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ABSTRACT
We consider probabilistic allocation of indivisible items to agents

with additive valuations and weighted entitlements. We explore

how far ex-ante and ex-post fairness properties can be achieved si-

multaneously. Our first result is that in contrast to the case of same

entitlements, well-established adaptations of ex-ante envy-freeness

and ex-post envy-freeness up to one item (EF1) to the case of enti-

tlements are not compatible. We then present a polynomial-time

algorithm that achieves weighted ex-ante envy-freeness and ex-post

weighted envy-freeness up to 1 transfer. The outcome is ex-ante

weighted envy-free for all utilities consistent with the underlying

ordinal preferences but it is not Pareto optimal. We then present

an alternative polynomial-time algorithm that satisfies Pareto opti-

mality (both ex-ante and ex-post), ex-ante weighted envy-freeness

and ex-post weighted proportionality up to one item.

KEYWORDS
Fair division; envy-freeness, EF1; best of both world fairness; ran-

dom assignment
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1 INTRODUCTION
The problem of fairly allocating resources among people and groups

that lay claim to them stretches far back into history. The archetypal

example of such a problem appears in numerous accounts from

antiquity, where a plot of land has to be divided fairly between two

people who may value different parts of the land differently to each

other. The solution - ‘divide and choose’, in which one person cuts

the land into two parts that she deems equally valuable and the

other chooses their preferred piece - is one of the earliest classical

algorithms.

This is of course just one instance of a problem within the broad

field of fair division, which, in modern times, has had its origins

in the works of Steinhaus , Knaster and Banach (see, e.g., [24]).

As contextual motivations have grown over time, it has lead to

the development of models and axioms capable of capturing the

intricacies of the real-world problems they represent. Suksompong

[25], for example, surveys a selection of ways in which general fair

division problems can be altered in order to reveal new questions

with unique mathematical flavours.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
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and Multiagent Systems (www.ifaamas.org). All rights reserved.

We study fair division settings in which all of the items being

allocated are indivisible - so agents must either get all or none of an

item. We call problems of this nature allocation problems. Some real-

life examples of our premise include the distribution among heirs

of indivisible items from an estate and the assignment of courses to

lecturers who wish to teach them. As noted by Budish [10], research

into this problem is primarily motivated by outcomes that are fair
or efficient. Allocation problems with indivisible items present a

number of inherent difficulties compared to their counterpart where

items are infinitely divisible. This issue can be partly alleviated by

introducing randomization and leveraging the properties of divisi-

ble items by issuing agents items with a certain probability. More

recently though, through the works of the likes of Lipton et al. [20],

Budish [10], Gourvès et al. [18] and Caragiannis et al. [12], there

has been an effort to study fairness in the allocation of indivisible

items by first introducing appropriate notions of approximate fair-
ness that reflect the indivisible quality of the items. Fundamental

questions in this field relate to the existence and computation of

allocations satisfying these fairness axioms.

An interesting approach to studying fairness that has gained

traction in recent years has been the idea of ‘best of both worlds fair-
ness’ [3, 5, 17]. At a high level, this refers to outcomes to allocation

problems that have both a randomized (or fractional) component

and a deterministic component. Best of both worlds fair outcomes

first make use of randomization and offer agents probability shares

in the items in a fair way. After this, the random outcomes must

be ‘implemented’ by a lottery over deterministic outcomes that all

satisfy certain other fairness axioms.

In all previous papers on best of both worlds fairness, it is as-

sumed that agents have equal entitlements. However, in many

scenarios agents may have asymmetric entitlements. It can be ar-

gued that agents having different entitlements is an even more

common use-case for real-life applications of allocation problems

than agents having equal entitlements (see, e.g., [16], and so gener-

alising existing best of both worlds fairness research in this way

provides a valuable new insight into how to apply such fairness

principles to a host of problems in which agents cannot be assumed

to have equal entitlements over items.

In this paper we examine the following central problem.

When agents have entitlements, to what extent can best
of both worlds fairness can be satisfied?

Contributions. Our first result is that in sharp contrast to the

case of same entitlements, well-established adaptations of ex-ante

envy-freeness and ex-post envy-freeness up to one item (EF1) to the

case of entitlements are not compatible. The result underscores the

additional challenge when handling asymmetric entitlements. We

then propose a weak verion of the ex-post envy-freeness properties

called weighted envy-freeness up to 1 transfer (WEF1-T). We then
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Weighted PS lottery Algo Weighted Max Nash lottery Algo

ex-ante WEF for all consistent utilities yes no

ex-ante WEF yes no

ex-post WEF1-T yes ?

ex-post WPROP1 ? yes

ex-ante PO no yes

ex-post PO no yes

Table 1: Summary of results

present a polynomial-time algorithm that achieves weighted ex-

ante envy-freeness and ex-post WEF1T. The outcome is ex-ante

weighted envy-free for all utilities consistent with the underlying

ordinal preferences but it is not Pareto optimal. We then present

an alternative polynomial-time algorithm that satisfies ex-ante

weighted envy-freeness and ex-post weighted proportionality up

to one item.

2 RELATEDWORK
In this paper, we consider randomized allocation of items. A seminal

work on random allocation is by Bogomolnaia and Moulin [9]

who presented the probabilistic serial algorithm that satisfies envy-

freeness with respect to all cardinal utilities consistent with the

ordinal preferences. We consider the additional issue of weighted

entitlements and also best of both world (BoBW) fairness that also

pertains to ex-post fairness guarantees.

The interest in BoBW fairness was reignited by Freeman et al.

[17], who first showed that ex-ante EF and ex-post EF1 BoBW

outcomes can be found for any allocation problem instance. Aziz

[1] designed an efficient algorithm known as PS-Lottery, which

first calls the Probabilistic Serial rule of Bogomolnaia & Moulin [9]

in order to generate an envy-free random allocation (from which

they get ex-ante EF), and then is able to decompose this random

allocation as the convex combination of EF1 deterministic alloca-

tions, yielding EF1 ex-post. In fact, since PS-Lottery does not take

in agents’ cardinal utilities, both the ex-ante and ex-post fairness

properties can be strengthened to their stochastic dominant ver-

sions. The papers by Freeman et al. [17] and Aziz [1] were merged

to [3]. Aziz [2] proposed research directions regarding probabilistic

decision making with desirable ex-ante and ex-post properties.

