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ABSTRACT
This paper presents a computational model designed for planning

both implicit and explicit communication of intentions, goals, and

desires. Building upon previous research focused on implicit com-

munication of intention via actions, our model seeks to strategically

influence an observer’s belief using both the agent’s actions and

explicit messages. We show that our proposed model can be con-

sidered to be a special case of general multi-agent problems with

explicit communication under certain assumptions. Since the men-

tal state of the observer depends on histories, computing a policy for

the proposed model amounts to optimizing a non-Markovian objec-

tive, which we show to be intractable in the worst case. To mitigate

this challenge, we propose a technique based on splitting domain

and communication actions during planning. We conclude with

experimental evaluations of the proposed approach that illustrate

its effectiveness.
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1 INTRODUCTION
Communication of intentions, goals, and desires is integral to our

daily interactions, making them essential for autonomous agents.

Communication can manifest itself in both implicit and explicit

forms. Take, for instance, a scenario in which an autonomous vehi-

cle (AV) must navigate around an obstacle on the road, as illustrated

in Fig. 1. Simultaneously, another vehicle approaches from the op-

posite lane. The AV, or “ego vehicle,” faces two primary options: it

can yield to the oncoming car or assert its right of way. Implicit

communication through behavior is one method the ego vehicle

might use to convey its intentions. For instance, if the ego vehicle

slows down or shifts towards the right edge of its lane, these ac-

tions could be interpreted as signs of yielding. Conversely, if the

ego vehicle speeds up or veers towards the center or left side of

the lane, it indicates a likely refusal to yield. Alternatively, the AV

could employ explicit communication methods, such as flashing
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Figure 1: AV Obstacle Avoidance

its headlights or using other external human-machine interfaces

(eHMIs). The combination of both implicit and explicit communica-

tion forms is vital for effectively conveying intentions [6]. However,

limited research has tackled the challenge of planning the execution

of both domain actions and explicit communication.

In this paper, we present a computational model designed to

strategize both implicit and explicit communication of intentions,

goals, and desires. Our model builds on the Observer-AwareMarkov

Decision Process (OAMDP) framework [27]. OAMDP offers a uni-

fied approach for planning implicit communication through actions.

This form of communication encompasses a wide range of behav-

iors. For example, legible behavior [8, 26] conveys intentions implic-

itly via chosen actions. In contrast, deceptive behavior [7, 25] either
obscures or actively misrepresents an agent’s intentions. Predictable
behavior enables observers to anticipate subsequent actions [9].

Finally, agents can manifest their capability or incapability through

their choice of action [23]. The OAMDP framework employs a

“theory-of-mind” (ToM) approach, hypothesizing a model that rep-

resents how observers interpret the agent’s actions. Here, we in-

troduce the Communicative Observer-Aware MDP (Com-OAMDP),

which extends OAMDPs with explicit communication.

To contextualize Com-OAMDP within the existing literature, we

highlight that it can be seen as a special case of the Communica-

tive Interactive POMDP (CIPOMDP) [13]. CIPOMDP extends the

Interactive POMDP (IPOMDP) [14], a framework designed for gen-

eral multi-agent planning that subjectively models the behaviors

of other agents, with explicit communications. While (C)IPOMDP

is intended for general multi-agent problems, permitting joint ac-

tions and partial observability, we show that our proposed model

Com-OAMDP can be seen as a special case for multi-agent sce-

narios where the observer’s role is assumed to be passive and the

environment is fully observable (Proposition 2).

Even with the assumption of a passive observer and full observ-

ability, however, we show that computing an optimal policy for

Com-OAMDPs is PSPACE-hard (Proposition 1). To address this

challenge, we use Monte-Carlo Tree Search (MCTS) to solve Com-

OAMDPs and propose a technique based on splitting domain and

communication actions during planning. Our empirical evaluation

reports the results of solving Com-OAMDPs instances using MCTS

and shows the effectiveness of the proposed modifications to MCTS.
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2 BACKGROUND
2.1 MDP
A Markov decision process (MDP) models sequential decision-

making in environments with stochastic effects. An MDP can be

characterized by the tuple𝑀 = ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾, 𝑠0⟩. 𝑆 is a set of states.

𝐴 is a set of actions. 𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) is the probability of 𝑆𝑡+1=𝑠𝑡+1
when 𝐴𝑡=𝑎𝑡 and 𝑆𝑡=𝑠𝑡 . 𝑅 is a conditional distribution of reward

given 𝑠𝑡 , 𝑎𝑡 . 𝛾 is a parameter called the discount factor. Without loss

of generality, we assume there is one initial state 𝑠0. The absorbing

terminal state always transitions back to itself with zero reward.

A policy, denoted as 𝜋 , dictates the course of action. We use the

following two types of policies in the paper. A stationary policy
is a conditional distribution of actions given a state. When 𝜋 is

deterministic, it is a mapping from 𝑆 to 𝐴. A history-dependent
policy is a conditional distribution of actions given a history, where

a historyℎ𝑡+1 is a sequence of state-action pairs up to time 𝑡 and the

last visited state 𝑠𝑡+1. The return of a history is the discounted sum

of rewards. An optimal policy for anMDP is a policy that maximizes

expected return. A policy 𝜋 induces a value function 𝑉 𝜋 (𝑠), which
represents the expected return given a policy 𝜋 starting from state

𝑠 . Similarly, a policy 𝜋 induces a Q-value𝑄𝜋 (𝑠, 𝑎), which represents
the expected return given a policy 𝜋 starting from state 𝑠 and taking

action 𝑎. The optimal Q-value refers to the Q-value for an optimal

policy.

2.2 Observer-Aware MDP
Observer-Aware Markov Decision Process (OAMDP) extends the

MDP by allowing the reward to depend on the observer’s assumed

belief about the type of observed agent [27]. For example, in the

AV example earlier, the possible types are yielding and insisting its

way. After the ego vehicle decelerates, for example, the observer

updates its belief about the intention of the ego vehicle. Formally,

Definition. An OAMDP is a tuple

𝑀 = ⟨𝑆,𝐴,𝑇 ,𝛾, 𝑠0,Θ, 𝐵, 𝑅⟩ where:

• 𝑆 is a finite set of states.

• 𝐴 is a finite set of actions.

• 𝑇 describes the transition probability.

• 𝛾 is a discount factor.

• 𝑠0 is the initial state.
• Θ is a finite set of types, representing a characteristic of the

agent such as possible goals, intentions, or capabilities. Types

in OAMDPs are analogous to types in Bayesian games [17].

• 𝐵 : 𝐻∗ → Δ |Θ | represents the assumed belief of the observer

given a history. 𝐻∗ is the set of all finite histories and Δ |Θ |

is a simplex on Θ.

• 𝑅 : 𝑆 × 𝐴 × Δ |Θ | → R describes how desirable it is to take

an action given a state and a belief 𝑏 ∈ Δ |Θ | . We assume, in

this paper, that the rewards can be represented as a convex

combination of domain and belief-dependent rewards. That
is, 𝑅(𝑠𝑡 ∈ 𝑆, 𝑎𝑡 ∈ 𝐴,𝑏𝑡 ∈ Δ |Θ | ) = 𝜆𝑅𝑑 (𝑠𝑡 , 𝑎𝑡 ) + (1− 𝜆)𝑅𝑏 (𝑏𝑡 )
for 𝜆 ∈ [0, 1], where 𝑅𝑑 and 𝑅𝑏 represent domain and belief-

dependent reward, respectively. Note that the reward de-

pends on histories through the beliefs.

