 in the Corner-12-25 environment to

demonstrate the importance of each component: (i) w/o improve-

ments, which used 𝜉
𝑗
𝑡 = 1 for all 𝑗 and 𝑡 in Eq. (8) to disable

the counterfactual reasoning; (ii) w/o limited communications,

which usedN𝑖
𝑡 = {1, . . . , 𝑁 } for all 𝑖 and 𝑡 to examine how allowing

message exchanges beyond an agent’s proximity affected the per-

formance; and (iii) fixed priority, to examine how the performance

changed if the patience was given deterministically as 𝜌𝑖𝑡 = 𝑖 − 1

rather than by considering an agent’s actual patience. As listed in

Tab. 2, each of these versions showed decreased performance as

compared to the proposed method. While the MEAND (mean of de-

lays) did not differ among the methods, the VD (variance of delays)

showed a considerable gap. This result indicates that the counterfac-

tual reasoning, limited communication, and use of patience scores

for improved fairness regarding delays were all important.

Failure Cases and Limitations: Although NCF2 worked well

in many cases, our work has several limitations. We found that the

NCF2 policy sometimes failed to resolve situations when agents

were crowded into a small area. This was because the actions to

avoid collisions are inherently limited in highly congested envi-

ronments, thus making it difficult to expand other agents’ action

choices simply by taking cooperative actions and improving the fair-

ness. A possible way to mitigate such problems in congested envi-

ronments would be to incorporate global planning that searches the

environment for low-cost, feasible paths. This approach can address

the myopia of local planning and make it possible to actively bypass

congested areas. Finally, while we assumed the state transitions and

agent observations to be deterministic, they are stochastic in prac-

tice because of various noise sources [38]. Extensions of our work to

stochastic environments would be an interesting future direction.

5 RELATEDWORK

Fairness has been actively studied in MARL. Typical tasks include

job scheduling, the Matthew effect, traffic control, and so on in a

cooperative setting [22, 34, 48], and fair resource allocation [7, 9, 47]

and social dilemmas [20, 21, 25] in a mixed setting. More recently,

the application of prediction-based fairness [4, 6] was studied in

a multi-agent setting [15]. Two prior studies that provided base-

lines in our experiments [22, 48] especially addressed the tradeoff

between fairness and efficiency. Nevertheless, these methods have

limitations in resolving complex credit assignment problems to im-

prove fairness while maintaining navigation safety and efficiency,

as demonstrated in the experiments.

On the other hand, the notion of counterfactuals has recently at-

tracted much attention as a powerful tool to address complex multi-

agent credit assignment problems. Since a pioneeringwork [11] that

used counterfactuals to compute the baseline for the actor-critic

algorithm, more recent works have extended counterfactuals with

a graph convolution communication [37], Shapley counterfactual

credits [26], and simulation reasoning for fully-decentralized coun-

terfactual MARL [46]. However, all these methods have been found

effective only in discrete action spaces. For some methods, the speci-

fication of default actions is nontrivial in a continuous space [26, 46].

Moreover, all but the last one [46] require a centralized critic and

have limited scalability with respect to the number of agents.

Finally, multi-robot navigation is a popular task in the robot-

ics community. It has been addressed analytically [1, 3, 39], via

MAPF [18, 27, 30], or via machine learning including MARL [10, 13,

28, 43], to name a few approaches. In any case, the main challenges

in these studies have been successful collision avoidance for safety

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

893

Table 1: Quantitative results. SR: success rate (↑); MS: makespan (↓); VD: variance of delays (↓); MAXD: maximum delay (↓);
MEAND: mean delay (↓). Each SR score is the average over five trials for 100 episodes with different random seeds, while the

other scores are the averages over the successful episodes among them.

Uniform-8-25 Uniform-12-25 Uniform-16-25

SR MS VD MAXD MEAND SR MS VD MAXD MEAND SR MS VD MAXD MEAND

FEN [22] 95.4 22.2 10.5 5.11 1.26 37.0 27.2 15.8 8.77 2.46 17.0 32.0 25.5 13.1 3.42

SOTO [48] 17.4 50.5 185 33 9.36 0.80 44.2 78.5 27.8 9.31 0 N/A N/A N/A N/A

Nav-Only 98.6 22.3 13.3 4.85 1.26 93.0 26.1 13.1 7.52 1.74 75.8 30.9 20.9 11.5 2.86

NCF2 (Ours) 98.0 22.2 5.63 4.51 1.25 92.6 26.7 10.0 7.29 1.89 77.8 32.1 22.0 12.3 3.02