Having established existence of BoBW fair allocations, Freeman

et al. [17] show that BoBW fair allocations can be found in conjunc-

tion with a strong version of efficiency - that is ex-ante fractional

Pareto optimality (fPO) - as long as the ex-post fairness condition

is relaxed. Such outcomes are constructed by a novel algorithm

known as MNW-Lottery, which can be viewed as a means by which

to implement the random allocation generated by the Maximum

Nash Welfare rule (see [12] for more details on the surprisingly fair

properties of the MNW rule). Note that the Nash welfare is defined

to be the product of all agents’ (expected) utilities from a (random)

allocation.

Although our work mainly intends to study BoBW outcomes

from the perspective of envy-based fairness, we briefly mention a

recent paper that engages with BoBW fairness from a fair-share

guarantee perspective. Babaioff et al. [5] establish the existence of

BoBW outcomes that are ex-ante proportional and ex-post guaran-

tee every agent at least half of their maximin faire share (as well

as proportionality up to at most one item) with a polynomial-time

algorithm.

Chakraborty et al. [13] proposed two extensions of EF1 to the

case of weighted entitlements. They proposed (1) weighted envy-

freeness up to one item (WEF1) where envy can be eliminated by

removing an item from the envied agent’s bundle, and (2) weak

weighted envy-freeness up to one item (WWEF1) where envy can be

eliminated either by removing an item (as in the strong version) or

by replicating an item from the envied agent’s bundle in the envying

agent’s bundle. They presented various algorithmic results for both

concepts. Chakraborty et al. [14] introduced a more generalized

axiom.

We also briefly touch on some alternative notions of approximate

fairness for agents with different entitlements that are mentioned

elsewhere in the literature. Farhadi et al. [16] also study the model

of weighted allocation problems, but approach fairness through

the lens of fair-share guarantees rather than envy-based fairness

(namely, a weighted version of the maximin fair share). In partic-

ular, they show that it is impossible to find an algorithm that can

guarantee every agent more than 1/𝑛 of their weighted maximin

share regardless of agents’ entitlements. In contrast, the work of

Proacaccia and Wang [19] that this study generalises shows that

when agents have equal entitlements, allocations can always be

found that guarantee all agents at least 2/3 (a constant proportion)
of their MMS. This stark difference underlines the potential diffi-

culty in translating results from the setting of symmetric agents to

a setting where agents may have unequal entitlements. In a closely

related work, Babaioff et al. [6] raise some concerns about the way

in which the weighted maximum fair share axiom of Farhadi et al.

[16] aligns with the intuitive understanding behind this property.

They instead propose a different notion of fair share known as

the AnyPrice share, which happens to always be greater than the

(unweighted) MMS. It is then shown that a constant fraction of the

AnyPrice share can always be guaranteed to all agents, even when

they have different entitlements.

Finally in this section, we mention another topic closely related

to fairness for agents with different entitlements. Consider an adap-

tation of a motivating problem from Benabbou et al. [7] in which

instead of allocating items to individual agents who all have equal

entitlements, items (in this example, public housing in Singapore)

are allocated to people belonging to ethnic groups, and each ethnic

group should receive items fairly in relation to the size of the group.
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This highlights the relationship between the problems of fair allo-

cation to agents with different entitlements and fair allocation to

agents belonging to groups of various sizes.

3 PRELIMINARIES
Let [𝑡] = {1, . . . , 𝑡}, for each 𝑡 ∈ N. We consider a set 𝑁 = [𝑛]
of 𝑛 agents and a set 𝑂 = {𝑜1, . . . , 𝑜𝑚} of 𝑚 items. Each agent 𝑖

is characterized by a weight𝑤𝑖 ≥ 0 which shows her entitlement.
Without loss of generality, we assume that

∑
𝑖∈𝑁 𝑤𝑖 = 1. Let𝑤 =

(𝑤1, . . . ,𝑤𝑛). A subset of the items is called a bundle.
A fractional allocation𝐴 is a (𝑛×𝑚) matrix in which the entry in

the 𝑖th row and 𝑗 th column, which with a slight abuse of notation

denoted by 𝐴𝑖,𝑜 𝑗 , is the fraction of good 𝑜 𝑗 assigned to agent 𝑖; for

each 𝑜 𝑗 ∈ 𝑂 ,
∑
𝑖∈𝑁 𝐴𝑖,𝑜 𝑗 = 1. A fractional allocation is integral, if

𝐴𝑖,𝑜 𝑗 ∈ {0, 1} for all 𝑖 ∈ 𝑁 and 𝑜 𝑗 ∈ 𝑂 . Under an integral allocation

𝐴, we denote with 𝐴𝑖 the bundle that is assigned to agent 𝑖 and the

allocation 𝐴 can be characterized by the bundles of the agents, i.e.

𝐴 = (𝐴1, . . . , 𝐴𝑛). When we refer to an allocation, we will mean a

fractional allocation, unless otherwise is explicitly specified. For

notational clarity, we will use 𝑋 for fractional allocations and 𝐴 for

integral allocations.

A randomized allocation is a lottery over integral allocations. In

particularly, a randomized allocation 𝑅 is determined by 𝑘 pairs

{𝑝 𝑗 , 𝐴 𝑗 }, where the integral allocation 𝐴 𝑗 is implemented with

probability 𝑝 𝑗 > 0 and

∑
𝑗 ∈[𝑘 ] 𝑝

𝑗 = 1. We say that such an integral

allocation is in the support of the randomized allocation. Moreover,

we say that a fractional allocation 𝑋 implements a randomized

allocation 𝑅, if the marginal probability of agent 𝑖 receiving item

𝑜 𝑗 is 𝑋𝑖,𝑜 𝑗 .

Each agent is endowed with a valuation function 𝑢𝑖 : 2𝑂 → R≥0.
We assume that these valuations are additive which means that

for each 𝑇 ⊆ 𝑂 , 𝑢𝑖 (𝑇 ) =
∑
𝑔∈𝑇 𝑢𝑖 ({𝑔}). For simplicity, we write

𝑢𝑖 (𝑔) instead of𝑢𝑖 ({𝑔}). We denote with𝑢 = (𝑢1, . . . , 𝑢𝑛) the utility
profile. The utility of an agent 𝑖 for an allocation 𝑋 , which with a

slight abuse of notation is denoted by 𝑢𝑖 (𝑋 ), is given by 𝑢𝑖 (𝑋 ) =∑
𝑜 𝑗 ∈𝑂 𝑋𝑖,𝑜 𝑗 · 𝑢𝑖 (𝑜 𝑗 ). The utility function 𝑢𝑖 induces a preference

ranking ≿𝑖 such that 𝑜 ≿𝑖 𝑜
′
if and only if 𝑢𝑖 (𝑜) ≥ 𝑢𝑖 (𝑜 ′). We

call ≿= (≿1, . . . ,≿𝑛) as the preference profile. An instance in our

setting is given by (𝑁,𝑂,𝑤,≿).