(a) Environment

(b) Without messages (c) With messages

Figure 2: Example of combining implicit and explicit com-
munication in the Maze World environment (𝛽 = 0.3).

A solution to OAMDPs is a policy that maximizes the expected

discounted return for a given horizon 𝐾 :

E[
𝐾∑︁
𝑡=0

𝛾𝑡𝑅(𝑆𝑡 , 𝐴𝑡 , 𝐵(𝐻𝑡 )) |𝑆0 = 𝑠0, 𝜋] . (1)

Intuitively, OAMDP is an extension of MDP, which assumes how

the observer would interpret the agent’s behavior (𝐵) and what

interpretation is more desirable (𝑅). OAMDPs can produce various

observer-aware behaviors by changing 𝑅. For example, if the goal

is being legible [8], 𝑅 could be the negative total variation (TV) or

Euclidean distance between the current belief and the target belief

(𝑏 (𝜃∗) = 1 for the true type 𝜃∗ ∈ Θ). On the other hand, if the ego

agent wants to obscure its intention, rewards could be the entropy

of the observer’s belief.

BayesianObserver While the definition of general OAMDP allows

for any function to serve as 𝐵, we will henceforth assume that the

observer is Bayesian. The observer’s belief is updated using:

𝑏𝑡+1 (𝜃 |ℎ𝑡+1) ∝ P̂r(𝑠𝑡+1, 𝑎𝑡 |𝑠𝑡 , 𝜃 )𝑏𝑡 (𝜃 |ℎ𝑡 ) (2)

Here, P̂r(𝑠𝑡+1, 𝑎𝑡 |𝑠𝑡 , 𝜃 ) represents the probability, according to

the observer’s model, that the observed agent would perform action

𝑎𝑡 and subsequently arrive at state 𝑠𝑡+1 given 𝑠𝑡 and the type 𝜃 . We

denote this probability with P̂r instead of Pr to indicate that this is

the observer’s assumed model.
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Noisy Rational Model In modeling the observer, a common

strategy is to use inverse planning under the assumption that the

observed agent exhibits approximately rational behavior given its

intention. Baker et al. [3] explored the connection between Bayesian

reasoning and human understanding of goals. A model presented

in their work presumes noisy rationality:

𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 ) ∝ exp
𝛽𝑄∗

𝜃
(𝑠𝑡 ,𝑎𝑡 )

(3)

In the equation above, 𝑄∗
𝜃
(𝑠𝑡 , 𝑎𝑡 ) denotes the optimal Q-value

given the type 𝜃 . 𝛽 ∈ R serves as a hyper-parameter represent-

ing the agent’s rationality level. Intuitively, it is assumed that the

observed agent selects an action at a state with a probability ex-

ponentially proportional to the quality of the action at the current

state.

Subsequently, upon observing ℎ𝑡+1, the observer updates the

posterior belief over goals (or types) according to:

𝑏𝑡+1 (𝜃 |ℎ𝑡+1) =
𝑇𝜃 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )𝑏𝑡 (𝜃 |ℎ𝑡 )∑

𝜃 ′∈Θ𝑇𝜃 ′ (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)𝜋𝜃 ′ (𝑠𝑡 , 𝑎𝑡 )𝑏𝑡 (𝜃 ′ |ℎ𝑡 )
. (4)

In the equation above, 𝜃∈Θ represents the agent’s type, 𝑏𝑡 sig-

nifies the observer’s prior belief for each 𝜃 , 𝑇𝜃 is the transition

function and 𝜋𝜃 is the presupposed policy given a type 𝜃 . When 𝑇𝜃
is the same for all 𝜃∈Θ, Equation 4 simplifies to:

𝑏𝑡+1 (𝜃 |ℎ𝑡+1) =
𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )𝑏𝑡 (𝜃 |ℎ𝑡 )∑

𝜃 ′∈Θ 𝜋𝜃 ′ (𝑠𝑡 , 𝑎𝑡 )𝑏𝑡 (𝜃 ′ |ℎ𝑡 )
. (5)

When the action is not observable to the observing agent, the

belief can be updated by marginalizing over actions:

𝑏𝑡+1 (𝜃 |ℎ𝑡+1) =
∑
𝑎𝑡 ∈𝐴𝑇𝜃 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )𝑏𝑡 (𝜃 |ℎ𝑡 )∑

𝜃 ′∈Θ
∑
𝑎𝑡 ∈𝐴𝑇𝜃 ′ (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)𝜋𝜃 ′ (𝑠𝑡 , 𝑎𝑡 )𝑏𝑡 (𝜃 ′ |ℎ𝑡 )

.

(6)

For instance, Fig. 2 illustrates a Maze World from [3] where an

agent can choose from nine different actions: Stay, North, South,
East, West, NorthEast, NorthWest, SouthEast, and SouthWest. Notably,
when the agent takes action, it can deviate to the left or right—akin

to veering off its chosen direction—with a 0.05 probability each. The

agent’s objective is to reach one of the potential goals: 𝐴, 𝐵, 𝐶 , 𝐷 ,

or 𝐸. We assign five possible types to the agent, each corresponding

to a particular goal (Θ = {𝜃𝐴, 𝜃𝐵, 𝜃𝐶 , 𝜃𝐷 , 𝜃𝐸 }). The rewards are

proportional to the negative of the distance traveled.

In Fig 2a, the agent moves NorthEast in the initial timestep.

Since this action is not optimal for goal 𝐵 and 𝐷 , the Q-values

𝑄∗
𝜃𝐵
(𝑠0,NorthEast) and 𝑄∗𝜃𝐷 (𝑠0,NorthEast) are lower compared to

alternative actions like NorthWest. According to the noisy ratio-

nal model (Equation 3), the likelihood of the observed agent tak-

ing the NorthEast action is lower than NorthWest given that the

goal is 𝐵 or 𝐷 . That is, 𝜋𝜃𝐵 (𝑠0,NorthEast) < 𝜋𝜃𝐵 (𝑠0,NorthWest)
and 𝜋𝜃𝐷 (𝑠0,NorthEast) < 𝜋𝜃𝐷 (𝑠0,NorthWest). Conversely, moving

NorthEast is the optimal choice for goals𝐴,𝐶 or 𝐸. As per the noisy

rational model (Equation 3), the probability of the observed agent

taking theNorthEast action exceeds that of taking other sub-optimal

actions.

Fig. 2b visualizes the observer’s belief changes according to Equa-

tion 6. The plot shows that the belief in 𝜃𝐵 and 𝜃𝐷 diminishes, while

beliefs in 𝜃𝐴 , 𝜃𝐶 , and 𝜃𝐸 rise after the agent’s initial NorthEast move.

Since the agent keeps moving NorthEast, the observer’s belief on 𝐴,
𝐶 , and 𝐸 remain equally high.

