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ABSTRACT

Given a graph 𝐺 = (𝑉 , 𝐸) where every vertex has a weak rank-

ing over its neighbors, we consider the problem of computing an

optimal matching as per agent preferences. Classical notions of

optimality such as stability and its relaxation popularity could fail

to exist when 𝐺 is non-bipartite. In light of the non-existence of a

popular matching, we consider its relaxations that satisfy universal

existence. We find a positive answer in the form of semi-popularity.
A matching 𝑀 is semi-popular if for a majority of the matchings

𝑁 in 𝐺 , 𝑀 does not lose a head-to-head election against 𝑁 . We

show that a semi-popular matching always exists in any graph 𝐺

and complement this existence result with a fully polynomial-time

randomized approximation scheme (FPRAS).

A special subclass of semi-popularmatchings is the set ofCopeland
winners—the notion of Copeland winner is classical in social choice

theory and a Copeland winner always exists in any voting in-

stance. We study the complexity of computing a matching that

is a Copeland winner and show there is no polynomial-time algo-

rithm for this problem unless P = NP.
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1 INTRODUCTION

Matching problems with preferences are of central importance in

economics, computer science, and operations research [20, 27, 34].

Over the years, these problems have found several real-world appli-

cations such as in school choice [1, 2], labor markets [32, 33], and

dormitory assignment [31]. The input in such problems is typically

a graph 𝐺 = (𝑉 , 𝐸) where the vertices correspond to agents, each
with a weak ranking of its neighbors. The goal is to divide the

agents into pairs, i.e., find a matching in 𝐺 , while optimizing some

criterion of agent satisfaction based on their preferences.

A classical criterion of agent satisfaction in the matching lit-

erature is stability which requires that there is no blocking edge,
i.e., no pair of agents simultaneously prefer each other over their

prescribed matches [16]. Stability is an intuitively appealing no-

tion, but it can be too demanding in the context of general (i.e., not

necessarily bipartite) graphs, also known as roommates instances.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
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and Multiagent Systems (www.ifaamas.org). All rights reserved.

Indeed, there exist simple roommates instances that do not admit

any stable matching (Fig. 1a and Fig. 1b).
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Figure 1: In each figure, the vertices denote the agents, and the

number closer to a vertex denotes its rank for the other vertex,

where a lower number denotes a more preferred neighbor. (a) An

instance with no stable matching but with two popular matchings

{ (𝑎,𝑑 ), (𝑏, 𝑐 ) } and { (𝑎, 𝑐 ), (𝑏,𝑑 ) }. (b) A roommates instance without

a popular matching. (c) A bipartite instance (with ties) without a

popular matching.

Popularity is a meaningful relaxation of stability that captures

welfare in a collective sense [17]. Intuitively, popularity asks for a

matching that is not defeated by any matching in a head-to-head

comparison. More concretely, consider an election in which the

matchings play the role of candidates and the agents/vertices act as

voters. Given a pair of matchings𝑀 and 𝑁 , a vertex prefers𝑀 to

𝑁 (resp., 𝑁 to𝑀) if it gets a more preferred partner in𝑀 (resp., 𝑁 ).

In the𝑀-vs-𝑁 election, every vertex votes for the matching in

{𝑀, 𝑁 } that it prefers and it abstains from voting if it is indifferent.

Note that being left unmatched is the worst choice for any voter. In

this𝑀-vs-𝑁 election, let 𝜙 (𝑀, 𝑁 ) be the number of votes for𝑀 and

let 𝜙 (𝑁,𝑀) be the number of votes for 𝑁 . Further, let Δ(𝑀, 𝑁 ) B
𝜙 (𝑀, 𝑁 ) −𝜙 (𝑁,𝑀). We say that the matching 𝑁 defeats (or ismore
popular than) the matching𝑀 if Δ(𝑁,𝑀) > 0. A popular matching

is one such that there is no “more popular” matching.

Definition 1.1 (Popular matching). A matching𝑀 is popular if

there is no matching that is more popular than𝑀 , i.e., Δ(𝑀, 𝑁 ) ≥ 0

for all matchings 𝑁 .

Thus, a popular matching is a weak Condorcet winner in the

underlying election among matchings [10].
1
Note that under strict

preferences, a stable matching is also popular [7], but a popu-

lar matching can exist in instances with no stable matching; e.g.,

there are two popular matchings {(𝑎, 𝑑), (𝑏, 𝑐)} and {(𝑎, 𝑐), (𝑏, 𝑑)}
in Fig. 1a. Thus popularity is a more relaxed criterion than stability—

it ensures “collective stability” as there is no matching that makes

more agents better off than those who are worse off.

1
A matching𝑀 is a Condorcet winner if Δ(𝑀,𝑁 ) > 0 for every matching 𝑁 ≠ 𝑀 in

𝐺 , and a weak Condorcet winner if Δ(𝑀,𝑁 ) ≥ 0 for every matching 𝑁 in𝐺 .
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Unfortunately, the popularity criterion also suffers from similar

limitations as stability and more. First, although popular matchings

always exist in a bipartite graph with strict preferences [17], they

could fail to exist with weak rankings, i.e., when preferences include
ties (Fig. 1c) or when the graph is non-bipartite (Fig. 1b). Second,

determining the existence of a popular matching is known to be

NP-hard in roommates instances with strict preferences [14, 19]

and in bipartite instances with weak rankings [4, 11].

1.1 Relaxations of Popularity

The non-existence and intractability results for popular matchings

motivate the study of relaxations in search of positive results. A

natural relaxation of popularity is low unpopularity and two of

the well-known measures for quantifying the unpopularity of a

matching are unpopularity margin and unpopularity factor [28]. The
former bounds the additive gap and the latter bounds the multi-

plicative gap of the worst pairwise defeat suffered by the matching.

Specifically, a matching 𝑁 that minimizes max𝑀 Δ(𝑀, 𝑁 ) is a least
unpopularity margin matching and a matching 𝑁 that minimizes

max𝑀 (𝜙 (𝑀, 𝑁 )/𝜙 (𝑁,𝑀)) is a least unpopularity factor matching.

A popular matching has unpopularity margin 0 and unpopularity

factor exactly 1 (where we interpret 0/0 as 1).
A matching 𝑀 with low unpopularity margin/factor may lose

many elections, however 𝑀 can be considered to be approximately
popular because there are no heavy defeats. It is easy to construct

a bipartite instance on 𝑛 vertices with weak rankings (analogous

to the one in Fig. 1c) where every matching has unpopularity mar-

gin/factor Ω(𝑛). So it can be the case that every matching suffers a

heavy defeat against some other matching.

An intriguing alternative is to ask for a matching that does not

suffer many defeats. If 𝑀 is a popular matching, the constraints

Δ(𝑀, 𝑁 ) ≥ 0 have to be satisfied for all matchings 𝑁 . Finding a

matching that satisfies the maximum number of these constraints

is NP-hard since that would solve the popular matching problem.

What would be the complexity of seeking a matching that violates

only a small fraction of these constraints?

Note that there are four matchings in the instance in Fig. 1b (this

includes the empty matching) and each of these four matchings

loses to at least one matching. Is there always a matching that is

guaranteed to not lose against a good fraction of matchings, say a

majority of the matchings (i.e., not lose against at least 𝜇/2 match-

ings, where 𝜇 is the total number of matchings)? This is precisely

the notion of semi-popularity that was introduced in [25].