3.1 Fairness Concepts
We make an important distinction between a fairness property

holding ex-ante and ex-post. For any property ⟨𝑃⟩ defined for an al-

location, we say that a randomized allocation 𝑅 satisfies ⟨𝑃⟩ ex-ante
if the allocation 𝑋 that implements it satisfies ⟨𝑃⟩. For any property
⟨𝑄⟩ defined for an integral allocation, we say that a randomized

allocation 𝑅 satisfies ⟨𝑄⟩ ex-post if every integral allocation in its

support satisfies ⟨𝑄⟩.
Our main goal is to find allocations that are weighted envy-free.

Definition 3.1 (Weighted Envy-Freeness (WEF). An allocation 𝑋

is weighted envy-free (WEF) if for all agents 𝑖, 𝑗 ,

𝑢𝑖 (𝑋 )
𝑤𝑖

≥
𝑢 𝑗 (𝑋 )
𝑤 𝑗

.

Since there are instances in which no integral allocation is

weighted envy-free, ex-post weighted envy-freeness is not always

achievable. Therefore, relaxations of this have been studied. While

when all the agents have the same weight, envy-freenes up to one

item is the most natural approximation of envy-freenes, notions of

approximate envy-based fairness are slightly less obvious to adapt

to the weighted problem. We primarily adopt two definitions that

introduced by Chakraborty et al. [13].

Definition 3.2 (Weighted Envy-freeness Up To One Item (WEF1)).
An integral allocation 𝐴 is (strongly) weighted envy-free up to one

item (WEF1) if for all agents 𝑖, 𝑗 , either

𝑢𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑢𝑖 (𝐴 𝑗 )
𝑤 𝑗

or there exists an item 𝑜 ∈ 𝐴 𝑗 such that

𝑢𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑢𝑖 (𝐴 𝑗 \ 𝑜)

𝑤 𝑗
.

A weaker approximation of weighted envy-freeness is the fol-

lowing.

Definition 3.3 (Weakly Weighted Envy-freeness Up To One Item
(WWEF1)). An integral allocation 𝐴 is weakly weighted envy-free

up to one item (WWEF1) if for all agents 𝑖, 𝑗 , either

𝑢𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑢𝑖 (𝐴 𝑗 )
𝑤 𝑗

or there exists an item 𝑜 ∈ 𝐴 𝑗 such that either

𝑢𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑢𝑖 (𝐴 𝑗 \ 𝑜)

𝑤 𝑗

or

𝑢𝑖 (𝐴𝑖 ∪ 𝑜)
𝑤𝑖

≥
𝑢𝑖 (𝐴 𝑗 )
𝑤 𝑗

.

We also consider an axiom that further relaxes WWEF1 and is

a special case of the more generalized axiom that was introduced

by Chakraborty et al. [14]

Definition 3.4 (Weighted Envy-freeness Up To One Transfer
(WEF1-T)). An integral allocation 𝐴 is weighted envy-free up to

one transfer (WEF1-T) if for all agents 𝑖, 𝑗 , either

𝑢𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑢𝑖 (𝐴 𝑗 )
𝑤 𝑗

or there exists an item 𝑜 ∈ 𝐴 𝑗 such that

𝑢𝑖 (𝐴𝑖 ∪ 𝑜)
𝑤𝑖

≥
𝑢𝑖 (𝐴 𝑗 \ 𝑜)

𝑤 𝑗
.

It is easy to see that WEF1-T is weaker than WWEF1 and in turn,

WEF1.

We are also interested in allocations that are proportionally fair.

Definition 3.5 (Weighted Proportional Up To One Item (WPROP1)).
An integral allocation 𝐴 is weighted proportional up to one item
(WPROP1) if for each agent 𝑖 , either

𝑢𝑖 (𝐴𝑖 ) ≥ 𝑤𝑖 · 𝑢𝑖 (𝑂)
or there exists an item 𝑜 ∈ 𝑂 \𝐴𝑖 such that

𝑢𝑖 (𝐴𝑖 ∪ {𝑜}) ≥ 𝑤𝑖 · 𝑢𝑖 (𝑂).

Lastly, we define the efficiency of an allocation through the

following definition.
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Definition 3.6 (Fractional Pareto Optimality (fPO) and Pareto

Optimality (PO)). An allocation 𝑋 is fractional Pareto optimal if
there does not exists another allocation 𝑋 ′ that Pareto dominates

𝑋 , i.e. 𝑢𝑖 (𝑋 ′) ≥ 𝑢𝑖 (𝑋 ) for all 𝑖 ∈ 𝑁 and 𝑢𝑖 (𝑋 ′) > 𝑢𝑖 (𝑋 ) for some

𝑖 ∈ 𝑁 . An integral allocation 𝐴 is Pareto optimal, if there does not
exist another integral allocation 𝐴′ that Pareto dominates 𝐴, i.e.

𝑢𝑖 (𝐴′) ≥ 𝑢𝑖 (𝐴) for all 𝑖 ∈ 𝑁 and 𝑢𝑖 (𝐴′) > 𝑢𝑖 (𝐴) for some 𝑖 ∈ 𝑁 .

4 INCOMPATIBILITY BETWEEN EX-ANTE
WEF AND EX-POST WWEF1

In the best of both worlds literature, the central result is that when

there are no entitlements, then ex-ante EF (or equivalent WEF) and

ex-post EF1 (or equivalent WEF1) can be achieved simultaneously.

In this section, we surprisingly show that this compatibility does

not hold when we move to asymmetric entitlements and in par-

ticular we show an even stronger impossibility result: there exists

no randomized allocation that satisfies ex-ante WEF and ex-post

WWEF1.

Theorem 4.1. Even for the case of two agents, there exists no
randomized allocation that satisfies ex-anteWEF and ex-post WWEF1.

Proof. Consider an allocation problem with two agents such

that 𝑤1 = 0.6 and 𝑤2 = 0.4 and two items 𝑜1 and 𝑜2 such that

𝑢𝑖 (𝑜1) = 𝑢𝑖 (𝑜2) for each agent 𝑖 ∈ [2].
Suppose for a contradiction that there is a WWEF1 allocation

that gives both items to agent 1. Clearly, agent 2 has weighted

envy for agent 1’s allocation (whereas agent 1 has no weighted

envy towards agent 2), so it must be that either removing one of

agent 1’s items or copying one of agent 1’s items and giving it to

agent 2 eliminates her envy. In the first case, if an item is removed

from agent 1, then agent 2 is clearly still envious as she has no

items. In the second case, due to symmetry suppose without loss

of generality that agent 2 receives 𝑜1. Then, her weight-adjusted

utility is 𝑢2 (𝑜1)/0.4 = 2.5 ·𝑢2 (𝑜1), while her perception of agent 1’s

weight adjusted utility is 2 ·𝑢2 (𝑜1)/0.6 > 3 ·𝑢2 (𝑜1). Hence, agent 2
is still envious of agent 1, which is a contradiction. So there is no

WWEF1 allocation that gives both items to agent 1.