Relationship to POMDP and IPOMDP Despite the pronounced

similarities between OAMDPs and POMDPs [19], one does not

subsume the other. Both formulations operate based on the agents’

beliefs. Yet, a crucial distinction exists: POMDP focuses on the

acting agent’s beliefs regarding states, whereas OAMDP centers

on the observer’s presumed beliefs about the types of the observed

agent. Additionally, while rewards in POMDPs are defined by the

underlying states, rewards in OAMDPs depend on the observers’

beliefs.

OAMDP can be seen as a special case of Interactive POMDP

(IPOMDP). IPOMDP is a model for general multi-agent scenarios

based on subjectively modeling behaviors of other agents. In prin-

ciple, observer-aware planning problems can be framed as general

multi-agent problems such as IPOMDP. However, solving IPOMDP

is notoriously difficult [30]. Prior work [27] showed that OAMDP

could be derived from IPOMDP, given certain additional assump-

tions.

SolvingOAMDPs Wenext describe solutionmethods for OAMDPs.

Traditional solution methods for MDPs, such as Value Iteration, are

not directly applicable to OAMDPs. This is primarily due to their

reliance on the Markov property of rewards, which is a property

not possessed by OAMDPs. Previous work [27] proposed solving

OAMDPs using Monte-Carlo Tree Search (MCTS), where each node

in the search tree represents a pair consisting of a domain state and

an observer belief.

Computing an optimal policy for OAMDPs with a Bayesian

observer, however, is shown to be intractable in the worst case

[27]. Since complexity classes are defined in relation to decision

problems, the result is formally shown for the finite-horizon value

problem: given an OAMDP with a Bayesian observer, a planning

horizon 𝐾 , and a threshold 𝑇ℎ, does the OAMDP possess a (finite-

horizon history-dependent) policy with value equal to or exceeding

𝑇ℎ? The finite-horizon value problem for OAMDPs is shown to be

PSPACE-hard via reduction from QSAT [27].

3 PLANNING IMPLICIT AND EXPLICIT
COMMUNICATION

In this section, we detail how to model explicit communication

alongside implicit communication, in the context of OAMDP. In ad-

dition to the existing set of domain or task actions, 𝐴, we introduce

a set of communication actions, M. At each time step, the agent

performs a pair of actions: one from the task execution and one for

communication (𝐴 ×M). The observer is presumed to update its

belief based on P̂r(𝑎𝑡 ,𝑚𝑡 , 𝑠𝑡+1 |𝑠𝑡 , 𝜃 ), where𝑚𝑡 signifies the message

sent at time 𝑡 .

Definition. ACommunicative OAMDP (Com-OAMDP) is a special

case of OAMDP defined by the tuple𝑀 = ⟨𝑆,𝐴×M,𝑇 ,𝛾, 𝑠0,Θ, 𝐵, 𝑅⟩
with the following specifications:

• M denotes a set of messages.

• 𝑇 does not depend on the messages𝑚𝑡 ∈ M.

It is important to note that histories in Com-OAMDPs incorpo-

ratemessages alongwith domain actions (ℎ𝑡 = 𝑠0𝑎0𝑚0𝑠1 · · ·𝑎𝑡−1𝑚𝑡−1𝑠𝑡 ).
The function 𝐵 maps these histories, which include messages, to
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the observer’s beliefs. Similarly, the function 𝑅𝑑 : 𝑆 ×𝐴 ×M→ R
also depends on messages. The setM may include a 𝑛𝑖𝑙 message,

which implies no message is being sent.

For instance, in Fig. 2, one possible set of available messages is

M = {𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛, 𝑠𝑞𝑢𝑎𝑟𝑒, 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑛𝑖𝑙}. Sending the message 𝑔𝑟𝑒𝑒𝑛

signals to the observer that the observed agent intends to reach

one of the green goals (𝐴, 𝐶 , or 𝐷).

As in the OAMDP framework, we proceed in this paper by con-

sidering a scenario where the observer is Bayesian and updates its

belief as follows:

𝑏𝑡+1 (𝜃 |ℎ𝑡+1) ∝ P̂r(𝑎𝑡 ,𝑚𝑡 , 𝑠𝑡+1 |𝑠𝑡 , 𝜃 )𝑏𝑡 (𝜃 |ℎ𝑡 ) (7)

Note that this belief update incorporates both a domain action 𝑎𝑡
and a message𝑚𝑡 .

The updated belief can be expressed as:

𝑏𝑡+1 (𝜃 |ℎ𝑡+1) =
𝑇𝜃 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)P̂r(𝑎𝑡 ,𝑚𝑡 |𝑠𝑡 , 𝜃 )𝑏𝑡 (𝜃 |ℎ𝑡 )∑

𝜃 ′∈Θ𝑇𝜃 ′ (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)P̂r(𝑎𝑡 ,𝑚𝑡 |𝑠𝑡 , 𝜃 ′)𝑏𝑡 (𝜃 ′ |ℎ𝑡 )
.

(8)

We discuss one possible way define the semantics of messages

(P̂r(𝑎𝑡 ,𝑚𝑡 |𝑠𝑡 , 𝜃 )) next.
Generative Noise Model One potential way to model the prob-

ability of sending a message posits that the observed agent sends

a correct message with a certain probability, 0 ≤ 𝛼 ≤ 1, sends an

incorrect message with 0 ≤ 𝜖 ≤ 1 and sends out a 𝑛𝑖𝑙 message

otherwise, similar to the model proposed in [13]. This model inter-

prets each message as a unary predicate on types. For instance, the

message 𝑔𝑟𝑒𝑒𝑛 equates to 𝑔𝑟𝑒𝑒𝑛(𝜃𝐴) = 𝑔𝑟𝑒𝑒𝑛(𝜃𝐶 ) = 𝑔𝑟𝑒𝑒𝑛(𝜃𝐷 ) = 1

and 𝑔𝑟𝑒𝑒𝑛(𝜃𝐵) = 𝑔𝑟𝑒𝑒𝑛(𝜃𝐷 ) = 0. Formally, the probability of trans-

mitting a message is:

P̂r(𝑚𝑡 |𝑠𝑡 , 𝜃 ) =


𝛼 1

| {𝑚 |𝑚∈M,𝑚 (𝜃 )=1} | 𝑚𝑡 (𝜃 ) = 1{
1 if no𝑚(𝜃 ) = 1 exits

1 − 𝛼 − 𝜖 otherwise

𝑚𝑡 = 𝑛𝑖𝑙

𝜖 1

| {𝑚 |𝑚∈M,𝑚 (𝜃 )=0} | otherwise

As an example, Pr(𝑔𝑟𝑒𝑒𝑛 |·, 𝜃𝐶 ) = Pr(𝑠𝑞𝑢𝑎𝑟𝑒 |·, 𝜃𝐶 ) = 1

2
𝛼 , Pr(𝑏𝑙𝑢𝑒 |·, 𝜃𝐶 ) =

Pr(𝑐𝑖𝑟𝑐𝑙𝑒 |·, 𝜃𝐶 ) = 1

2
𝜖 , and Pr(𝑛𝑖𝑙 |·, 𝜃𝐶 ) = 1−𝛼 −𝜖 . In this paper, we

combine the generative noise model with the noisy rational model,

and assumes that P̂r(𝑎𝑡 ,𝑚𝑡 |𝑠𝑡 , 𝜃 ) = P̂r(𝑎𝑡 |𝑠𝑡 , 𝜃 )P̂r(𝑚𝑡 |𝑠𝑡 , 𝜃 ).
Fig. 2c illustrates the observer’s belief changes corresponding

to the path in Fig. 2a. As the agent moves away from the goal 𝐵

and 𝐷 , the belief in 𝐵 and 𝐷 decreases over time, but the observer

cannot differentiate between 𝐴, 𝐶 and 𝐸 with information emitted

from domain actions alone. Yet, when the agent sends the 𝑔𝑟𝑒𝑒𝑛

message, the belief on 𝐸 decreases, given that heading to 𝐸 is in

contradiction to the conveyed message. When the agent sends out

the message 𝑠𝑞𝑢𝑎𝑟𝑒 next, the belief on𝐴 gets lowered, allowing the

observer to confidently infer that the agent is heading towards 𝐶 .