Uniform-8-50 Uniform-12-50 Uniform-16-50

SR MS VD MAXD MEAND SR MS VD MAXD MEAND SR MS VD MAXD MEAND

FEN [22] 63.4 31.6 28.9 11.3 3.18 26.4 40.1 68.4 18.8 4.79 0 N/A N/A N/A N/A

SOTO [48] 3.20 78.1 500 60.5 23.1 0 N/A N/A N/A N/A 0 N/A N/A N/A N/A

Nav-Only 89.4 29.6 21.1 8.64 2.40 65.4 38.0 54.6 16.9 4.37 30.8 50.1 101 28.1 6.39

NCF2 (Ours) 91.7 30.3 24.1 9.34 2.64 71.4 38.2 47.0 17.2 4.36 40.8 48.3 85.8 26.1 6.55

Corner-8-25 Corner-12-25 Corner-16-25

SR MS VD MAXD MEAND SR MS VD MAXD MEAND SR MS VD MAXD MEAND

FEN [22] 73.8 34.8 37.8 14.9 5.84 29.6 48.4 73.9 28.0 15.6 8.80 77.6 283 57.7 35.3

SOTO [48] 17.2 63 140 42.8 24.4 0 N/A N/A N/A N/A 0 N/A N/A N/A N/A

Nav-Only 91.4 42.2 85.5 23.3 14.5 77.6 58.9 133.9 39.6 25.2 52.0 64.4 170 44.3 24.5

NCF2 (Ours) 93.8 43.7 85.0 24.8 15.7 86.4 50.7 74.6 31.0 19.5 49.6 55.5 101 35.1 18.5

Corner-8-50 Corner-12-50 Corner-16-50

SR MS VD MAXD MEAND SR MS VD MAXD MEAND SR MS VD MAXD MEAND

FEN [22] 44.4 45.3 64.2 21.8 10.2 8.00 79.9 359 59.2 30.7 0 N/A N/A N/A N/A

SOTO [48] 0 N/A N/A N/A N/A 0 N/A N/A N/A N/A 0 N/A N/A N/A N/A

Nav-Only 54.4 68.0 285 46.8 29.4 20.8 78.2 323 57.1 33.2 4.00 82.6 325 61.3 33.0

NCF2 (Ours) 70.6 66.7 271 45.5 28.1 40.4 76.3 288 54.6 32.6 9.20 79.1 273 56.6 31.1

Table 2: Ablation study. (i) w/o improvements: 𝜉
𝑗
𝑡 = 1 to

disable counterfactual reasoning. (ii) w/o limited comm.:

N𝑖
𝑡 = {1, . . . , 𝑁 } to enforce agents to exchange messages with

all other agents. (iii) fixed priority: 𝜌𝑖𝑡 = 𝑖 − 1 to avoid using

patience scores.

SR MS VD MAXD MEAND

(i) w/o improvements 84.0 58.0 99.5 36.8 20.4

(ii) w/o limited comm. 79.2 55.3 113 34.9 19.6

(iii) fixed priority 62.8 50.3 86.4 30.9 16.4

NCF2 86.4 50.7 74.6 31.0 19.5

and improvement in the trade-off between safety and efficiency,

without considering how to achieve fairness as well.

6 CONCLUSION

We have introduced fair-delay multi-robot navigation, a novel ex-

tension of fairness-aware MARL, with the objective of finding a

set of trajectories for a team of agents. The trajectories should be

collision-free, short, and as fair as possible in terms of temporal

delays as compared to the respective shortest possible trajectories

when ignoring the presence of other agents. To address this problem,

we proposed a new navigation algorithm, called NCF2, that enables

counterfactual inference on whether each agent should move or

stay still to improve the fairness regarding delays while maintaining

travel efficiency and safety. In terms of those criteria, the proposed

method outperformed state-of-the-art fairness-aware MARL meth-

ods in challenging multi-robot navigation environments.

REFERENCES

[1] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Paul Beardsley, and

Roland Siegwart. 2013. Optimal reciprocal collision avoidance for multiple non-

holonomic robots. In Distributed autonomous robotic systems. Springer, 203–216.
[2] Marcin Andrychowicz, FilipWolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter

Welinder, BobMcGrew, Josh Tobin, OpenAI Pieter Abbeel, andWojciech Zaremba.

2017. Hindsight experience replay. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS). 5055–5065.

[3] Daman Bareiss and Jur Van den Berg. 2015. Generalized reciprocal collision

avoidance. International Journal of Robotics Research (IJRR) 34, 12 (2015), 1501–
1514.

[4] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accuracy

disparities in commercial gender classification. In Proceedings of the Conference
on Fairness, Accountability and Transparency. 77–91.