Similarly, we can show that no WWEF1 allocation exists that

gives both items to agent 2. Suppose for a contradiction that there

is a WWEF1 allocation that gives both items to agent 2. In this case,

agent 1 has weighted envy for agent 2’s allocation, so it must be

that either removing one of agent 2’s items or copying one of agent

2’s items and giving it to agent 1 eliminates her envy. If an item is

to be removed from agent 2, then agent 1 is clearly still envious as

she has no items. Alternatively, if agent 1 receives, without loss of

generality due to symmetry, item 𝑜1, her weight-adjusted utility is

𝑢1 (𝑜1)/0.6 = 5

3
· 𝑢2 (𝑜1), while her perception of agent 2’s weight

adjusted utility is 2 · 𝑢2 (𝑜1)/0.4 = 5 · 𝑢2 (𝑜1). Hence, agent 1 is still
envious of agent 2, which is a contradiction. So there is no WWEF1

allocation that gives both items to agent 2.

So, the only WWEF1 allocation must give one item to each agent.

At the same time, any WEF fractional allocation must give agent

1 a greater share of the items than agent 2 for agent 1 not to feel

weighted envy towards agent 2, since agent 1 has a larger entitle-

ment. Thus, such a random allocation can never be decomposed as

a convex combination of WWEF1 deterministic allocations. □

Since WWEF1 is weaker than WEF1, we get the following Corol-

lary.

Corollary 4.2. Even for the case of two agents, there exists no
randomized allocation that satisfies ex-ante WEF and ex-post WEF1.

5 WEIGHTED PS-LOTTERY ALGORITHM
In the previous section, we show that randomized allocations that

are ex-ante WEF and ex-post WWEF1 are not guaranteed to exist.

Here, we show that if we weaken WWEF1 to WEF1T, then we get a

possibility result. More formally, we show that any instance admits

a randomized allocation that is ex-anteWEF and ex-postWEF1T. To

prove this result we use Birkhoff’s decomposition theorem [8, 21].

Theorem 5.1 (Birkhoff-von Neumann). For any fractional al-
location 𝑋 , there exists a polynomial time algorithm that computes
a decomposition 𝑋 =

∑𝐾
𝑘=1

𝜆𝑘 · 𝐴𝑘 , where each 𝐴𝑘 is an integral
allocation and

∑𝐾
𝑘=1

𝜆𝑘 = 1.

In Algorithm 1, we present a natural extension of the PS-Lottery

algorithm [2] to the setting of agents having possibly different

entitlements. The high level idea of the algorithm is as follows. For

each agent 𝑖 , we create 𝑐𝑖 copies of the agent, where 𝑐𝑖 = ⌈𝑤𝑖 ·𝑚⌉.
Obviously, when all the entitlements are the same, then 𝑐𝑖 = 𝑐𝑖′ for

each 𝑖, 𝑖 ′ ∈ 𝑁 , as in the original algorithm. Then, we add sufficiently

many dummy items, denoted by the set 𝐷 , to ensure that |𝑂 ′ | =
|𝑂 ∪ 𝐷 | = ∑

𝑖∈𝑁 𝑐𝑖 . Each agent prefers any no dummy item than

any dummy item, i.e. 𝑜 ≿𝑖 𝑑 for each 𝑜 ∈ 𝑂 and each 𝑑 ∈ 𝐷 . Then,
we run a weighted version of the Probabilistic Serial algorithm on

the set of agent representatives and the set of objects including

dummies. Each agent effectively eats her most preferred remaining

object at a rate proportional to her entitlement until it is totally

consumed, and then moves onto her next most preferred object,

and so on, until all the objects are consumed by all the agents.

Rather than have the agents eat the objects directly in the Proba-

bilistic Serial procedure, we instead have agent 𝑖’s 𝑐𝑖 representatives

eat the objects on her behalf. That is, each representative 𝑖 𝑗 of agent

𝑖 eats at rate𝑤𝑖𝑚 during the time interval [( 𝑗−1)/(𝑤𝑖𝑚), 𝑗/(𝑤𝑖𝑚)].
The details of this eating are implemented by the representatives

themselves, which results in each representative eating exactly one

item. Note that the objects eaten by the first representative of an

agent will be weakly more preferred to that agent than the objects

eaten by the second representative, and so on.

Then, as in the original algorithmwe run Birkhoff decomposition

algorithm to find a distribution over integral allocations for the

agent representatives, and then each agent is assigned the parts

that its copies ate. The innovative part of this algorithm is how 𝑐𝑖 ’s

are calculated. However, the main challenge is to prove that this

algorithm satisfies the desired properties.

We now introduce some lemmas that captures an invariant prop-

erty of any integral allocation that is produced in the outcome of

Algorithm 1.

Lemma 5.2. If Algorithm 1 returns the randomized allocation
{(𝜆𝑘 , 𝐴𝑘 ) : 𝑘 = 1, . . . , 𝐾} which is implemented by the fractional
allocation 𝑋 =

∑𝐾
𝑘=1

𝜆𝑘 · 𝐴𝑘 , then any integral allocation 𝐴𝑘 is the
outcome of some sequential allocation procedure, i.e. there exists a
sequence of the agents such that if at each turn, the current agent
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Algorithm 1 Weighted PS-Lottery Algorithm

Input: A weighted allocation problem instance (𝑁,𝑂,≿,𝑤) where
𝑛 is the number of agents,𝑚 is the number of items and the

weight vector𝑤 is normalised such that

∑
𝑖∈𝑁 𝑤𝑖 = 1.

1: 𝑐𝑖 ← ⌈𝑤𝑖𝑚⌉ for each 𝑖 ∈ 𝑁 .

2: 𝑁 ′ ← {𝑖1, . . . , 𝑖𝑐𝑖 : 𝑖 ∈ 𝑁 }. For each agent 𝑖 ∈ 𝑁 , the set

{𝑖1, . . . , 𝑖𝑐𝑖 } is to be thought of as the 𝑐𝑖 representatives or clones
of 𝑖 .