Note that the agent could have sent the message 𝑔𝑟𝑒𝑒𝑛 immedi-

ately in the example. Although this action would instantly diminish

the belief in 𝐵 and 𝐸, the observer would have high beleif in 𝐴,

𝐶 , and 𝐷 . To prevent this scenario, the agent depicted in Fig. 2a

waits until the belief in 𝐷 is sufficiently reduced. This example

emphasizes the advantage of considering both implicit and explicit

communication.

Figure 3: Recycle problem

It is important to note that the general definition of Com-OAMDP

is not tied to the noisy rational model or the generative noise model.

Instead, Com-OAMDPs using these models represent specific in-

stances within the broader Com-OAMDP framework. Com-OAMDP

serves as a comprehensive framework addressing scenarios where

rewards depend on the observer’s beliefs, updated via both implicit

and explicit communication.

4 EXAMPLES
In this section, we describe a few examples of Com-OAMDPs.

Recycling In the recycling problem depicted in Fig. 3, a robot arm

is tasked with sorting garbage. The garbage comprises three types

of items: food waste, diapers, and water bottles. Each type must be

placed in its designated bin: food waste in compost, diapers in trash,

and water bottles in recycle. The observer is aware that the robot

is programmed to dispose of food waste in compost. However,

it remains uncertain whether the robot correctly identifies that

diapers belong in the trash rather than compost, or whether water

bottles should be recycled instead of being thrown in the trash.

Thus, there are four possible types for the observed agent. At every

time step, the robot arm can choose to either pick up an item

or attempt to deposit it into one of the bins. However, the robot

arm’s actions are not flawless. It only successfully places an item

in the intended bin with a probability 𝑝 . When an observer sees

an incorrectly placed item, it’s unclear whether the robot made an

action error or misclassified the item. To address this confusion,

the robot is equipped with a communication feature, allowing it to

indicate the intended bin for the item it holds. However, sending a

message incurs a cost. The robot needs to plan its course of action,

depending on the cost of communication and initial configurations

of objects.

Obstacle Avoidance is an AV example introduced earlier (Fig. 1).

There is an obstacle in front of the ego vehicle. To avoid the obstacle,

the ego vehicle needs to go to the left side of the lane. However,

a vehicle approaches from the opposite direction. The possible in-

tentions for the ego vehicles are insisting its way or yielding for

the opposite car. The ego vehicle’s state is defined by its speed

0 ≤ 𝜙 ≤ 30, velocity 0 ≤ ¤𝜙 ≤ 4, and its position in the lane (left,

center, or right). The available actions involve changing lanes and

adjusting velocity by increments of −2,−1,0,1, and 2. Additionally,

the ego vehicle can flash its headlights to communicate its intention
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explicitly. However, there is some cost associated with sending a

message. The ego vehicle needs to plan its course of action depend-

ing on the cost of communication.

5 THEORETICAL PROPERTIES
Complexity of Com-OAMDP Similarly to OAMDP, the general-

ity of the Com-OAMDP, however, does come with the drawback

of potential intractability in the worst case. Fundamentally, as we

allow the reward to depend on the observer’s belief, which in turn

relies on the history up to that point, policy computations for Com-

OAMDPs are prone to the curse of history.

Proposition 1. The finite-horizon value problem for Com-OAMDPs

with Bayesian observer is PSPACE-complete.

Proof. The complexity of the OAMDP has been proven to be

PSPACE-hard through the reduction from QSAT [27]. The OAMDP

in the reduction can be interpreted as a Com-OAMDP with only

the 𝑛𝑖𝑙 message available. □

This statement suggests that finding optimal policies for Com-

OAMDPs may be computationally challenging in the worst case.

We will suggest a potential approach to alleviate this issue later in

this paper.

5.1 Com-OAMDP as a Subclass of CIPOMDP
In connecting Com-OAMDP to prior work in the literature, we

demonstrate that Com-OAMDP can be derived from CIPOMDP [13]

given a set of additional assumptions. CIPOMDP is an extension

of IPOMDP that includes explicit communication. In this section,

we illustrate that Com-OAMDP is a special case of generalized

multi-agent problems that involve explicit communication. This

finding parallels how OAMDP can be derived from IPOMDP under

a specific set of assumptions.

IPOMDP We first introduce IPOMDP. We assume without loss of

generality that there are two agents (agent 𝑖 and 𝑗 ). A finitely-nested

IPOMDP for agent 𝑖 is defined by the 6-tuple ⟨𝐼𝑆𝑖,𝑙 , 𝐴𝑖 ,Ω𝑖 ,𝑇 𝑖 ,𝑂𝑖 , 𝑅𝑖 ⟩
where 𝐼𝑆𝑖,𝑙 is a set of interactive states. Interactive states consist

of a domain state as well as a model of the other agent 𝑗 . Formally,

interactive states are recursively defined as follows:

𝐼𝑆𝑖,0 = 𝑆 Θ𝑗,0 = {⟨𝑏 𝑗,0, ˆ𝜃 𝑗 ⟩ : 𝑏 𝑗,0 ∈ Δ |𝑆 | }

𝐼𝑆𝑖,1 = 𝑆 × Θ𝑗,0 Θ𝑗,1 = {⟨𝑏 𝑗,1, ˆ𝜃 𝑗 ⟩ : 𝑏 𝑗,1 ∈ Δ |𝐼𝑆
𝑗,1 | }

𝐼𝑆𝑖,2 = 𝑆 × Θ𝑗,0 × Θ𝑗,1 Θ𝑗,2 = {⟨𝑏 𝑗,2, ˆ𝜃 𝑗 ⟩ : 𝑏 𝑗,2 ∈ Δ |𝐼𝑆
𝑗,2 | }

· · ·

𝐼𝑆𝑖,𝑙 = 𝑆 ×𝑙−1
𝑘=0

Θ𝑗,𝑘 Θ𝑗,𝑙 = {⟨𝑏 𝑗,𝑙 , ˆ𝜃 𝑗 ⟩ : 𝑏 𝑗,𝑙 ∈ Δ |𝐼𝑆
𝑗,𝑙 | }

where
ˆ𝜃 𝑗 = ⟨𝐴 𝑗 ,Ω 𝑗 ,𝑇𝑗 ,𝑂 𝑗 , 𝑅 𝑗 ⟩ is called frame of agent 𝑗 repre-

senting all components of 𝑗 ’s model except for the belief. At each

strategy level 𝑙 , agent 𝑖 assumes that agent 𝑗 chooses an action 𝑎 𝑗

rationally based on its model 𝜃 𝑗,𝑙−1, which in turn model agent 𝑖

at level 𝑙 − 2 and so on. IPOMDP can be seen as POMDP defined

over interactive states, and optimal policies and all the other com-

ponents (𝐴𝑖 , Ω𝑖 , 𝑇 𝑖 , and 𝑅𝑖 ) are defined as in POMDP. Note that

the transition function depends on both 𝑎𝑖 and 𝑎 𝑗 .