[5] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. 2019. Crowd-

robot interaction: Crowd-aware robot navigation with attention-based deep

reinforcement learning. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). 6015–6022.

[6] Sam Corbett-Davies and Sharad Goel. 2018. The measure and mismeasure of

fairness: A critical review of fair machine learning. arXiv preprint arXiv:1808.00023

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

894

(2018).

[7] Alexander D’Amour, Hansa Srinivasan, James Atwood, Pallavi Baljekar, David

Sculley, and Yoni Halpern. 2020. Fairness is not static: deeper understanding

of long term fairness via simulation studies. In Proceedings of the Conference on
Fairness, Accountability, and Transparency. 525–534.

[8] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike

Rabbat, and Joelle Pineau. 2019. Tarmac: Targeted multi-agent communication.

In Proceedings of the International Conference on Machine Learning (ICML). 1538–
1546.

[9] Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael Kearns, Seth Neel, Aaron

Roth, and Zachary Schutzman. 2019. Fair algorithms for learning in alloca-

tion problems. In Proceedings of the Conference on Fairness, Accountability, and
Transparency. 170–179.

[10] Tingxiang Fan, Pinxin Long,Wenxi Liu, and Jia Pan. 2020. Distributed multi-robot

collision avoidance via deep reinforcement learning for navigation in complex

scenarios. International Journal of Robotics Research (IJRR) 39, 7 (2020), 856–892.
[11] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-

mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedngs
of the AAAI Conference on Artificial Intelligence (AAAI). 2974–2982.

[12] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. 1997. The dynamic window

approach to collision avoidance. IEEE Robotics & Automation Magazine 4, 1 (1997),
23–33.

[13] Julio Erasmo Godoy, Ioannis Karamouzas, Stephen J Guy, and Maria Gini. 2016.

Implicit coordination in crowded multi-agent navigation. In Proceedngs of the
AAAI Conference on Artificial Intelligence (AAAI). 2487–2493.

[14] Claudia V Goldman and Shlomo Zilberstein. 2004. Decentralized control of

cooperative systems: Categorization and complexity analysis. Journal of Artificial
Intelligence Research (JAIR 22 (2004), 143–174.

[15] Niko A Grupen, Bart Selman, and Daniel D Lee. 2022. Cooperative multi-agent

fairness and equivariant policies. In Proceedngs of the AAAI Conference on Artificial
Intelligence (AAAI). 9350–9359.

[16] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. In Proceedings of the International Conference onMachine Learning
(ICML). 1861–1870.

[17] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon

Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. 2018.

Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905
(2018).

[18] Wolfgang Hönig, James A Preiss, TK Satish Kumar, Gaurav S Sukhatme, and Nora

Ayanian. 2018. Trajectory planning for quadrotor swarms. IEEE Transactions on
Robotics (T-RO) 34, 4 (2018), 856–869.

[19] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,

Hado van Hasselt, and David Silver. 2018. Distributed prioritized experience re-

play. In Proceedings of the International Conference on Learning and Representation
(ICLR).

[20] Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls, Edgar Dueñez-

Guzman, Antonio García Castañeda, Iain Dunning, Tina Zhu, Kevin McKee,

Raphael Koster, et al. 2018. Inequity aversion improves cooperation in intertempo-

ral social dilemmas. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS). 3330–3340.

[21] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro

Ortega, DJ Strouse, Joel Z Leibo, and Nando De Freitas. 2019. Social influence as

intrinsic motivation for multi-agent deep reinforcement learning. In Proceedings
of the International Conference on Machine Learning (ICML). 3040–3049.

[22] Jiechuan Jiang and Zongqing Lu. 2019. Learning fairness in multi-agent systems.

In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS). 13854–13865.

[23] Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar,

Matthias Loskyll, Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. 2019.

Residual reinforcement learning for robot control. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). 6023–6029.

[24] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Plan-

ning and acting in partially observable stochastic domains. Artificial Intelligence
101, 1 (1998), 99–134.

[25] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Grae-

pel. 2017. Multi-agent reinforcement learning in sequential social dilemmas.

In Proceedings of the International Joint Conference on Autonomous Agents &
Multiagent Systems (AAMAS). 464–473.

[26] Jiahui Li, Kun Kuang, Baoxiang Wang, Furui Liu, Long Chen, Fei Wu, and Jun

Xiao. 2021. Shapley counterfactual credits for multi-agent reinforcement learning.

In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data
Mining (KDD). 934–942.

[27] Jiaoyang Li, Pavel Surynek, Ariel Felner, Hang Ma, TK Satish Kumar, and Sven

Koenig. 2019. Multi-agent path finding for large agents. In Proceedngs of the
AAAI Conference on Artificial Intelligence (AAAI). 7627–7634.