3: Define 𝐷 = {𝑑1, . . . , 𝑑∑𝑖∈𝑁 𝑐𝑖−𝑚} to be a set of

∑
𝑖∈𝑁 𝑐𝑖 −𝑚

dummy items.

4: 𝑂 ′ ← 𝑂 ∪ 𝐷 so that |𝑂 ′ | = ∑
𝑖∈𝑁 𝑐𝑖 .

5: Set the preference profile ≿′ on𝑂 ′ so that for any 𝑜, 𝑜 ′ ∈ 𝑂 and

for all 𝑖 ∈ 𝑁 and 𝑗 ∈ {1, . . . , 𝑐𝑖 }, 𝑜 ≿′𝑖 𝑗 𝑜
′
if and only if 𝑜 ≿𝑖 𝑜

′
.

For all 𝑜 ∈ 𝑂 , 𝑑 ∈ 𝐷 and for all 𝑖 ∈ 𝑁 and 𝑗 ∈ {1, . . . , 𝑐𝑖 },
𝑜 ≿′

𝑖 𝑗
𝑑 .

6: Run the Probabilistic Serial algorithm of Bogomolnaia and

Moulin [9] on the set of agents 𝑁 ′ and the set of items 𝑂 ′,
where each representative 𝑖 𝑗 eats only during the time interval

[( 𝑗 − 1)/(𝑤𝑖𝑚), 𝑗/(𝑤𝑖𝑚)] at rate𝑤𝑖𝑚.

7: Construct a fractional allocation 𝑌 of items in 𝑂 ′ to agents in

𝑁 ′, by assigning to each representative 𝑖 𝑗 the items that eat

during the time interval [( 𝑗 − 1)/(𝑤𝑖𝑚), 𝑗/(𝑤𝑖𝑚)].
8: For the (bistochastic) matrix corresponding to 𝑌 , compute a

Birkhoff decomposition 𝑌 =
∑𝐾
𝑘=1

𝜆𝑘 · 𝐵𝑘 .
9: Convert 𝑌 =

∑𝐾
𝑘=1

𝜆𝑘 · 𝐵𝑘 into 𝑋 =
∑𝐾
𝑘=1

𝜆𝑘 · 𝐴𝑘 where all

dummy items are ignored and each agent gets the allocation of

her representatives .

10: return Allocation 𝑋 and its decomposition

∑𝐾
𝑘=1

𝜆𝑘 · 𝐴𝑘 .

chooses her most preferred item of the items remaining, the integral
allocation produced is equivalent to 𝐴𝑘 .

Proof. Let 𝑌 be as it is defined in Algorithm 1, and 𝐵𝑘 be any

integral allocation implemented in 𝑌 , Then, 𝐴𝑘 is the integral allo-

cation obtained by combining together the allocations of represen-

tatives of the same agent from 𝐵𝑘 .

We claim that (assuming agents have strict preferences over the

objects) the following sequential allocation procedure generates

the integral allocation 𝐴𝑘 . Consider the probabilistic serial process

from Algorithm 1, and for each representative 𝑖 𝑗 , let 𝑡𝑖 𝑗 denote

the time at which 𝑖 𝑗 began to eat the unique item that she was

ultimately allocated in 𝐵𝑘 . Note that since 𝐵𝑘 is consistent with

𝑌 , all of the 𝑡𝑖 𝑗 must exist - i.e. if 𝑖 𝑗 was allocated an item in 𝐵𝑘 , it

must mean that she ate at least part of that item in 𝑌 .

Order the 𝑡𝑖 𝑗 ’s from first to last, settling ties arbitrarily, and then

from this, induce a sequence of agents by replacing each 𝑡𝑖 𝑗 with

the corresponding 𝑖 𝑗 . Call this sequence of agent representatives

𝑎 = {𝑎1, 𝑎2, . . . , 𝑎𝑟 }. Consider the allocation produced by allowing

the agents to sequentially choose their most preferred remaining

item at each step.We aim to prove inductively that after any number

of agent representatives in the sequence, the items picked by the

representatives match those picked by the same representatives in

𝐵𝑘 . For the base case (i.e. after 0 representatives from the picking

sequence 𝑎 have chosen), clearly, the items chosen match those

chosen in 𝐵𝑘 .

For the inductive hypothesis, suppose that after 𝑝 agent repre-

sentatives from the picking sequence 𝑎 have selected their most

preferred remaining object, the objects chosen by those represen-

tatives match the objects chosen by those same representatives in

𝐵𝑘 . We want to show that the (𝑝 + 1)th representative (call him 𝑥 )

chooses the same object as 𝑥 chooses in 𝐵𝑘 (call this 𝑜 ′).
By our inductive hypothesis, before 𝑥 chooses his most preferred

item, 𝑜 ′ must still be available, as 𝑜 ′ cannot have been chosen by

another representative for their object to match what they received

in 𝐵𝑘 . We this need to show that 𝑜 ′ is 𝑥 ’s most preferred remaining

item.

We claim that the items that remain available for 𝑥 to choose

must be a subset of those that have not been fully consumed at

time 𝑡𝑥 in the construction of 𝑌 . Suppose that 𝑜 ′ is an object that is

available for 𝑥 to choose, and suppose for a contradiction that at

time 𝑡𝑥 , 𝑜
′
has been fully consumed in 𝑌 . Then, there must be an

agent representative 𝑦 ≠ 𝑥 who was allocated 𝑜 ′ in 𝐵𝑘 , and in 𝑌 ,

𝑦 must therefore have begun eating 𝑜 ′ before 𝑡𝑥 - i.e. 𝑡𝑦 < 𝑡𝑥 . But

this contradicts our assumption that 𝑜 ′ is available for 𝑥 to choose,

since 𝑦 preceded 𝑥 in the picking sequence and by our inductive

hypothesis, must have picked 𝑜 ′ in order to match with her choice

in 𝐵𝑘 .

Also note that of the objects available to 𝑥 (in 𝑌 ) at time 𝑡𝑥 , 𝑜
′

must be his most preferred since he begins eating 𝑜 ′ at this time.

Therefore, 𝑜 ′ must also be 𝑥 ’s most preferred remaining object after

𝑝 representatives have chosen. So 𝑥 would choose 𝑜 ′ and now the

first 𝑝 + 1 representative’s choices coincide with their allocated

objects in 𝑌 .

Hence, by induction, we can conclude that 𝐵𝑘 is equivalent to

an integral allocation that is the product of sequential allocation.

Then, we conclude that we can get 𝐴𝑘 by a sequential allocation

by replacing each clone by her representative. □

We proceed with the following necessary lemma.