With these definitions in place, we can now write down the

belief update equation for IPOMDP [14]:

𝑏𝑖𝑡+1 (𝑖𝑠𝑖𝑡+1 ) = Pr(𝑖𝑠𝑖𝑡+1 |𝑎𝑖𝑡 , 𝜔𝑖
𝑡+1, 𝑏

𝑖
𝑡 ) = 𝜂

∑︁
𝑖𝑠𝑖𝑡

𝑏𝑖𝑡 (𝑖𝑠𝑡 )∑︁
𝑎
𝑗
𝑡 ∈𝐴𝑗

Pr(𝑎 𝑗𝑡 |𝜃
𝑗
𝑡 )𝑂

𝑖 (𝑠𝑡+1, 𝑎𝑡 , 𝜔𝑖
𝑡+1 ) Pr(𝑖𝑠𝑖𝑡+1 |𝑖𝑠𝑖𝑡 , 𝑎𝑡 ) (9)

where 𝑖𝑠𝑖𝑡 ranges over interactive states sharing the framewith 𝑖𝑠𝑖
𝑡+1,

𝜂 is a normalizing constant, and Pr(𝑖𝑠𝑖
𝑡+1 |𝑖𝑠

𝑖
𝑡 , 𝑎𝑡 ) is the transition

probability between interactive states:

𝑃𝑟 (𝑖𝑠𝑖𝑡+1 |𝑖𝑠𝑖𝑡 , 𝑎𝑡 )
= 𝑇 𝑖 (𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎

𝑗
𝑡 , 𝑠𝑡+1 )

∑︁
𝜔

𝑗
𝑡+1∈Ω 𝑗

𝑂 𝑗 (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 , 𝑠

𝑗

𝑡+1, 𝜔
𝑗

𝑡+1 )𝜏 ˆ𝜃 𝑗 (𝑏 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝜔

𝑗

𝑡+1, 𝑏
𝑗

𝑡+1 )

(10)

where 𝜏
ˆ𝜃 𝑗 (𝑏 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝜔

𝑗

𝑡+1, 𝑏
𝑗

𝑡+1) is 1 when 𝑏
𝑗

𝑡+1 equals the result of

updating 𝑏
𝑗
𝑡 given 𝑎

𝑗
𝑡 and 𝜔

𝑗

𝑡+1 according to
ˆ𝜃 𝑗 .

CIPOMDP CIPOMDP is an extension of IPOMDP with additional

communication actions. A finitely-nested CIPOMDP for agent 𝑖 is

defined by the 7-tuple ⟨𝐼𝑆𝑖,𝑙 , 𝐴𝑖 ,M𝑖 ,Ω𝑖 ,𝑇 𝑖 ,𝑂𝑖 , 𝑅𝑖 ⟩ whereM𝑖 is a set
of messages agent 𝑖 can send and receive. All the other elements are

defined analogously to IPOMDP except that 𝑅𝑖 now also depends

on messages.

The belief update for CIPOMDP is derived as follows [13, 20]
1
:

𝑏𝑖𝑡+1 (𝑖𝑠𝑖𝑡+1 ) = Pr(𝑖𝑠𝑖𝑡+1 |𝑎𝑖𝑡 ,𝑚
𝑖→𝑗
𝑡 , 𝜔𝑖

𝑡+1,𝑚
𝑖←𝑗

𝑡+1 , 𝑏
𝑖
𝑡 )

= 𝛼
∑︁
𝑖𝑠𝑖𝑡

𝑏𝑖𝑡 (𝑖𝑠𝑖𝑡 )
∑︁

𝑎
𝑗
𝑡 ∈𝐴𝑗

Pr(𝑚 𝑗→𝑖
𝑡 , 𝑎

𝑗
𝑡 |𝜃

𝑗
𝑡 )

×𝑂𝑖 (𝑠𝑡+1, 𝑎𝑡 , 𝜔𝑖
𝑡+1 ) Pr(𝑖𝑠𝑖𝑡+1 |𝑖𝑠𝑖𝑡 , 𝑎𝑡 ,𝑚

𝑖→𝑗
𝑡 ,𝑚

𝑖←𝑗

𝑡+1 ) (11)

where 𝑖𝑠𝑖𝑡 ranges over interactive states sharing the frame with

𝑖𝑠𝑖
𝑡+1, 𝛼 is a normalizing constant, 𝑚

𝑖→𝑗
𝑡 is the message sent by

agent 𝑖 to 𝑗 at time 𝑡 ,𝑚
𝑖←𝑗

𝑡+1 is the message agent 𝑖 received from 𝑗

at time 𝑡 + 1. Note that since messages are perfectly transmitted,

𝑚
𝑖→𝑗
𝑡 =𝑚

𝑗←𝑖
𝑡+1 and𝑚

𝑖←𝑗

𝑡+1 =𝑚
𝑗→𝑖
𝑡 .

Pr(𝑖𝑠𝑖
𝑡+1 |𝑖𝑠

𝑖
𝑡 , 𝑎𝑡 ,𝑚

𝑖→𝑗
𝑡 ,𝑚

𝑖←𝑗

𝑡+1 ) is the transition probability between
interactive states:

Pr(𝑖𝑠𝑖𝑡+1 |𝑖𝑠𝑖𝑡 , 𝑎𝑡 ,𝑚
𝑖→𝑗
𝑡 ,𝑚

𝑖←𝑗

𝑡+1 ) = 𝑇
𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 )×∑︁

𝜔
𝑗
𝑡+1∈Ω 𝑗

𝑂 𝑗 (𝑠𝑡+1, 𝑎𝑡 , 𝜔𝑖
𝑡+1 )𝜏 ˆ𝜃 𝑗 (𝑏 𝑗𝑡 , 𝑎

𝑗
𝑡 ,𝑚

𝑗→𝑖
𝑡 , 𝜔

𝑗

𝑡+1,𝑚
𝑗←𝑖

𝑡+1 , 𝑏
𝑗

𝑡+1 ) (12)

where 𝜏
ˆ𝜃 𝑗 (𝑏 𝑗𝑡 , 𝑎

𝑗
𝑡 ,𝑚

𝑗→𝑖
𝑡 , 𝜔

𝑗

𝑡+1,𝑚
𝑗←𝑖
𝑡+1 , 𝑏

𝑗

𝑡+1) is 1when𝑏
𝑗

𝑡+1 equals the

result of updating 𝑏
𝑗
𝑡 given 𝑎

𝑗
𝑡 ,𝑚

𝑗→𝑖
𝑡 , 𝜔

𝑗

𝑡+1,𝑚
𝑗←𝑖
𝑡+1 according to

ˆ𝜃 𝑗 .