Definition 1.2 (Semi-popularmatching). Amatching𝑀 is semi-

popular if Δ(𝑀, 𝑁 ) ≥ 0 for a majority of matchings 𝑁 in 𝐺 .

Thus, matching𝑀 is semi-popular if𝑀 is undefeated by a major-

ity of matchings, i.e., 𝑀 loses to at most 𝜇/2 matchings, where 𝜇

is the total number of matchings in 𝐺 . Note that the three match-

ings 𝑀1 = {(𝑎, 𝑏)}, 𝑀2 = {(𝑏, 𝑐)}, and 𝑀3 = {(𝑐, 𝑎)} in Fig. 1b are

semi-popular. Popularity relies on the notion of majority, i.e., there
is no matching that is preferred to a popular matching by a major-

ity of non-indifferent agents. Semi-popularity takes the notion of

majority a step further by asking for a matching undefeated by a

majority of matchings.

Regarding a matching undefeated by many matchings to be

approximately popular is in the same spirit as regarding a matching

that does not have many blocking edges to be approximately stable.
When stable matchings do not exist in a roommates instance 𝐺 =

(𝑉 , 𝐸), the complexity of finding a matching with the smallest

number of blocking edges was studied in [3], where this problem

was shown to be NP-hard. Further, even under strict preferences,

this problem cannot be approximated within a factor of |𝑉 |1−𝜀 for
any 𝜀 > 0, unless P = NP [3].

Semi-popular matchings were introduced in [25] to design an

efficient bicriteria approximation algorithm for the min-cost popu-

lar matching problem in a bipartite instance with strict preferences

(this is an NP-hard problem [14]). Stable matchings, and therefore

semi-popular matchings, always exist in such instances, but what

about general instances? We consider the following questions here.

Does a semi-popular matching always exist in any
roommates instance with weak rankings? If so, is it
easy to find one?

We show a positive answer to the first question above and an

almost positive answer to the second question above. Our first

observation is the following.

Proposition 1.3. Every roommates instance where agents have
weak rankings admits a semi-popular matching.

The proof of Proposition 1.3 uses an averaging argument over

the space of all matchings and is non-constructive. Thus, the above

existence result for semi-popular matchings does not automatically

provide an efficient algorithm for computing such a matching. So

though we know that semi-popular matchings always exist, the

complexity of finding one remains elusive. However we are able to

show an efficient randomized algorithm that with high probabil-

ity (specifically, with probability at least 1 − 1/|𝑉 |) finds an almost
semi-popular matching.

Theorem 1.4 (FPRAS fora semi-popularmatching). Given
a roommates instance 𝐺 = (𝑉 , 𝐸) with weak rankings and any
𝜀 > 0, we can compute in poly( |𝑉 |, 1/𝜀) time a matching𝑀 such that
Δ(𝑀, 𝑁 ) ≥ 0 for at least 1/2 − 𝜀 fraction of all matchings 𝑁 in 𝐺

with high probability.

Though we do not know how to find a semi-popular matching in

polynomial time, we can find in poly( |𝑉 |, 1/𝜀) time a matching𝑀

that is undefeated by at least 1/2− 𝜀 fraction of the matchings with

high probability. It is relevant to note that our algorithm works for

any input graph 𝐺 (not necessarily bipartite) and can also accom-

modate weak rankings (i.e., preferences with ties) and, more gener-

ally, partial order preferences. Thus, the notion of semi-popularity

satisfies universal existence (Proposition 1.3) and there is an effi-

cient algorithm for computing an arbitrarily close approximation

to it (Theorem 1.4) in the general roommates model.

For any matching𝑀 in the graph𝐺 , let wins(𝑀) (resp., ties(𝑀))
be the number of matchings that are defeated by (resp., tie with)𝑀

in their head-to-head election. Deciding if there exists a matching𝑀

that satisfieswins(𝑀) + ties(𝑀) = 𝜇 (where 𝜇 is the total number of

matchings) is NP-hard [4] as this is precisely the popular matching

problem. In contrast to this, there is a polynomial time algorithm [5]

to decide whether there exists a matching 𝑀 such that wins(𝑀) =
𝜇 − 1, (so𝑀 defeats every other matching). Such a matching𝑀 is a
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Condorcet winner2 (aka a strongly popularmatching). Of course, such

a matching need not exist in the given instance and this motivates

the following natural question:

Is there an efficient algorithm to find a matching𝑀 that
maximizes wins(𝑀)?

Copeland winners. The above question is closely connected

to a classical notion called Copeland winner in social choice theory.

The Copeland rule is a well-known Condorcet-consistent voting
rule (i.e., it selects the Condorcet winner whenever one exists) that

has a long history starting from the 13th century and is named

after Arthur H. Copeland [8, 21]. Copeland’s method is a natural

extension of the Condorcet method and has been called “perhaps

the simplest modification” of the Condorcet method [12]. Variants

of the Copeland rule are used in sports leagues around the world.

Below we define this method in the setting of matchings.

The Copeland score of a matching 𝑀 is defined as score(𝑀) B
wins(𝑀) + ties(𝑀)/2. That is, the Copeland rule assigns one point

for every win, half a point for every tie (this includes comparing

the matching against itself), and none for a loss in a head-to-head

comparison.

Definition 1.5. A matching with the maximum value of score(·)
is a Copeland winner.

Social choice theory tells us that a Copeland winner satisfies

many standard desirable properties such as Condorcet-consistency,

monotonicity, majority [6, 9, 30], and most importantly, a Copeland

winner always exists. It is easy to show that every Copeland winner

is semi-popular (see Corollary 2.3). However, unlike semi-popular

matchings where we do not know the complexity of computing

an exact solution, it can be shown that finding an exact Copeland

winner is computationally intractable.

Theorem 1.6 (Hardness of Copeland winner). Unless P =

NP, there is no polynomial-time algorithm for finding a Copeland
winner in a roommates instance with weak rankings.

The class of Copeland
𝛼
rules generalizes the Copeland rule

where wins/ties/losses get the weights of 1/𝛼/0 for some 0 ≤
𝛼 ≤ 1 [15, 35]. Let us call a matching with the maximum value of

wins(𝑀) +𝛼 · ties(𝑀) a Copeland𝛼 winner. So a Copeland
0
winner

is a matching𝑀 that maximizes wins(𝑀).
It is easy to extend our proof of Theorem 1.6 to show that unless

P = NP, there is no polynomial-time algorithm in a roommates

instance with weak rankings to find a Copeland
𝛼
winner for any

0 ≤ 𝛼 < 1. Thus in spite of the tractability of testing if there exists

a matching𝑀 with wins(𝑀) = 𝜇 − 1 and finding one if so [5], our

earlier question on the tractability of finding a matching 𝑀 that

maximizes wins(𝑀) has a negative answer. That is, under standard
complexity-theoretic assumptions, there is no polynomial-time

algorithm for finding a matching𝑀 that maximizes wins(𝑀).

Background and related work. There are polynomial-time

algorithms known for deciding if a roommates instance with strict

preferences admits a stable matching [23]. As mentioned earlier,

it is NP-hard to decide if a popular matching exists in bipartite

2
Recall that a Condorcet winner is one that wins every head-to-head election (see

footnote 1).