Lemma 5.3. If Algorithm 1 returns the randomized allocation
{(𝜆𝑘 , 𝐴𝑘 ) : 𝑘 = 1, . . . , 𝐾} which is implemented by the fractional
allocation 𝑋 =

∑𝐾
𝑘=1

𝜆𝑘 · 𝐴𝑘 , then for any integral allocation 𝐴𝑘 ,
there is a picking sequence that delivers 𝐴𝑘 such that for any agents 𝑖 ,
𝑗 , the number of turns 𝑡𝑖 and 𝑡 𝑗 taken by 𝑖 and 𝑗 , respectively, at any
time after both 𝑖 and 𝑗 have had one pick and immediately before 𝑖 is
about to pick, satisfies the inequality

𝑡 𝑗 ≥
⌊
𝑡𝑖𝑤 𝑗

𝑤𝑖

⌋
.

Proof. Begin by observing that during the Probabilistic Serial

process of Algorithm 1 all agent representatives will consume

non-dummy items before dummy items. Therefore, at time 𝑡 = 1,

the total number of objects that will have been consumed will be∑
𝑖∈𝑁 𝑤𝑖𝑚 = 𝑚, i.e. all of the non-dummy objects will have been

totally consumed, and all non-dummy objects will be completely

available. 𝐴𝑘 must be the outcome of some sequential allocation

procedure by Lemma 5.2, so there is a picking sequence that yields

this integral allocation. Suppose at some point in the picking se-

quence (say after 𝑥 turns), that agent 𝑖 is to pick next, and suppose

she is to pick her 𝑟 th item. Then, in the randomized allocation 𝑌 ,
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this item must have been an item that was consumed partially by

the 𝑟 th representative of 𝑖 (say at time 𝑡 ). Recall that the 𝑟 th clone

of 𝑖 eats during the time interval [(𝑟 − 1)/(𝑤𝑖𝑚), 𝑟/(𝑤𝑖𝑚)]. Thus,
it must be that 𝑡 ∈ [(𝑟 − 1)/(𝑤𝑖𝑚), 𝑟/(𝑤𝑖𝑚)]. Now, after 𝑥 turns

in the picking sequence, we want a lower bound on the number

of items that have been fully consumed by any other agent 𝑗 ≠ 𝑖 .

This number is at least however many representatives of 𝑗 have

finished eating by time 𝑡 in the Probabilistic Serial process. Let

ℓ =

⌊ (𝑟−1)𝑤𝑗

𝑤𝑖

⌋
and consider the time 𝑡 ′ at which 𝑗ℓ finishes eating

in the Probabilistic Serial process. We have that

𝑡 ′ = ℓ/(𝑤 𝑗𝑚)

=

⌊ (𝑟 − 1)𝑤 𝑗
𝑤𝑖

⌋ /
(𝑤 𝑗𝑚)

≤
(𝑟 − 1)𝑤 𝑗

𝑤𝑖

/
(𝑤 𝑗𝑚)

=
(𝑟 − 1)
𝑤𝑖𝑚

≤ 𝑡 .

So ℓ is a lower bound for the number of objects allocated to 𝑗 after

𝑥 turns in the picking sequence. Thus, we have that 𝑡 𝑗 ≥ ℓ =⌊ (𝑟−1)𝑤𝑗

𝑤𝑖

⌋
=

⌊
𝑡𝑖𝑤𝑗

𝑤𝑖

⌋
, as required. □

We claim that Algorithm 1 produces a lottery over determin-

istic outcomes that all satisfy Weighted Envy-Freeness up to one

Transfer (WEF-1T).

Theorem 5.4. If Algorithm 1 returns 𝑋 and its decomposition∑𝐾
𝑘=1

𝜆𝑘 · 𝐴𝑘 , then any integral allocation 𝐴𝑘 is WEF1-T.

Proof. From Lemma 5.3, we know that there exists a picking

sequence 𝑃 that gives 𝐴𝑘 . It is sufficient to prove that if the agents

pick according to 𝑃 , for any agents 𝑖 and 𝑗 , at no point immediately

after 𝑖 picks an item 𝑗 does experience envy towards 𝑖 up to any

more than one item transfer from 𝑖 to 𝑗 . Suppose that 𝑖 is about to

pick her (𝑟+1)th item, denoted by𝑜∗
𝑖
. Let 𝑡𝑖 and 𝑡 𝑗 denote the number

of turns taken by 𝑖 and 𝑗 so far. Also, let agent 𝑗 ’s valuations of 𝑖’s

second, third, . . . , 𝑡 th
𝑖

picks be denoted by 𝛽1, . . . , 𝛽𝑡𝑖 , and for each

𝑥 ∈ {1, . . . , 𝑡𝑖 }, signify the number of items chosen by 𝑗 between

𝑖’s 𝑥 th and (𝑥 + 1)th picks by 𝜏𝑥 . Then, let 𝑗 ’s valuations of each of

the items chosen in period 𝑥 be given by 𝛼𝑥
1
, . . . , 𝛼𝑥𝜏𝑥 .

From Lemma 5.3, we get that

𝑡 𝑗 ≥
𝑡𝑖𝑤 𝑗

𝑤𝑖
− 1. (1)

Note also that the items chosen by 𝑗 in period 𝑥 must naturally

be more valuable to 𝑗 then any items chosen by 𝑖 afterwards. That

is, for each 𝑥 ∈ {1, . . . , 𝑡𝑖 },
𝜏𝑥∑︁
𝑦=1

𝛼𝑥𝑦 ≥ 𝜏𝑥 max{𝛽𝑥 , 𝛽𝑥+1, . . . , }. (2)

Now, let 𝛾 = 𝑤 𝑗/𝑤𝑖 . We make the inductive claim that

𝑟∑︁
𝑥=1

𝜏𝑥∑︁
𝑦=1

𝛼𝑥𝑦 ≥ 𝛾
𝑟∑︁
𝑥=1

𝛽𝑥 +
(
𝑟∑︁
𝑥=1

𝜏𝑥 − (𝑟𝛾 − 1)
)
max{𝛽𝑟 , . . . , 𝛽𝑡𝑖 }

−max{𝛽0, 𝛽1, . . . , 𝛽𝑡𝑖 }.

To check that this is true, first note that the base case holds from

a simple application of (2) to get that

𝜏1∑︁
𝑦=1

𝛼1𝑦 ≥ 𝜏1max{𝛽1, 𝛽2, . . . , 𝛽𝑡𝑖 } ≥ 𝛾𝛽1 + (𝜏1 − 𝛾 + 1)max{𝛽1, . . . , 𝛽𝑡𝑖 }

−max{𝛽1, . . . , 𝛽𝑡𝑖 }.