Com-OAMDP Assumptions We now show that Com-OAMDPs

form a special case of CIPOMDPs under the following four assump-

tions:

A1 The observing agent is passive. Formally, we can represent

this assumption by having only one action for the observing

agent 𝐴 𝑗 = {noop} and assuming that the observing agent

always sends 𝑛𝑖𝑙 message.

A2 The type of the observing agent is initially known to the

observed agent.

1
The update assumes that messages are transmitted perfectly without errors.
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A3 The observing agent can fully observe the underlying states

(𝑆) and actions performed by the observed agent (𝐴𝑖 ), i.e.

Ω 𝑗 = 𝑆×𝐴𝑖 and𝑂 𝑗 (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 , 𝑠𝑡+1, 𝜔

𝑗

𝑡+1) = 1 if𝜔
𝑗

𝑡+1 = ⟨𝑠𝑡+1, 𝑎
𝑖
𝑡 ⟩,

and 0 otherwise.

A4 The observed agent can fully observe the underlying states

(𝑆), i.e. Ω𝑖 = 𝑆 and 𝑂𝑖 (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 , 𝑠𝑡+1, 𝜔

𝑗

𝑡+1) = 1 if 𝜔
𝑗

𝑡+1 = 𝑠𝑡+1,
and 0 otherwise.

Proposition 2. Under Assumptions A1-4, for a given instance of

a CIPOMDP, there exists an equivalent instance of Com-OAMDP.

Proof Sketch. With Assumption A1 and A3, the transition

function between interactive states simplifies to:

Pr(𝑖𝑠𝑖𝑡+1 |𝑖𝑠𝑖𝑡 , 𝑎𝑡 ,𝑚
𝑖→𝑗
𝑡 ,𝑚

𝑖←𝑗

𝑡+1 ) = 𝑇
𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 )×∑︁

𝜔
𝑗
𝑡+1∈Ω 𝑗

𝑂 𝑗 (𝑠𝑡+1, 𝑎𝑡 , 𝜔 𝑗

𝑡+1 )𝜏 ˆ𝜃 𝑗 (𝑏 𝑗𝑡 , 𝑎
𝑗
𝑡 ,𝑚

𝑗→𝑖
𝑡 , 𝜔

𝑗

𝑡+1,𝑚
𝑗←𝑖

𝑡+1 , 𝑏
𝑗

𝑡+1 )

= 𝑇 𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 )𝜏 ˆ𝜃 𝑗 (𝑏 𝑗𝑡 , 𝑎
𝑗
𝑡 ,𝑚

𝑗→𝑖
𝑡 , 𝑎𝑖𝑡 , 𝑠𝑡+1,𝑚

𝑗←𝑖

𝑡+1 , 𝑏
𝑗

𝑡+1 ) by A3

= 𝑇 𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 )𝜏 ˆ𝜃 𝑗 (𝑏 𝑗𝑡 , 𝑎
𝑖
𝑡 , 𝑠𝑡+1,𝑚

𝑗←𝑖

𝑡+1 , 𝑏
𝑗

𝑡+1 ) by A1 (13)

If we define a Com-OAMDP instance with 𝑇 = 𝑇 𝑖 and the belief

function 𝐵 as the belief update corresponding to
ˆ𝜃 𝑗 , we see that the

transitions in the Com-OAMDP correspond to the transitions in

the original CIPOMDP.

We next show that under Assumptions A1-4, there is exactly

one interactive state with 𝑏𝑖𝑡 (𝑖𝑠𝑖𝑡 ) = 1 for each timestep 𝑡 . This

would imply that the Com-OAMDP described above is equivalent

to the original CIPOMDP. We show the claim by induction on the

timesteps. By Assumption A2, the claim is true for the first timestep.

Suppose now that at time 𝑡 , there is exactly one 𝑖𝑠𝑖∗ = ⟨𝑠𝑡 , ⟨𝑏
𝑗
∗,

ˆ𝜃 𝑗 ∗⟩⟩
such that 𝑏𝑡 (𝑖𝑠𝑖∗) = 1, then:

𝑏𝑖𝑡+1 (𝑖𝑠𝑖𝑡+1 ) = Pr(𝑖𝑠𝑖𝑡+1 |𝑎𝑖𝑡 ,𝑚
𝑖→𝑗
𝑡 , 𝜔𝑖

𝑡+1,𝑚
𝑖←𝑗

𝑡+1 , 𝑏
𝑖
𝑡 )

= 𝛼
∑︁
𝑖𝑠𝑖𝑡

𝑏𝑖𝑡 (𝑖𝑠𝑖𝑡 )
∑︁

𝑎
𝑗
𝑡 ∈𝐴𝑗

Pr(𝑚 𝑗→𝑖
𝑡 , 𝑎

𝑗
𝑡 |𝜃

𝑗
𝑡 )𝑂

𝑖 (𝑠𝑡+1, 𝑎𝑡 , 𝜔𝑖
𝑡+1 )×

Pr(𝑖𝑠𝑖𝑡+1 |𝑖𝑠𝑖𝑡 , 𝑎𝑡 ,𝑚
𝑖→𝑗
𝑡 ,𝑚

𝑗→𝑖

𝑡+1 )

= 𝛼
∑︁
𝑖𝑠𝑖𝑡

𝑏𝑖𝑡 (𝑖𝑠𝑖𝑡 )𝛿 (𝜔𝑖
𝑡+1, 𝑠𝑡+1 ) Pr(𝑖𝑠𝑖𝑡+1 |𝑖𝑠𝑖𝑡 , 𝑎𝑡 ,𝑚

𝑖→𝑗
𝑡 ,𝑚

𝑗→𝑖

𝑡+1 ) by A1,4

= 𝛼𝛿 (𝜔𝑖
𝑡+1, 𝑠𝑡+1 ) Pr(𝑖𝑠𝑖𝑡+1 |𝑖𝑠𝑖∗, 𝑎𝑡 ,𝑚

𝑖→𝑗
𝑡 ,𝑚

𝑗→𝑖

𝑡+1 ) (14)

Note that the right-hand size of the equation is only positive for

the one interactive state with 𝑠𝑡+1 = 𝜔𝑖𝑡+1, where 𝑏
𝑗

𝑡+1 is the result

of updating 𝑏
𝑗
∗ according to

ˆ

𝜃
𝑗
∗ , and

ˆ𝜃 𝑗 = 𝜃
𝑗
∗ . Therefore, there is

exactly one interactive state possible for time 𝑡 + 1 as well. □

In conclusion, Com-OAMDP can be seen as a special case of

CIPOMDP. Note that, the definition of Com-OAMDP with an ar-

bitrary belief function 𝐵 can represent the recursive belief update

𝜏
ˆ𝜃 𝑗 in CIPOMDP in principle. However, the belief update in Equa-

tion 8 uses a limited form of recursive reasoning. It assumes that

the observed-agent is at the strategy level 2, who reasons about the

observer at level 1, who in turn reasons about the observed-agent

at level 0.

6 TOWARDS EFFICIENT PLANNING FOR
COM-OAMDPS

In this section, we propose a technique to solve Com-OAMDPsmore

efficiently. As Com-OAMDP is a special case of OAMDP, MCTS can

also be utilized to solve Com-OAMDPs. However, directly applying

MCTS to Com-OAMDPswithout accounting for its unique structure

might not be optimal. Therefore, we propose a modification to

MCTS specifically suited for solving Com-OAMDPs in this section.