Semi-Popular

PopularCopeland

Condorcet

Figure 2: Relationship among the various notionsmentioned in this

paper for the setting of roommates instances with weak preferences.

A solid (resp., dashed) border indicates that the property is guaran-

teed to exist (resp., could fail to exist). Computational tractability

(resp., intractability) is indicated via green (resp., red) color. We use

a lighter shade of green for the outer box to denote tractability of

the “almost” variant of the problem.

graphs with weak rankings or in non-bipartite graphs with strict

preferences [4, 11, 14, 19]. See Fig. 2 for an illustration of relaxations

among the various notions mentioned here.

Algorithmic aspects of popular matchings have been extensively

studied in the last fifteen years within theoretical computer science

and combinatorial optimization literature and we refer to [10] for a

survey. The special case of popular matchings in bipartite graphs

with strict preferences has been of particular interest, where such

matchings always exist, and the work that is closest to ours here is

[25], where semi-popular matchings were introduced.

1.2 Our Techniques

Weestablish our algorithmic result (Theorem 1.4) by using a sampling-

based procedure (Algorithm 1). Sampling matchings from a near-

uniform distribution is well-studied in theoretical computer sci-

ence [29], however it has not really been explored much in computa-

tional social choice. We use the sampling approach to search for an

almost semi-popular matching in the exponentially large space of

all matchings in𝐺 = (𝑉 , 𝐸). Specifically, we draw two independent

samples, each containing Θ(log |𝑉 |/𝜀2) matchings, from a distribu-

tion that is 𝜀/4-close to the uniform distribution in total variation

distance.
3
By the seminal result of Jerrum and Sinclair [24], there is

an algorithm with running time poly( |𝑉 |, log(1/𝜀)) for generating
a sample from such a distribution.

We then pit the two random samples against each other by eval-

uating all head-to-head elections between pairs of matchings, one

matching from each sample, and pick the one with the highest

Copeland score in these elections. It is easy to see that the cho-

sen matching is semi-popular ‘on the sample’ (Lemma 2.4). By a

standard concentration argument, we are able to show that this

matching is almost semi-popular with respect to all the matchings

in the given instance with high probability (Lemma 2.6).

Our hardness result for Copeland winners (Theorem 1.6) uses

a reduction from VERTEX COVER.4 At a high level, our construc-

tion is inspired by a construction in [13] that used a far simpler

instance to show that the extension complexity of the bipartite

3
Informally, the total variation distance between two probability distributions is the

largest possible difference between the probabilities that the two probability distribu-

tions can assign to the same event.

4
In the VERTEX COVER problem, the input is a graph𝐺 = (𝑉 , 𝐸 ) and an integer 𝑘 ,

and the goal is to determine if there is a subset 𝑆 ⊆ 𝑉 of at most 𝑘 vertices such that

every edge in 𝐸 is incident to some vertex in 𝑆 . This is an NP-hard problem.
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popular matching polytope is near-exponential. Our construction,

on the other hand, is considerably more involved and we construct

a non-bipartite instance 𝐺 with weak rankings. What makes our

construction particularly tricky is that every Copeland winner in

𝐺 has to correspond to a minimum vertex cover in the input in-

stance𝐻 . In general, we do not know how to characterize Copeland

winners in 𝐺 . In fact, we do not even know how to test if a given

matching is a Copeland winner or not. This makes our reduction

challenging. We use the LP framework for popular matchings to

analyze Copeland winners and this leads to our hardness proof.

This proof is given in Section 3.

2 COMPUTING AN ALMOST SEMI-POPULAR

MATCHING

Our input is a roommates instance 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices where

every vertex has a weak ranking over its neighbors. While it is easy

to construct roommates instances that admit no popular matchings

(see Fig. 1b), semi-popular matchings are always present in any

instance 𝐺 , as we show below.

Let 𝜇 be the total number of matchings in𝐺 . For any matching𝑀

in the graph 𝐺 , recall that wins(𝑀) (resp., ties(𝑀)) is the number

of matchings that are defeated by (resp., tie with) 𝑀 in their head-

to-head election. A matching𝑀 is popular if and only if wins(𝑀) +
ties(𝑀) = 𝜇 and 𝑀 is semi-popular if and only if wins(𝑀) +
ties(𝑀) ≥ 𝜇/2. Recall that score(𝑀) = wins(𝑀) + ties(𝑀)/2. The
following lemma immediately implies Proposition 1.3.

Lemma 2.1. Every roommates instance (where agents have weak
rankings) admits a matching𝑀 with score(𝑀) ≥ 𝜇/2.

Lemma 2.1 is a straightforward consequence of the following ob-

servation which, in turn, follows easily from pigeonhole principle.
5

Proposition 2.2. In any directed multigraph with 𝑛 vertices and
𝑚 edges, there exists some vertex with outdegree at least ⌈𝑚/𝑛⌉.

Proof. (of Lemma 2.1) Construct a directed multigraph whose

vertices correspond to the matchings. Between any pair of vertices

(𝑢, 𝑣) in this multigraph, add two directed edges from 𝑢 to 𝑣 if

the matching corresponding to 𝑢 defeats the one corresponding

to 𝑣 . Otherwise, if the corresponding matchings are tied, add one

directed edge from 𝑢 to 𝑣 and another from 𝑣 to 𝑢.

Finally, add a directed edge (self-loop) from every vertex to itself.

Observe that a vertex in the multigraph constructed above has

outdegree 𝑑 if and only if the corresponding matching has score

𝑑/2. The multigraph has 𝜇 (𝜇−1) +𝜇 edges. Thus, by Proposition 2.2,
there must exist a vertex with outdegree at least 𝜇. Then, the corre-

sponding matching, say𝑀 , must have score(𝑀) at least 𝜇/2. □

Corollary 2.3. Every Copeland winner is a semi-popular match-
ing.

Proof. Let𝑀 be a Copeland winner. Then score(𝑀) ≥ 𝜇/2 (by
Lemma 2.1). Since score(𝑀) = wins(𝑀) + ties(𝑀)/2 ≤ wins(𝑀) +
ties(𝑀), we havewins(𝑀)+ties(𝑀) ≥ 𝜇/2. Thus𝑀 is semi-popular.

□

5
We thank an anonymous reviewer for suggesting to use this fact to prove Lemmas 2.1

and 2.4.

ALGORITHM 1: An FPRAS for Semi-Popular Matchings.

Input: A graph𝐺 = (𝑉 , 𝐸 ) on 𝑛 vertices and a set of weak rankings for

every vertex 𝑣 ∈ 𝑉 .

Parameters: 𝜀 > 0.

Output: A matching in𝐺 .

1 Produce two independent samples S0 and S1 of 𝑘 = ⌈ (32 ln𝑛/𝜀2 ) ⌉
matchings where each matching is chosen from a distribution that is

𝜀/4-close to the uniform distribution (on all matchings in𝐺 ) in total

variation distance.

2 foreach matching𝑀 ∈ S0 ∪ S1 do

3 Initialize wins′
𝑀

= ties′
𝑀

= 0.

4 foreach matching𝑀 ∈ S0 do

5 foreach matching 𝑁 ∈ S1 do

6 if Δ(𝑀,𝑁 ) > 0 then wins′
𝑀

= wins′
𝑀

+ 1.

7 if Δ(𝑀,𝑁 ) = 0 then ties′
𝑀

= ties′
𝑀

+ 1 and ties′
𝑁

= ties′
𝑁

+ 1.