Now, for the inductive step, utilising (1), we have

𝑟∑︁
𝑥=1

𝜏𝑥∑︁
𝑦=1

𝛼𝑥𝑦 =

𝑟−1∑︁
𝑥=1

𝜏𝑥∑︁
𝑦=1

𝛼𝑥𝑦 +
𝜏𝑟∑︁
𝑦=1

𝛼𝑟𝑦

≥ 𝛾
𝑟−1∑︁
𝑥=1

𝛽𝑥 +
(
𝑟−1∑︁
𝑥=1

𝜏𝑥 − [(𝑟 − 1)𝛾 − 1]
)
max{𝛽𝑟−1, . . . , 𝛽𝑡𝑖 }

−max{𝛽0, . . . , 𝛽𝑡𝑖 } +
𝜏𝑟∑︁
𝑦=1

𝛼𝑟𝑦

≥ 𝛾
𝑟−1∑︁
𝑥=1

𝛽𝑥 +
(
𝑟−1∑︁
𝑥=1

𝜏𝑥 − [(𝑟 − 1)𝛾 − 1]
)
max{𝛽𝑟−1, . . . , 𝛽𝑡𝑖 }

−max{𝛽0, . . . , 𝛽𝑡𝑖 } + 𝜏𝑟 max{𝛽𝑟 , . . . , 𝛽𝑡𝑖 }

≥ 𝛾
𝑟−1∑︁
𝑥=1

𝛽𝑥 +
(
𝑟−1∑︁
𝑥=1

𝜏𝑥 − [(𝑟 − 1)𝛾 − 1]
)
max{𝛽𝑟 , . . . , 𝛽𝑡𝑖 }

−max{𝛽0, . . . , 𝛽𝑡𝑖 } + 𝜏𝑟 max{𝛽𝑟 , . . . , 𝛽𝑡𝑖 }

= 𝛾

𝑟−1∑︁
𝑥=1

𝛽𝑥 +
(
𝑟∑︁
𝑥=1

𝜏𝑥 − [(𝑟 − 1)𝛾 − 1]
)
max{𝛽𝑟 , . . . , 𝛽𝑡𝑖 }

−max{𝛽0, . . . , 𝛽𝑡𝑖 }

= 𝛾

𝑟−1∑︁
𝑥=1

𝛽𝑥 + 𝛾 max{𝛽𝑟 , . . . , 𝛽𝑡𝑖 } +
(
𝑟∑︁
𝑥=1

𝜏𝑥 − (𝑟𝛾 − 1)
)

−max{𝛽𝑟 , . . . , 𝛽𝑡𝑖 } −max{𝛽0, . . . , 𝛽𝑡𝑖 }

≥ 𝛾
𝑟∑︁
𝑥=1

𝛽𝑥 +
(
𝑟∑︁
𝑥=1

𝜏𝑥 − (𝑟𝛾 − 1)
)
max{𝛽𝑟 , . . . , 𝛽𝑡𝑖 }

−max{𝛽0, . . . , 𝛽𝑡𝑖 }.

Thus, taking 𝑟 = 𝑡𝑖 , we have that

𝑡𝑖∑︁
𝑥=1

𝜏𝑥∑︁
𝑦=1

𝛼𝑥𝑦

≥ 𝛾
𝑡𝑖∑︁
𝑥=1

𝛽𝑥 +
(
𝑡𝑖∑︁
𝑥=1

𝜏𝑥 − (𝑟 · 𝑡𝑖 − 1)
)
𝛽𝑡𝑖 −max{𝛽0, . . . , 𝛽𝑡𝑖 }

= 𝛾

𝑡𝑖∑︁
𝑥=1

𝛽𝑥 +
(
𝑡 𝑗 − (𝑤 𝑗/𝑤𝑖 · 𝑡𝑖 − 1)

)
𝛽𝑡𝑖 −max{𝛽0, . . . , 𝛽𝑡𝑖 }

≥ 𝛾
𝑡𝑖∑︁
𝑥=1

𝛽𝑥 −max{𝛽0, . . . , 𝛽𝑡𝑖 } (3)

where the third inequality follows from Equation (1). Hence, we

get that

𝑡𝑖∑︁
𝑥=1

𝜏𝑥∑︁
𝑦=1

𝛼𝑥𝑦 +max{𝛽0, . . . , 𝛽𝑡𝑖 , 𝑢 𝑗 (𝑜∗𝑖 )}
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≥
𝑡𝑖∑︁
𝑥=1

𝜏𝑥∑︁
𝑦=1

𝛼𝑥𝑦 +max{𝛽0, . . . , 𝛽𝑡𝑖 }

≥ 𝛾
𝑡𝑖∑︁
𝑥=1

𝛽𝑥

≥ 𝛾
(
𝑡𝑖∑︁
𝑥=1

𝛽𝑥 + 𝑢 𝑗 (𝑜∗𝑖 ) −max{𝛽0, . . . , 𝛽𝑡𝑖 , 𝑢 𝑗 (𝑜∗𝑖 )}
)
.

where the third inequality follows from Equation (3). Now, the

statement follows by noticing that the utility that 𝑗 has for 𝑖’s

bundle after 𝑖 chooses 𝑜∗
𝑖
is equal to

𝑡𝑖∑︁
𝑥=1

𝛽𝑥 + 𝑢 𝑗 (𝑜∗𝑖 ),

while the utility of 𝑗 for her own bundle at this point is equal to

𝑡𝑖∑︁
𝑥=1

𝜏𝑥∑︁
𝑦=1

𝛼𝑥𝑦 .

□

The Weighted PS-Lottery Algorithm has desirable fairness prop-

erties. It is not just ex-ante WEF but also ex-ante WEF for utilities

consistent with the underlying ordinal preferences. However, the

Weighted PS-Lottery Algorithm does not achieve Pareto optimality

ex-post or ex-ante. In the next section, we present an alternative

rule that satisfies ex-ante Pareto optimality.

6 WEIGHTED MAXIMUM NASHWELFARE
LOTTERY ALGORITHM

In this section, we present an algorithm called Weighted Maximum

Nash Welfare Lottery Algorithm that is a natural adaptation of an

algorithm presented by Freeman et al. [17]. The algorithm first com-

putes a fractional allocation 𝑋 that maximizes the weighted Nash

welfare: 𝑋 = argmax𝑝
∏
𝑖∈𝑁 𝑢𝑖 (𝑝)𝑤𝑖

. This carefully decomposes

the given random allocation into a probability distribution over

integral allocations using an algorithm due to Budish et al. [11].