[28] Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan.

2018. Towards optimally decentralized multi-robot collision avoidance via deep

reinforcement learning. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). 6252–6259.

[29] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive

environments. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS). 6382–6393.

[30] Carlos E Luis, Marijan Vukosavljev, and Angela P Schoellig. 2020. Online trajec-

tory generation with distributed model predictive control for multi-robot motion

planning. IEEE Robotics and Automation Letters (RA-L) 5, 2 (2020), 604–611.
[31] Keisuke Okumura, Ryo Yonetani, Mai Nishimura, and Asako Kanezaki. 2022.

Ctrms: Learning to construct cooperative timed roadmaps for multi-agent path

planning in continuous spaces. In Proceedings of the International Joint Conference
on Autonomous Agents & Multiagent Systems (AAMAS). 972–981.

[32] Krishan Rana, Ben Talbot, Vibhavari Dasagi, Michael Milford, and Niko Sün-

derhauf. 2020. Residual reactive navigation: Combining classical and learned

navigation strategies for deployment in unknown environments. In Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA).
11493–11499.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[34] Umer Siddique, Paul Weng, and Matthieu Zimmer. 2020. Learning fair policies

in multi-objective (deep) reinforcement learning with average and discounted

rewards. In Proceedings of the International Conference on Machine Learning
(ICML). 8905–8915.

[35] Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. 2018. Residual

policy learning. arXiv preprint arXiv:1812.06298 (2018).
[36] Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Satish Kumar, et al. 2019.

Multi-agent pathfinding: Definitions, variants, and benchmarks. In Proceedings
of the International Symposium on Combinatorial Search (SoCS). 151–158.

[37] Jianyu Su, Stephen Adams, and Peter A Beling. 2020. Counterfactual multi-agent

reinforcement learning with graph convolution communication. arXiv preprint
arXiv:2004.00470 (2020).

[38] Sebastian Thrun. 2002. Probabilistic robotics. Commun. ACM 45, 3 (2002), 52–57.

[39] Jur Van den Berg, Ming Lin, and DineshManocha. 2008. Reciprocal velocity obsta-

cles for real-time multi-agent navigation. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). 1928–1935.

[40] Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes,

and Jeffrey Tsang. 2017. Hybrid reward architecture for reinforcement learning.

In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS). 5398–5408.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS). 6000–6010.

[42] Rose E Wang, J Chase Kew, Dennis Lee, Tsang-Wei Edward Lee, Tingnan Zhang,

Brian Ichter, Jie Tan, and Aleksandra Faust. 2020. Model-based reinforcement

learning for decentralized multiagent rendezvous. In Proceedings of the Conference
on Robot Learning (CoRL), Vol. 155. 711–725.

[43] Pei Xu and Ioannis Karamouzas. 2021. Human-inspired multi-agent naviga-

tion using knowledge distillation. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 8105–8112.

[44] Jiachen Yang, Alireza Nakhaei, David Isele, Kikuo Fujimura, and Hongyuan Zha.

2020. CM3: CooperativeMulti-goal Multi-stageMulti-agent Reinforcement Learn-

ing. In Proceedings of the International Conference on Learning and Representation
(ICLR).

[45] Ryo Yonetani and Keisuke Okumura. 2022. JAXMAPP: Jax-based library for

multi-agent path planning in continuous spaces. https://github.com/omron-

sinicx/jaxmapp

[46] Yuyu Yuan, Pengqian Zhao, Ting Guo, and Hongpu Jiang. 2022. Counterfactual-

based action evaluation algorithm in multi-agent reinforcement learning. Applied
Sciences 12, 7 (2022), 3439.

[47] Chongjie Zhang and Julie A Shah. 2014. Fairness in multi-agent sequential

decision-making. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS), Vol. 2. 2636–2644.

[48] Matthieu Zimmer, Claire Glanois, Umer Siddique, and Paul Weng. 2021. Learning

fair policies in decentralized cooperative multi-agent reinforcement learning. In

Proceedings of the International Conference on Machine Learning (ICML). 12967–
12978.

Session 3B: Multiagent Path Finding

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

895

https://github.com/omron-sinicx/jaxmapp
https://github.com/omron-sinicx/jaxmapp

	Abstract
	1 Introduction
	2 Problem Statement
	3 NCF2: Navigation with Counterfactual Fairness Filter
	3.1 Generation of Fairness-Aware Actions
	3.2 Decentralized Learning of NCF2 Policy

	4 Experiments
	4.1 Environments
	4.2 Implementation Overview
	4.3 Baselines
	4.4 Evaluation Metrics
	4.5 Results

	5 Related Work
	6 Conclusion
	References