8 if Δ(𝑀,𝑁 ) < 0 then wins′
𝑁

= wins′
𝑁

+ 1.

9 return a matching 𝑆 ∈ S0 ∪ S1 with the maximum value of wins′
𝑆
+ ties′

𝑆
/2.

Our algorithm. We will now show an FPRAS for computing a

semi-popular matching. In fact, we will construct a matching 𝑀

with score(𝑀) ≥ (1 − 𝜀) · 𝜇/2 with high probability. In order to

construct such a matching, as mentioned earlier, we will use the

classical result from [24] that shows an algorithm with running

time poly(𝑛, log(1/𝜀)) to sample matchings from a distribution 𝜀-

close to the uniform distribution in total variation distance (see [24,

Corollary 4.3]).

Our algorithm is presented as Algorithm 1. The input to our

algorithm is a roommates instance 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices along

with a parameter 𝜀 > 0. It computes two independent samples S0

and S1 of 𝑘 = ⌈(32 ln𝑛/𝜀2)⌉ matchings—each from a distribution

𝜀/4-close to the uniform distribution (on all the matchings in 𝐺) in

total variation distance.

For 𝑀 ∈ S0 (resp., S1), let wins′𝑀 be the number of matchings

in S1 (resp., S0) that𝑀 wins against and let ties′
𝑀

be the number

of matchings in S1 (resp., S0) that𝑀 ties with.

Our algorithm computes score′
𝑆
= wins′

𝑆
+ ties′

𝑆
/2 for each 𝑆 ∈

S0∪S1. It returns a matching inS0∪S1 with the maximum value of

score′. We will now show that such a matching has a high Copeland

score on the sample. Recall that |S0 | = |S1 | = 𝑘 .

Lemma 2.4. If 𝑆∗ is the matching returned by Algorithm 1, then
score′

𝑆∗ ≥ 𝑘/2.

Proof. Consider a bipartite graph whose left and right vertex

sets correspond to the matchings in S0 and S1, respectively; thus,

there are 2𝑘 vertices overall. If the 𝑖th matching in S0 defeats (resp.,

is defeated by) the 𝑗 th matching in S1, then add two directed edges

from the 𝑖th left vertex to the 𝑗 th right vertex (resp., from the 𝑗 th

right vertex to the 𝑖th left vertex). If the two matchings are tied,

add two directed edges—one in either direction—between the cor-

responding vertices.

Observe that a vertex in the bipartite graph constructed above

has outdegree 𝑑 if and only if the corresponding matching, say

𝑀 , has score′
𝑀

≥ 𝑑/2. There are 2𝑘2 edges in the graph. Thus, by

Proposition 2.2, there must exist a vertex with outdegree at least

𝑘 , and therefore a matching, say𝑀 , with score′
𝑀

≥ 𝑘/2. Thus, the
matching 𝑆∗ returned by Algorithm 1 has score′

𝑆∗ ≥ score′
𝑀

≥
𝑘/2. □
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We will show that the on-sample guarantee of Lemma 2.4 carries

over, with high probability, to the entire set of matchings. This

proof makes use of a tail bound for the random variable score′
𝑆
cor-

responding to the on-sample Copeland score of any fixed matching

𝑆 ∈ S0 ∪ S1.

Lemma 2.5. Let 𝑆 ∈ S0 ∪ S1 be any fixed matching sampled by
Algorithm 1. Then the probability that score′

𝑆
≥ 𝑘 · (score(𝑆)/𝜇+𝜀/2)

is at most 1/𝑛.

Proof. Assume without loss of generality that 𝑆 ∈ S1. If S0 was

a set of 𝑘 matchings chosen uniformly at random from the set of all

matchings in𝐺 , then the probability that 𝑆 defeats any matching in

S0 is wins(𝑆)/𝜇 and the probability that it ties with any matching

in S0 is ties(𝑆)/𝜇.
However, the matchings in S0 are sampled from a distribution

𝜀/4-close to the uniform distribution in total variation distance.

So, the probability that 𝑆 defeats any matching in S0 is at most

wins(𝑆)/𝜇 + 𝜀/4 and the probability that it ties with any matching

in S0 is at most ties(𝑆)/𝜇 + 𝜀/4.
Observe that score′

𝑆
= 𝑋1+ . . .+𝑋𝑘 , where, for each 𝑖 , the random

variable𝑋𝑖 ∈ {0, 1
2
, 1} denotes whether 𝑆 loses/ties/wins against the

𝑖-th matching in S0. Note that E[𝑋𝑖 ] ≤ wins(𝑆)/𝜇 + ties(𝑆)/2𝜇 +
3𝜀/8 for each 𝑖 . Since score(𝑆) = wins(𝑆) + ties(𝑆)/2, linearity of

expectation gives

E
[
score′𝑆

]
≤ 𝑘 ·

(
score(𝑆)

𝜇
+ 3𝜀

8

)
. (1)

In light of Equation (1), to prove the lemma it suffices to bound

the probability of the event that

score′𝑆 − E[score′𝑆 ] ≥ 𝑘 · 𝜀/8,

or, equivalently,

score′𝑆/𝑘 − E[score′𝑆/𝑘] ≥ 𝜀/8.

For this, we will use Hoeffding’s inequality [22]. Recall that if

𝑋1, . . . , 𝑋𝑘 are bounded independent random variables such that

𝑋𝑖 ∈ [0, 1] for all 𝑖 ∈ [𝑘] and 𝑌 B (𝑋1 + · · · + 𝑋𝑘 )/𝑘 , then Hoeffd-

ing’s inequality says that for any 𝑡 ≥ 0,

Pr

[
𝑌 − E[𝑌 ] ≥ 𝑡

]
≤ 𝑒−2𝑘𝑡

2

.

Applying the above inequality for 𝑌 B score′
𝑆
/𝑘 and 𝑡 B 𝜀/8, we

get that

Pr

[
score′𝑆/𝑘 − E[score′𝑆/𝑘] ≥ 𝜀/8

]
≤ 𝑒−𝑘𝜀

2/32 . (2)

Substituting𝑘 = ⌈(32 ln𝑛/𝜀2)⌉ in Equation (2), we get that the right-
hand side is at most 1/𝑛. Thus, with probability at least 1 − 1/𝑛,
we have score′

𝑆
< E[score′

𝑆
] + 𝑘 · 𝜀/8. Using the upper bound in

Equation (1), it follows that score′
𝑆
< 𝑘 · (score(𝑆)/𝜇 + 𝜀/2) with

probability at least 1 − 1/𝑛. □

By Lemmas 2.4 and 2.5, the matching 𝑆∗ returned by our algo-

rithm satisfies 𝑘/2 ≤ score′
𝑆∗ < 𝑘 · (score(𝑆∗)/𝜇 + 𝜀/2) with high

probability. Thus Lemma 2.6 follows.

Lemma 2.6. If 𝑆∗ is the matching returned by Algorithm 1, then
score(𝑆∗) > (1 − 𝜀) · 𝜇/2 with high probability.

So our algorithm computes a matching whose Copeland score

is more than (1 − 𝜀) · 𝜇/2 with high probability. Its running time

is polynomial in 𝑛 and 1/𝜀. Since wins(𝑆∗) + ties(𝑆∗) ≥ score(𝑆∗),
Theorem 1.4 follows.