MCTS operates through a series of stochastic simulations, start-

ing from the root node. Each iteration of MCTS consists of four

steps: (1) selection: from the root node, a child node is selected until

a leaf node is reached; (2) expansion: child nodes are appended

to the selected node; (3) simulation: an accumulated discounted

reward is sampled by simulating a rollout policy 𝜋 ; (4) backpropa-

gation: the value estimates are updated for ancestor nodes. When

applied to planning problems with uncertainty, nodes in the search

tree consists of decision and chance nodes. For chance nodes, child
nodes are selected by simulating the action in the environment. As

for decision nodes, UCT is an instance of MCTS, choosing actions

according to the UCB1 formula [1]:

𝑄 (𝑠, 𝑎) +𝐶
√︁
log𝑁 (𝑠)/𝑁 (𝑠, 𝑎) (15)

where 𝑄 (𝑠, 𝑎) is the estimated 𝑄-value, 𝑁 (𝑠) and 𝑁 (𝑠, 𝑎) are coun-
ters of the number of times the simulations encountered the node 𝑠

and (𝑠, 𝑎), and𝐶 is a constant that controls the degree of exploration,

respectively. Note that although UCT eventually expands the whole

graph and finds the optimal policy, policies returned after a fixed

number of iterations are not guaranteed to be optimal.

When MCTS is applied to solve Com-OAMDPs, each chance

node corresponds to a pair of physical state and the belief of the

observer (⟨𝑠, 𝑏⟩ ∈ 𝑆 × Δ |Θ | ). Each decision node corresponds to a

pair of domain action and message (⟨𝑎,𝑚⟩ ∈ 𝐴 ×M).

Rollout Policy We used 𝜋∗
𝑑
, which selects an optimal domain

action in terms of the domain rewards for the true goal. 𝜋∗
𝑑
sends

no messages during rollouts. Note that 𝜋∗
𝑑
might not be available for

all problems before planning. However, using Equation 3 requires

computing 𝜋∗
𝑑
for each possible type 𝜃 .

Move Splitting One possible way to exploit the structure of Com-

OAMDPs is splitting domain and communication actions in MCTS.

Recall that in Com-OAMDPs, an action consists of a pair of domain

and communication actions. Consequently, a direct implementa-

tion of MCTS would produce |𝐴| × |M| chance nodes for every

decision node, as depicted in Fig. 4a. UCT, in this setup, is obli-

gated to explore each action at least once. However, a significant

portion of these chance nodes might not be worth exploring. For

instance, consider applying UCT to solve the MazeWorld example

we discussed earlier (Fig. 2). Transmitting an incorrect message

(e.g., 𝑏𝑙𝑢𝑒) is invariably a poor option, regardless of the domain

action. Nevertheless, UCT must try every combination of sending

the message with the domain action.

To mitigate the issue, we propose to split domain and communi-

cation actions in the search tree (Fig. 4b). We outline our modified

version of UCT, termed UCT (MA), in Algorithm 1. UCT (MA) cre-

ates intermediate decision nodes for each message𝑚 ∈ M (message
node) whenever a decision node corresponding to a belief state
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⟨𝑎0, 𝑚0⟩

⟨𝑎0, 𝑚1⟩

(a) vanilla MCTS

𝑚0 𝑚1

𝑎0 𝑎1

𝑚2

𝑎0𝑎2

(b) MCTS (MA)

𝑎0 𝑎1

𝑚0𝑚1

𝑎2

𝑚0𝑚2

(c) MCTS (AM)

Figure 4: Search trees with and without splitting. White and gray circles represent decision and chance nodes, respectively.

Algorithm 1 UCT (MA)

1: function UCT(𝑟𝑜𝑜𝑡𝑁𝑜𝑑𝑒)

2: while within computational budget do
3: 𝑛𝑜𝑑𝑒 ← 𝑆𝐸𝐿𝐸𝐶𝑇 (𝑟𝑜𝑜𝑡𝑁𝑜𝑑𝑒)
4: 𝑐ℎ𝑖𝑙𝑑 ← 𝐸𝑋𝑃𝐴𝑁𝐷 (𝑛𝑜𝑑𝑒)
5: 𝐺 ← 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐸 (𝑐ℎ𝑖𝑙𝑑)
6: 𝐵𝐴𝐶𝐾𝑃𝑅𝑂𝑃𝐴𝐺𝐴𝑇𝐸 (𝑛𝑜𝑑𝑒,𝐺)
7: end while
8: return BestAction(rootNode)

9: end function
10:

11: function Select(𝑛𝑜𝑑𝑒)

12: while 𝑛𝑜𝑑𝑒 is fully expanded do
13: if 𝑛𝑜𝑑𝑒 is a state node then
14: 𝑛𝑜𝑑𝑒 ← choose a message node according to UCB1

15: else if 𝑛𝑜𝑑𝑒 is a message node then
16: 𝑛𝑜𝑑𝑒 ← choose an action node according to UCB1

17: 𝑛𝑜𝑑𝑒 ← choose a state node according to 𝑇

18: end if
19: end while
20: return 𝑛𝑜𝑑𝑒
21: end function
22:

23: function BACKPROPAGATE(𝑛𝑜𝑑𝑒 , G)

24: if 𝑛𝑜𝑑𝑒 is a state node then
25: 𝑁 (𝑠)+ = 1

26: return 𝐵𝐴𝐶𝐾𝑃𝑅𝑂𝑃𝐴𝐺𝐴𝑇𝐸 (𝑛𝑜𝑑𝑒.𝑔𝑟𝑎𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡,𝐺)
27: else if 𝑛𝑜𝑑𝑒 is a message node then
28: 𝑁 (𝑠,𝑚)+ = 1

29: 𝑁 (𝑠, ⟨𝑎,𝑚⟩)+ = 1

30: 𝐺 ← 𝑅(𝑠, ⟨𝑎,𝑚⟩,𝑚) + 𝛾𝐺
31: 𝑄 (𝑠,𝑚) ← 𝑄 (𝑠,𝑚) + 1

𝑁 (𝑠,𝑚) (𝐺 −𝑄 (𝑠,𝑚))
32: 𝑄 (𝑠, ⟨𝑎,𝑚⟩) ← 𝑄 (𝑠, ⟨𝑎,𝑚⟩) + 1

𝑁 (𝑠,⟨𝑎,𝑚⟩) (𝐺 −
𝑄 (𝑠, ⟨𝑎,𝑚⟩))

33: return 𝐵𝐴𝐶𝐾𝑃𝑅𝑂𝑃𝐴𝐺𝐴𝑇𝐸 (𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡,𝐺)
34: end if
35: end function

(state node) is selected for expansion. When a message node corre-

sponding to message𝑚 is selected for expansion, chance nodes are

created for each domain action 𝑎 ∈ 𝐴 (action nodes).
In the selection phase, both state and message nodes choose

child nodes based on the UCB1 formula, as detailed in Equation 15

(see line 14 and line 16). At action nodes, child nodes are selected

according to simulating the next state in the environment (line 17).