Lemma 6.1 (Utility Guarantee ++). Given a fractional alloca-
tion 𝑋 , one can compute, in strongly polynomial time, a randomized
allocation implementing 𝑋 whose support consists of integral alloca-
tions 𝐴1, . . . , 𝐴𝐾 such that for every 𝑘 ∈ [𝐾] and every agent 𝑖 ∈ 𝑁 ,
the following hold:

(1) If 𝑣𝑖 (𝐴𝑘𝑖 ) < 𝑣𝑖 (𝑋𝑖 ), then ∃𝑔−𝑖 ∉ 𝐴𝑘
𝑖
with 𝑋𝑖,𝑔−

𝑖
> 0 such that

𝑣𝑖 (𝐴𝑘𝑖 ) + 𝑣𝑖 (𝑔
−
𝑖
) > 𝑣𝑖 (𝑋𝑖 ).

(2) If 𝑣𝑖 (𝐴𝑘𝑖 ) > 𝑣𝑖 (𝑋𝑖 ), then ∃𝑔+𝑖 ∈ 𝐴
𝑘
𝑖
with 𝑋𝑖,𝑔+

𝑖
< 1 such that

𝑣𝑖 (𝐴𝑘𝑖 ) − 𝑣𝑖 (𝑔
+
𝑖
) < 𝑣𝑖 (𝑋𝑖 ).

Freeman et al. [17] proved that the decomposition method as

outlined in Step 3 and 4 of Algorithm 2 gives the guarantee in

Lemma 6.1.

Theorem 6.2. Algorithm 2 is a strongly polynomial-time algo-
rithm that gives an outcome that is ex-anteWEF, and ex-postWPROP1,
ex-ante Pareto optimal, and ex-post Pareto optimal.

Proof. Consider 𝑋 the ex-ante outcome of the WMNW rule:

𝑋 ∈ argmax𝑝
∏
𝑖∈𝑁 𝑢𝑖 (𝑝)𝑤𝑖

. Since the rule coincides with the

Algorithm 2Weighted Maximum NashWelfare Lottery Algorithm

Input: 𝐼 = (𝑁,𝑀, 𝑣).
1: 𝑋 ← argmax𝑝

∏
𝑖∈𝑁 𝑢𝑖 (𝑝)𝑤𝑖

Fischer market allocation for

(𝑁,𝑂,𝑢) with budgets of agents (𝑤1, . . . ,𝑤𝑛) (using an algo-

rithm of Orlin [22].)

2: For any 𝑖 ∈ 𝑁 and any 𝑘 ∈ [𝑚], let 𝑄𝑖,𝑘 B
∑𝑘
𝑡=1 𝑋𝑖,𝑔𝑖,𝑡 be the

total fractional amount of the 𝑘 most preferred goods assigned

to agent 𝑖 under 𝑋 .

3: Consider the following set of bihierarchical constraints on a

generic fractional allocation 𝑌 :

H1 :

⌊
𝑄𝑖,𝑘

⌋
≤

𝑘∑︁
𝑡=1

𝑌𝑖,𝑔𝑖,𝑡 ≤
⌈
𝑄𝑖,𝑘

⌉
, ∀𝑖 ∈ 𝑁 and ∀𝑘 ∈ [𝑚],

H2 :

∑︁
𝑖∈𝑁

𝑌𝑖,𝑔 = 1, ∀𝑔 ∈ 𝑀.
(4)

4: Use the algorithm of Budish et al. [11] to find the randomized

allocation

∑𝐾
𝑘=1

𝜆𝑘𝐴𝑘 implementing the fractional allocation

𝑋 that satisfies the same constraints as (4).

5: return Allocation 𝑋 for instance 𝐼 and its decomposition∑𝐾
𝑘=1

𝜆𝑘𝐴𝑘 .

Fischer Market Rule which gives an outcome that is competitive

equilibrium with gives budgets equivalently entitlements, it implies

that each agent gets a bundle that gives the agent maximum utility

within his budget. Hence, the outcome satisfies WEF.
1
Hence, 𝑋

satisfies ex-ante weighted proportionality as well.

Next we, prove that any ex-ante WPROP allocation can be im-

plemented by a lottery over integral allocations all of which are

WPROP1. Let 𝑋 be a fractional allocation, and let 𝐴1, . . . , 𝐴𝐾 be

integral allocations in the support of an implementation of 𝑋 pro-

duced by Lemma 6.1. Suppose 𝑋 satisfies WPROP. We want to

show that for each 𝑘 ∈ [𝐾], 𝐴𝑘 is WPROP1. Since 𝑋 is WPROP, for

every 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑂)𝑤𝑖 , where 𝑣𝑖 (𝑂) is agent 𝑖’s utility for

receiving all goods fully. Fix 𝑘 ∈ [𝐾]. By Lemma 6.1, we have that

for every agent 𝑖 ∈ 𝑁 , either 𝑣𝑖 (𝐴𝑘𝑖 ) ≥ 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑂)𝑤𝑖 , or there
exists a good 𝑔 ∉ 𝐴𝑘

𝑖
such that 𝑣𝑖 (𝐴𝑘𝑖 ) + 𝑣𝑖 (𝑔) > 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑂)𝑤𝑖 .

Therefore, 𝐴𝑘 is WPROP1.

Since𝑋 maximizes the weighted Nash social welfare, it is ex-ante

Pareto optimal. It follows that it each integral allocation that is used

in the decomposition of 𝑋 is Pareto optimal as well.

□

7 CONCLUSIONS
In this paper, we combined two research directions in fair divi-

sion: (1) handling weighted entitlements and (2) best of both world

fairness. Our main contribution is presenting two algorithms that

have desirable ex-post and ex-ante fairness properties. Whereas the

weighted PS lottery algorithm satisfies ex-ante weighted WEF with

respect to all consistent cardinal utilities, it is not Pareto optimal.

On the other hand, the Weighted Maximum Nash Welfare Lottery

Algorithm satisfies Pareto optimality but does not satisfy ex-ante

weighted WEF with respect to all consistent cardinal utilities.

1
The same argument can also be extended to prove group versions of weighted envy-

freeness.
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We are unable to establish whether there exists an algorithm that

satisfies all the following three properties: ex-ante WEF, ex-post

WEF1-T, and ex-post WPROP1. Understanding whether these three

properties are satisfied by some rule remains an open problem.

We also suggest that the problem of best of both worlds fairness

with regards to the group fairness axiom (an envy-based notion)

of Conitzer et al. [15] would be an engaging future direction. For

more information on recent developments to do with group fairness

(albeit in the latter reference where items can be goods or chores),

we refer the reader to Scarlett et al. [23] and Aziz & Rey [4].
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