Theorem 1.4 (FPRAS fora semi-popularmatching). Given
a roommates instance 𝐺 = (𝑉 , 𝐸) with weak rankings and any
𝜀 > 0, we can compute in poly( |𝑉 |, 1/𝜀) time a matching𝑀 such that
Δ(𝑀, 𝑁 ) ≥ 0 for at least 1/2 − 𝜀 fraction of all matchings 𝑁 in 𝐺

with high probability.

3 FINDING A COPELANDWINNER: A

HARDNESS RESULT

In Section 3.1 we will first give a high-level overview of the proof of

Theorem 1.6 which states that under standard complexity-theoretic

assumptions, there is no polynomial-time algorithm for finding a

Copeland winner. Several details are given in Section 3.2 and the

remaining details can be found in the full version of the paper [26].

3.1 A High-Level Overview

Given a VERTEX COVER instance 𝐻 = (𝑉𝐻 , 𝐸𝐻 ), we will construct
a roommates instance𝐺 = (𝑉 , 𝐸) such that any Copeland winner in
𝐺 will correspond to a minimum vertex cover in 𝐻 . We will assume

that the vertices in the VERTEX COVER instance are indexed as

1, 2, . . . , 𝑛, i.e., 𝑉𝐻 = {1, . . . , 𝑛}. Specifically,
• for every vertex 𝑖 ∈ 𝑉𝐻 , there is a gadget 𝑍𝑖 in 𝐺 on 4 main
vertices 𝑎𝑖 , 𝑏𝑖 , 𝑎

′
𝑖
, 𝑏′

𝑖
and 100 auxiliary vertices 𝑢0

𝑖
, . . . , 𝑢99

𝑖
,

and

• for every edge 𝑒 ∈ 𝐸𝐻 , there is a gadget 𝑌𝑒 in 𝐺 on 6 main
vertices 𝑠𝑒 , 𝑡𝑒 , 𝑠

′
𝑒 , 𝑡

′
𝑒 , 𝑠

′′
𝑒 , 𝑡

′′
𝑒 along with 8 auxiliary vertices

𝑣𝑒 , 𝑣
′
𝑒 ,𝑤𝑒 ,𝑤

′
𝑒 , 𝑐𝑒 , 𝑑𝑒 , 𝑐

′
𝑒 , 𝑑

′
𝑒 (see Fig. 3).

The gadgets. The preferences of the vertices in the vertex gadget

𝑍𝑖 and the edge gadget 𝑌𝑒 are shown in Fig. 3. Observe that in the

vertex gadget 𝑍𝑖 , all the vertices 𝑢0
𝑖
, . . . , 𝑢99

𝑖
are tied at the third

position (which is the last acceptable position) in 𝑎𝑖 ’s preference

order. Similarly, in the edge gadget𝑌𝑒 (where 𝑒 = (𝑖, 𝑗)), the vertices
𝑏𝑖 and 𝑐𝑒 are tied in 𝑑𝑒 ’s preference list and the vertices 𝑏 𝑗 and 𝑐

′
𝑒

are tied in 𝑑′𝑒 ’s preference list.

Red state vs blue state. Let 𝑀 be a matching in 𝐺 . We will say a

vertex gadget 𝑍𝑖 is in red state in 𝑀 if {(𝑎𝑖 , 𝑏𝑖 ), (𝑎′𝑖 , 𝑏
′
𝑖
)} ⊂ 𝑀 and

in blue state if {(𝑎𝑖 , 𝑏′𝑖 ), (𝑎
′
𝑖
, 𝑏𝑖 )} ⊂ 𝑀 .

Ahigh-level overview of our hardness reduction.Wewill show

that any Copeland winner𝑀 in 𝐺 has the following properties.

• 𝑀 does not use any inter-gadget edge, i.e., a shared edge

between a vertex gadget and an edge gadget.

• For any vertex 𝑖 ∈ 𝑉𝐻 , its vertex gadget 𝑍𝑖 is either in red

state or in blue state in𝑀 .

• For any edge 𝑒 = (𝑖, 𝑗), at least one of 𝑍𝑖 , 𝑍 𝑗 has to be in blue

state in𝑀 .

• The vertices 𝑖 with vertex gadgets 𝑍𝑖 in blue state in𝑀 form

a minimum vertex cover in 𝐻 .

The above properties will imply Theorem 1.6. For the sake of

readability, we do not include in Section 3.2 the proofs of all the

lemmas that together imply Theorem 1.6; the proofs of lemmas
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Figure 3: (Left) The vertex gadget 𝑍𝑖 . The red colored edges within 𝑍𝑖 indicate a stable matching. (Right) The edge gadget 𝑌𝑒 on 14 vertices. All

unnumbered edges incident to a vertex should be interpreted as “tied for the last acceptable position”. The edges (𝑐𝑒 , 𝑑𝑒 ), (𝑣𝑒 , 𝑣′𝑒 ), (𝑤𝑒 , 𝑤
′
𝑒 ), (𝑐′𝑒 , 𝑑 ′

𝑒 )
along with the olive-colored (resp., teal-colored) edges define the matching 𝐹𝑒 (resp., 𝐿𝑒 ). Here 𝑒 = (𝑖, 𝑗 ) and (𝑏𝑖 , 𝑑𝑒 ) is an inter-gadget edge.

marked by an asterisk (★) are given in the full version of the pa-

per [26]. The hardness of finding a Copeland winner will follow

from Lemmas 3.7 and 3.8 which are proved in Section 3.2.

Theorem 1.6 (Hardness of Copeland winner). Unless P =

NP, there is no polynomial-time algorithm for finding a Copeland
winner in a roommates instance with weak rankings.

3.2 Proof of Theorem 1.6

Let 𝑒 ∈ 𝐸. In the edge gadget𝑌𝑒 (see Fig. 3), wewill find it convenient

to define the matchings

𝐹𝑒 = {(𝑠𝑒 , 𝑡 ′′𝑒 ), (𝑠′𝑒 , 𝑡 ′𝑒 ), (𝑠′′𝑒 , 𝑡𝑒 ), (𝑣𝑒 , 𝑣 ′𝑒 ), (𝑤𝑒 ,𝑤
′
𝑒 ), (𝑐𝑒 , 𝑑𝑒 ), (𝑐′𝑒 , 𝑑′𝑒 )}

and

𝐿𝑒 = {(𝑠𝑒 , 𝑡 ′𝑒 ), (𝑠′𝑒 , 𝑡𝑒 ), (𝑠′′𝑒 , 𝑡 ′′𝑒 ), (𝑣𝑒 , 𝑣 ′𝑒 ), (𝑤𝑒 ,𝑤
′
𝑒 ), (𝑐𝑒 , 𝑑𝑒 ), (𝑐′𝑒 , 𝑑′𝑒 )}.

These are highlighted with olive and teal colors in Fig. 3, respec-

tively. The following two lemmaswill be very useful to us. Lemma 3.1

discusses the number of matchings that tie with the matching 𝐹𝑒
(or 𝐿𝑒 ) in the subgraph restricted to the edge gadget 𝑌𝑒 (see Fig. 3).

Lemma 3.1 (★). In the subgraph restricted to 𝑌𝑒 , there are exactly
10 matchings that are tied with 𝐹𝑒 and no matching defeats 𝐹𝑒 . Fur-
thermore, an analogous statement holds for the matching 𝐿𝑒 .