Each state node maintains the visitation count (𝑁 (𝑠)). Each mes-

sage node maintains the visitation count 𝑁 (𝑠,𝑚) as well as the
estimate 𝑄 (𝑠,𝑚), which represents the estimated value given the

transmission of message𝑚. Similarly, each action node maintains

the visitation count 𝑁 (𝑠, ⟨𝑎,𝑚⟩) and the estimate 𝑄 (𝑠, ⟨𝑎,𝑚⟩). The
statistics are updating with Monte-Carlo update (line 23-35).

In UCT (MA), both state and message nodes can execute a sim-

ulation using a rollout policy. A rollout policy is well-defined for

state nodes, but not for message nodes. When simulating from

a message node, a domain action suggested by a rollout policy

is combined with the corresponding message for one step. Then

a simulation is performed using only domain actions. With this

action-splitting strategy, UCT (MA) is expected to spend less time

exploring the transmission of clearly unpromising messages. This

is because, once the value estimate for a node associated with an un-

promising message is low, UCT (MA) will more frequently explore

other, potentially more promising messages.

As illustrated in Fig. 4c, we present an alternative version of the

algorithm where action nodes precede message nodes. While UCT

(AM) largely mirrors UCT (MA), it differentiates by interchanging

the roles of message and action nodes.

7 EXPERIMENTS
In this section, we present the empirical evaluation of our pro-

posed algorithms for solving Com-OAMDP instances. We compare

the performance of UCT (MA) and UCT (AM) with that of vanilla

UCT. For empirical evaluation, we use random instances of the

MazeWorld and Recycle problems. Each problem instance is solved

online, using 10000 MCTS iterations per timestep. We test each

configuration 30 times and report the average results. In our exper-

iments, we set 𝐶 = 1.0 for the exploration constant in the UCB1

formula. We used 𝛽 = 0.3 for the constant in the noisy rational

model, 𝛼 = 0.4, 𝜖 = 0.1 in our communication model. The horizon

𝐾 was set to 50 for all problems. The rollout policy was run for 20

steps. The results are reported in terms of costs or negative rewards.

For MazeWorld, we created 60 random instances for the envi-

ronment shown in Fig. 2. For each problem instance, five locations

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1415



(a) MazeWorld (vanilla vs. MA) (b) MazeWorld (vanilla vs. AM)

(c) Recycle (vanilla vs. MA) (d) Recycle (vanilla vs. AM)

Figure 5: Vanilla UCT vs. UCT with move splitting

are randomly chosen as possible goals. Each potential goal location

has a color blue/green and is of the shape circle/square. Each poten-

tial message from the set {𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛, 𝑠𝑞𝑢𝑎𝑟𝑒, 𝑐𝑖𝑟𝑐𝑙𝑒} has an 80%

availability probability. The cost for sending a message is randomly

sampled from [0.0, 0.25]. The parameter 𝜆 in the reward function is

sampled from (0.0, 1.0). For 30 of the problem instances, we used the

negative TV distance from the target belief as the belief-dependent

reward. For the remaining instances, we used the entropy of the

observer’s belief as the belief-dependent reward. This approach

rewards obscuring the intended goal.

For the Recycle problem, we generated 30 random instances,

each with five items initially placed in bins at random. Each po-

tential message from the set {𝑐𝑜𝑚𝑝𝑜𝑠𝑡, 𝑟𝑒𝑐𝑦𝑐𝑙𝑒, 𝑡𝑟𝑎𝑠ℎ} has an 80%

availability probability. Placing an object into a bin success with

probability randomly sampled from [0.3, 0.8]. The cost for sending
a message is randomly sampled from [0.0, 0.5]. The parameter 𝜆

in the reward function is sampled from (0.0, 1.0). The negative TV
distance from the true belief was used as a belief-dependent reward.

Effects of Move Splitting Fig. 5 compares UCT (MA/AM) with

the vanilla UCT. The result suggests that move splitting can improve

the performance for some problem instances. This distinction is

most evident within the Recycle scenario, as depicted in Fig. 5c-5d.

While the effects of move splitting were less prominent in other

configurations, move splitting did not hurt the performance except

for a few problem instances.

8 RELATEDWORK
Optimizing explicit communication behaviors has been previously

explored in literature. For instance, Pynadath and Tambe [28] in-

vestigated a special case of MTDP with explicit communication.

Similarly, Goldman and Zilberstein [15] examined an extension

of Dec-POMDP [4] that included explicit communication actions.

Studies in this area primarily focused on computing policies for

all agents involved in the interaction, a perspective distinct from

the human-robot interaction setting considered in this paper. The

Communicating POMDP-IR (Com-POMDP-IR) model, proposed by

[29], shares similarities with ours but also deviates in some impor-

tant ways.While Com-OAMDP emphasizes explicit communication

about the ego agent’s types, Com-POMDP-IR focuses on conveying

certain environmental aspects to the observer. It incorporates the

observer’s mental state as an additional state factor, maintaining

a belief in this factor in a similar manner to POMDP. Sreedharan

et al. [31] proposed an approach to combine explicability [22] and

explicit communication.

Com-OAMDP could be regarded as a particular case of Decision

Process with non-Markovian Reward (NMRDP) [2, 32], where re-

wards are non-Markovian. Unlike Com-OAMDPs, existing works

on NMRDP [2, 5, 24, 32] utilize temporal logic to describe rewards

over histories. Com-OAMDP, on the other hand, employs the belief

function to capture the non-Markovian nature of rewards.

The concept of move-splitting has been leveraged to solve games

with multiple actions [10, 18, 21] and MDPs with factored actions

[12]. Com-OAMDP is another example of a problem where actions

can naturally be partitioned into distinct components.

An intriguing question pertains to the recursion level necessary

for modeling the observer. In the examples used in this paper, we

only required the basic level of nested reasoning: in these instances,

the Com-OAMDP agent is at the strategy level 2, aiming to influence

an observer at level 1, under the assumption that the observer

models the observed agent as level 0 (unaware of the observer).

However, we could consider a Com-OAMDP agent at a higher

strategy level. For instance, a Com-OAMDP agent at the strategy

level 4 could optimally influence an observer at level 3, who assumes

that the observed agent is at level 2. The Rational Speech Act Model

[11, 16] suggests that the listener (observer) employs recursive

thinking to comprehend utterances. Quantifying the role of this

recursive thinking remains an area for future investigation.

9 CONCLUSION
In this paper, we present a computational model called Commu-

nicative Observer-Aware Markov Decision Process (Com-OAMDP).

Thismodel is tailored for planning both implicit and explicit commu-

nication of intentions, goals, and desires. Com-OAMDP builds upon

OAMDP and focuses on optimally influencing the observer’s men-

tal state via the agent’s actions and messages. We show that Com-

OAMDPs can be seen as a special case of the Communicative Inter-

active Partially Observable Markov Decision Process (CIPOMDP),

primarily concerning scenarios with full observability and pas-

sive observers. We propose a solution technique for Com-OAMDP

based on splitting domain and communication actions. Our em-

pirical evaluation illustrate the efficacy of solving Com-OAMDP

problems using MCTS. An important avenue for future exploration

involves the empirical evaluation of the observer’s models via user

studies, as well as extending the solution method to handle higher

level of recursive thinking.
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