Next, Lemma 3.2 shows that there is no matching within the

subgraph restricted to 𝑌𝑒 that “does better” than 𝐹𝑒 or 𝐿𝑒 in terms

of the number of matchings that defeat or tie with it.

Lemma 3.2 (★). For any matching 𝑇𝑒 in the subgraph restricted to
𝑌𝑒 , there are at least 10 matchings within this subgraph that either
defeat or tie with 𝑇𝑒 .

Recall the red/blue states of a vertex gadget described in Section 3.

Lemma 3.3 stated below shows that a Copeland winner matching

that does not use any inter-gadget edge must have each vertex

gadget in either red or blue state.

Lemma 3.3 (★). Let 𝑀 be a Copeland winner in 𝐺 . If 𝑀 does
not use any inter-gadget edge, then in any vertex gadget 𝑍𝑖 , either
{(𝑎𝑖 , 𝑏𝑖 ), (𝑎′𝑖 , 𝑏

′
𝑖
)} ⊂ 𝑀 or {(𝑎𝑖 , 𝑏′𝑖 ), (𝑎

′
𝑖
, 𝑏𝑖 )} ⊂ 𝑀 .

Observation 1. Consider the subgraph induced on 𝑍𝑖 .
• The red matching 𝑅𝑖 = {(𝑎𝑖 , 𝑏𝑖 ), (𝑎′𝑖 , 𝑏

′
𝑖
)} is tied with 2 match-

ings in this subgraph. These are 𝑅𝑖 itself and the blue matching
𝐵𝑖 = {(𝑎𝑖 , 𝑏′𝑖 ), (𝑎

′
𝑖
, 𝑏𝑖 )}.

• The blue matching 𝐵𝑖 = {(𝑎𝑖 , 𝑏′𝑖 ), (𝑎
′
𝑖
, 𝑏𝑖 )} is tied with 3match-

ings in this subgraph: these are 𝐵𝑖 itself, the red matching 𝑅𝑖 ,
and the matching {(𝑎𝑖 , 𝑏𝑖 )}.

Moreover, no matching in this subgraph defeats either the red match-
ing 𝑅𝑖 or the blue matching 𝐵𝑖 .

It is straightforward to verify the above observation. For any

gadget𝑋 , let𝑀∩𝑋 denote the edges of matching𝑀 in the subgraph

restricted to 𝑋 .

Lemma 3.4 (★). Let 𝑒 = (𝑖, 𝑗) ∈ 𝐸. Let 𝑀 be any matching in
𝐺 such that both 𝑍𝑖 and 𝑍 𝑗 are in red state in 𝑀 . Then there are
at least 100 matchings within 𝑌𝑒 ∪ 𝑍𝑖 ∪ 𝑍 𝑗 that defeat or tie with
𝑀 ∩ (𝑌𝑒 ∪ 𝑍𝑖 ∪ 𝑍 𝑗 ).

Next, we will show in Lemma 3.6 that in a Copeland winner

matching that does not use any inter-gadget edge, for any edge

gadget, at least one of its adjacent vertex gadgets must be in blue

state. The proof of Lemma 3.6 will make use of the following key

technical lemma.

Lemma 3.5 (★). Let 𝑀∗ be any matching in 𝐺 that satisfies the
following three conditions:

(1) Every vertex gadget is either in red or blue state.
(2) For every edge gadget, at least one of its adjacent vertex gadgets

is in blue state.
(3) For each edge 𝑒 = (𝑖, 𝑗) where 𝑖 < 𝑗 , if the vertex gadget 𝑍𝑖 is

in blue state, then𝑀∗ ∩ 𝑌𝑒 = 𝐹𝑒 otherwise𝑀∗ ∩ 𝑌𝑒 = 𝐿𝑒 .
Then (i)𝑀∗ is popular in 𝐺 and (ii) any matching that contains an
inter-gadget edge loses to𝑀∗.

We showed in Lemma 3.3 that the first property stated in Lemma 3.5

is obeyed by any Copeland winner that does not use any inter-

gadget edge. Lemma 3.6 stated below will show that the second

property stated in Lemma 3.5 is also obeyed by any Copeland win-

ner that does not use any inter-gadget edge.
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Lemma 3.6. Let𝑀 be a Copeland winner in 𝐺 . If𝑀 does not use
any inter-gadget edge, then, for every edge 𝑒 = (𝑖, 𝑗), at least one of
𝑍𝑖 , 𝑍 𝑗 has to be in blue state in𝑀 .

Proof. Suppose, for contradiction, that both 𝑍𝑖 and 𝑍 𝑗 are in

red state in 𝑀 for some edge 𝑒 = (𝑖, 𝑗). Let X denote the set of

all vertex and edge gadgets in the matching instance. Consider a

partitioning of X into single gadgets and auxiliary gadgets. Each

auxiliary gadget is a triple of an edge and two adjacent vertex

gadgets (𝑌𝑒 , 𝑍𝑖 , 𝑍 𝑗 ) where 𝑒 = (𝑖, 𝑗) is an edge such that both 𝑍𝑖
and 𝑍 𝑗 are in red state in 𝑀 . While there is such an edge 𝑒 with

both its vertex gadgets in red state and these vertex gadgets are

“unclaimed” by any other edge, the edge 𝑒 claims both its vertex

gadgets and makes an auxiliary gadget out of these three gadgets.

All the remaining vertex and edge gadgets are classified as single

gadgets, including those edges one or both of whose endpoints

have been claimed by some other edge(s). Observe that

loss(𝑀) + ties(𝑀) ≥ Π𝑋 ∈X (loss(𝑀 ∩ 𝑋 ) + ties(𝑀 ∩ 𝑋 ))

where 𝑋 is any single or auxiliary gadget, and loss(𝑀 ∩ 𝑋 ) (resp.,
ties(𝑀 ∩𝑋 )) is the number of matchings that defeat (resp., tie with)

𝑀 ∩ 𝑋 within the gadget 𝑋 . Also, loss(𝑀) (resp., ties(𝑀)) is the
number of matchings that defeat (resp., tie with) the matching𝑀 .

Consider any auxiliary gadget 𝑋 = (𝑌𝑒 , 𝑍𝑖 , 𝑍 𝑗 ). We know that

loss(𝑀 ∩𝑋 ) + ties(𝑀 ∩𝑋 ) is at least 100 (by Lemma 3.4). Thus, we

have

loss(𝑀) + ties(𝑀) ≥ 2
𝑛′

· 3𝑛
′′
· 10𝑚

′
· 100𝑡 , (3)

where 𝑛′ (resp., 𝑛′′) is the number of vertices present as single

gadgets in red (resp., blue) state,𝑚′
is the number of edges that are

present as single gadgets, and 𝑡 is the number of auxiliary gadgets

in the aforementioned partition. Note that we used Lemma 3.2

here in bounding loss(𝑀 ∩𝑌𝑒 ) + ties(𝑀 ∩𝑌𝑒 ) by 10 for every edge

gadget 𝑌𝑒 that is present as a single gadget, and used Lemma 3.3

and Observation 1 in bounding loss(𝑀 ∩ 𝑍𝑖 ) + ties(𝑀 ∩ 𝑍𝑖 ) by 2

(resp., 3) for every vertex gadget 𝑍𝑖 (acting as single gadget) that is

in red (resp., blue) state.

We will now construct another matching with Copeland score

higher than that of 𝑀 to establish the desired contradiction. Let

𝑀∗
be the matching obtained by converting both 𝑍𝑖 and 𝑍 𝑗 in each

auxiliary gadget (𝑌𝑒 , 𝑍𝑖 , 𝑍 𝑗 ) in our partition above into blue state

and let 𝑀∗ ∩ 𝑌𝑒 be either 𝐹𝑒 or 𝐿𝑒 (it does not matter which). For

every edge 𝑒′ = (𝑖′, 𝑗 ′) such that 𝑌𝑒′ is present as a single gadget,

observe that at least one of 𝑖′, 𝑗 ′ is either in blue state or in an

auxiliary gadget. If it is min{𝑖′, 𝑗 ′} that is in blue state/auxiliary

gadget, then let𝑀∗ ∩ 𝑌𝑒′ = 𝐹𝑒′ , else let𝑀
∗ ∩ 𝑌𝑒′ = 𝐿𝑒′ . Any vertex

gadget that is present as a single gadget remains in its original red

or blue state.

Notice that𝑀∗
satisfies the conditions in Lemma 3.5. So𝑀∗

is

popular in 𝐺 , i.e., loss(𝑀∗) = 0, and any matching that ties with

𝑀∗
must not use any inter-gadget edge. Therefore, the number

of matchings that tie with𝑀∗
across the entire graph 𝐺 is simply

the product of matchings that tie with it on individual single and

auxiliary gadgets. Hence,

loss(𝑀∗) + ties(𝑀∗) = ties(𝑀∗) = 2
𝑛′

· 3𝑛
′′
· 10𝑚

′
· 90𝑡 , (4)

where 𝑛′, 𝑛′′,𝑚′
, and 𝑡 are defined as in (3). Note that the bound of

90 for an auxiliary gadget in (4) follows from taking the product

of 3, 3, and 10, which is the number of matchings that tie with

𝑀∗
in the two vertex gadgets and their common edge gadget (see

Observation 1 and Lemma 3.1).

Recall that score(𝑁 ) = wins(𝑁 ) + ties(𝑁 )/2 = 𝜇 − loss(𝑁 ) −
ties(𝑁 )/2 for anymatching𝑁 . Comparing (3) and (4) alongwith the

fact that loss(𝑀) ≥ 0 = loss(𝑀∗), we have score(𝑀∗) > score(𝑀),
as long as there is even a single edge (𝑖, 𝑗) such that both 𝑍𝑖 and

𝑍 𝑗 are in red state in𝑀 . Indeed,

loss(𝑀∗) + ties(𝑀∗)/2 = 2
𝑛′−1 · 3𝑛

′′
· 10𝑚

′
· 90𝑡 , and

loss(𝑀) + ties(𝑀)/2 ≥ ((loss(𝑀) + ties(𝑀)) /2

≥ 2
𝑛′−1 · 3𝑛

′′
· 10𝑚

′
· 100𝑡 .

This contradicts the fact that 𝑀 is a Copeland winner. Hence,

for every edge 𝑒 = (𝑖, 𝑗), at least one of 𝑍𝑖 , 𝑍 𝑗 must be in blue state

in𝑀 . This proves Lemma 3.6. □

In Lemma 3.6, we showed that for any Copeland winner 𝑀 that

does not use any inter-gadget edge, the vertices whose gadgets are

in blue state in 𝑀 constitute a vertex cover in 𝐻 . The next result

shows that the set of such vertices is, in fact, a minimum vertex

cover.

Lemma 3.7. Let𝑀 be a Copeland winner in 𝐺 . If𝑀 does not use
any inter-gadget edge, then the vertices whose gadgets are in blue
state in𝑀 constitute a minimum vertex cover in 𝐻 .

Proof. We know from Lemma 3.6 that loss(𝑀) + ties(𝑀) ≥
Π𝑆 (loss(𝑀 ∩𝑆) + ties(𝑀 ∩𝑆)) where the product is over all gadgets
𝑆 . Further, from Lemma 3.3, Lemma 3.2, and Observation 1, we

know that the right hand side in the above inequality is at least

2
𝑛−𝑘 · 3𝑘 · 10𝑚 , where 𝑘 is the number of vertex gadgets in blue

state and 𝑛 (resp., 𝑚) is the number of vertices (resp., edges) in

the VERTEX COVER instance 𝐻 . Thus, score(𝑀) = 𝜇 − loss(𝑀) −
ties(𝑀)/2 ≤ 𝜇 − 2

𝑛−𝑘−1 · 3𝑘 · 10𝑚 . Moreover, 𝑘 ≥ |𝐶 |, where𝐶 is a

minimum vertex cover in 𝐻 (by Lemma 3.6).

Let us construct a matching 𝑀𝐶 where the vertex gadgets cor-

responding to the vertices in the minimum vertex cover 𝐶 are in

blue state, those corresponding to the remaining vertices are in

red state, and for every edge 𝑒 = (𝑖, 𝑗), if min{𝑖, 𝑗} is in blue state

then let 𝑀𝐶 ∩ 𝑌𝑒 = 𝐹𝑒 , else 𝑀𝐶 ∩ 𝑌𝑒 = 𝐿𝑒 . Then, the matching

𝑀𝐶 satisfies the conditions of Lemma 3.5. Therefore, by a similar

argument as in the proof of Lemma 3.6, we get that score(𝑀𝐶 ) =
𝜇 − 2

𝑛−𝑐−1 · 3𝑐 · 10𝑚 , where |𝐶 | = 𝑐 . Thus score(𝑀𝐶 ) > score(𝑀) if
𝑐 < 𝑘 . Since score(𝑀) has to be the highest among all matchings, it

follows that 𝑐 = 𝑘 . In other words, the set of vertices whose gadgets

are in blue state in𝑀 constitute a minimum vertex cover in 𝐻 . □

Finally, we show that our assumption that a Copeland winner

does not use an inter-gadget edge always holds. Thus Theorem 1.6

stated in Section 1 follows.

Lemma 3.8. If𝑀 is a Copeland winner in 𝐺 , then𝑀 does not use
any inter-gadget edge.

Proof. The proof is similar to that of Lemma 3.6. Below, we

will outline the main steps involved in the proof. Suppose, for
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contradiction, that 𝑀 uses an inter-gadget edge, say (𝑏𝑖 , 𝑑𝑒 ) (see
Fig. 3). Let X denote the set of all vertex and edge gadgets in the

matching instance. Consider a partitioning of X into single, double,
triple, and auxiliary gadgets as follows:

• Each double (resp., triple) gadget is a pair of an edge gadget

and an adjacent vertex gadget (𝑌𝑒 , 𝑍𝑖 ) (resp., a triple of an
edge and two adjacent vertex gadgets (𝑌𝑒 , 𝑍𝑖 , 𝑍 𝑗 )) where 𝑒 =
(𝑖, 𝑗) is an edge such that 𝑀 contains an inter-gadget edge

between 𝑌𝑒 and 𝑍𝑖 (resp., two inter-gadget edges between

𝑌𝑒 and each of 𝑍𝑖 and 𝑍 𝑗 ). While there is an edge gadget

that shares an inter-gadget edge with one of (resp., both)

its adjacent vertex gadgets, we make a double (resp., triple)

gadget out of these two (resp., three) gadgets. Note that a

vertex gadget can be included in at most one double/triple

gadget in this manner.

• Next, if there is an edge gadget that is adjacent to two vertex

gadgets both of which are in red state and are still unclaimed

by any edge gadget, then this edge gadget claims both these

vertex gadgets; such a triple of edge gadget and its adjacent

vertex gadgets is classified as an auxiliary gadget. Note that

such an edge gadget does not share an inter-gadget edge

with either of the vertex gadgets.

• All remaining vertex and edge gadgets are classified as single
gadgets.

Observe that

loss(𝑀) + ties(𝑀) ≥ Π𝑋 ∈X (loss(𝑀 ∩ 𝑋 ) + ties(𝑀 ∩ 𝑋 )),

where 𝑋 denotes any single, double, triple or auxiliary gadget.

Consider any double or triple gadget 𝑋 . Since the matching

𝑀 uses at least one inter-gadget edge (𝑏𝑖 , 𝑑𝑒 ) in 𝑋 , the vertex 𝑎𝑖
must be matched with either the vertex 𝑏′

𝑖
or one of the vertices in

𝑢0
𝑖
, . . . , 𝑢99

𝑖
(otherwise, if 𝑎𝑖 is unmatched, then𝑀 will not be Pareto

optimal and it is easy to see that every Copeland winner has to

be Pareto optimal).
6
In both cases, the matching {(𝑎𝑖 , 𝑢𝑘

′
𝑖
), (𝑎′

𝑖
, 𝑏′

𝑖
)}

is tied with𝑀 where 𝑘′ ∈ {0, . . . , 99}. Thus, there are at least 100
matchings that defeat or tie with𝑀 ∩ (𝑌𝑒 ∪𝑍𝑖 ). In other words, for

every double or triple gadget𝑋 , the value of loss(𝑀∩𝑋 ) + ties(𝑀∩
𝑋 ) is at least 100. We therefore have

loss(𝑀) + ties(𝑀) ≥ 2
𝑛′

· 3𝑛
′′
· 10𝑚

′
· 100𝑡2 · 100𝑡3 · 100𝑎, (5)

where 𝑛′ (resp., 𝑛′′) is the number of vertices present as single

gadgets in red (resp., blue) state,𝑚′
is the number of edges that

are present as single gadgets, 𝑡2 is the number of double gadgets,

𝑡3 is the number of triple gadgets, and 𝑎 is the number of auxiliary

gadgets in the aforementioned partition. As done in Lemma 3.6, we

once again used Lemma 3.2 in bounding loss(𝑀∩𝑌𝑒 ) + ties(𝑀∩𝑌𝑒 )
by 10 for every edge gadget 𝑌𝑒 that is present as a single gadget,

and used Observation 1 in bounding loss(𝑀 ∩ 𝑍𝑖 ) + ties(𝑀 ∩ 𝑍𝑖 )
by 2 (resp., 3) for every vertex gadget 𝑍𝑖 (acting as single gadget)

that is in red (resp., blue) state. Additionally, we used Lemma 3.4 to

obtain the corresponding bound for an auxiliary gadget.

We will now construct an alternative matching 𝑀∗
that has a

higher Copeland score than𝑀 to derive the desired contradiction.

Starting with𝑀 , let us remove any inter-gadget edges from each

6
A matching 𝑀 is Pareto optimal if there is no matching 𝑁 such that at least one

vertex is better off in 𝑁 than in𝑀 and no vertex is worse off in 𝑁 .

double/triple gadget and convert both 𝑀 ∩ 𝑍𝑖 and 𝑀 ∩ 𝑍 𝑗 in the

triple gadget (or just𝑀 ∩𝑍𝑖 in case of a double gadget) to blue state

and replace𝑀 ∩𝑌𝑒 with 𝐹𝑒 . Additionally, for each auxiliary gadget

(𝑌𝑒 , 𝑍𝑖 , 𝑍 𝑗 ), we convert both𝑀 ∩ 𝑍𝑖 and𝑀 ∩ 𝑍 𝑗 to blue state and

replace𝑀 ∩ 𝑌𝑒 with 𝐹𝑒 .

Note that for any edge 𝑒 = (𝑖, 𝑗) in a single gadget, either 𝑍𝑖 or

𝑍 𝑗 is now in blue state. If it is min{𝑖, 𝑗} that is in blue state, then

let𝑀∗ ∩ 𝑌𝑒 = 𝐹𝑒 , else let𝑀
∗ ∩ 𝑌𝑒 = 𝐿𝑒 . The rest of the gadgets are

in the same state as under𝑀 .

Notice that 𝑀∗
satisfies the conditions in Lemma 3.5. Thus,

loss(𝑀∗) = 0 and any matching that ties with𝑀∗
must not use any

inter-gadget edge. Therefore, the number of matchings that tie with

𝑀∗
across the entire graph 𝐺 is simply the product of matchings

that tie with it on individual single, double, triple, and auxiliary

gadgets. Hence,

loss(𝑀∗) + ties(𝑀∗) = ties(𝑀∗)

= 2
𝑛′

· 3𝑛
′′
· 10𝑚

′
· 30𝑡2 · 90𝑡3 · 90𝑎, (6)

where 𝑛′, 𝑛′′,𝑚′, 𝑡2, 𝑡3 and 𝑎 are defined as in (5). For any double

or triple gadget, by Observation 1 and Lemma 3.1, the entire contri-

bution to ties(𝑀∗) due to these two gadgets is 30 (or 90 in case of

three gadgets) and to loss(𝑀∗) is 0. Additionally, for an auxiliary

gadget, the value of ties(𝑀∗) is equal to 3 × 3 × 10 = 90.

Comparing (5) and (6) along with the fact that loss(𝑀) ≥ 0 =

loss(𝑀∗), we get that score(𝑀∗) > score(𝑀). Indeed,

loss(𝑀∗) + ties(𝑀∗)/2 = 2
𝑛′−1 · 3𝑛

′′
· 10𝑚

′
· 30𝑡2 · 90𝑡3 · 90𝑎, and

loss(𝑀) + ties(𝑀)/2 ≥ (loss(𝑀) + ties(𝑀)) /2

≥ 2
𝑛′−1 · 3𝑛

′′
· 10𝑚

′
· 100𝑡2 · 100𝑡3 · 100𝑎 .

This contradicts the fact that 𝑀 is a Copeland winner. Thus, a

Copeland winner must not use any inter-gadget edge. □

Remark. By reducing from a restricted version of VERTEX COVER
on 3-regular graphs, which is also known to be NP-hard [18], the
intractability stated in Theorem 1.6 can be shown to hold even when
there are only a constant number of neighbors per vertex.

4 CONCLUDING REMARKS

We adopted a voting-theoretic perspective on the matching-under-

preferences problem, and examined some existential and computa-

tional questions in the context of relaxing popularity. Though we

know that a semi-popularmatching always exists andwe showed an

FPRAS to find an almost semi-popular matching, we do not know

the computational complexity of finding an exact semi-popular

matching. The main open question here is settle this complexity.

We also showed that it is NP-hard to find a Copeland winner. Is

there an FPRAS for an approximate Copeland winner?

Going forward, it will be very interesting to consider other voting

rules thatmight facilitate tractability results while providing natural

relaxations to well-studied solution concepts such as stability and

popularity.
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