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ABSTRACT
This paper presents an approach to modeling and exploiting cog-
nitive biases of cyber attackers in planning for active deception.
Sophisticated cyber attacks are primarily orchestrated by human
actors. Hence, we focus on the human aspect of the attacker’s
decision-making process. Humans deviate from rational decision-
making due to various cognitive biases. Here, we focus on fun-
damental attribution error (FAE) and confirmation bias and their
role in cyber deception because these biases contribute to humans
being deceived. We use the decision-theoretic planning framework
of finitely-nested factored I-POMDP (I-POMDPX ), which allows
us to explicitly model FAE in multi-agent settings and build cog-
nitive models of the attackers. We show how these biases impact
their beliefs as they act and obtain more information about the
environment and the adversary. The tractability of the I-POMDPX
also allows for modeling agents at a higher strategy level where
the optimal policy relies on induction and exploitation of these bi-
ases. Hence, we also present an I-POMDPX-based rational defender
agent that can model the attacker’s beliefs under the influence of
FAE and confirmation bias from a higher strategic level, and exploit
them. Our experiments in simulated interactions show that the
I-POMDPX-based defender agent can induce FAE in an attacker to
distort the attacker’s beliefs. Consequently, the defender agent can
exploit the attacker’s cognitive biases to extend the duration of the
attack to facilitate the attacker’s intent recognition in a controlled
environment. Our work provides a general decision-theoretic for-
mulation of FAE and confirmation bias, and demonstrates its role
in planning for agent-based active cyber deception.
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1 INTRODUCTION
Realistic cyber attacks are rarely a single-step process. The initial
intrusion, which remains a focus of many efforts in cyber defense
research, only serves to establish a foothold in the target. There-
after, attackers often follow a sequence of steps to achieve their
objectives. These may include information gathering, escalating
privileges, locating the target, and finally, causing business impact
or gaining a strategic advantage. The diverse sets of tools and tech-
niques that attackers use to perform these are well documented
in the widely adopted MITRE ATT&CK matrix [26]. As such, so-
phisticated attacks are a multi-step process and tend to occur over
an extended duration. We may model this extended attack interac-
tion as a sequential decision-making problem between the attacker
and defender. Defenders can utilize various techniques to disrupt,
misdirect and isolate attackers to achieve defense goals such as
minimizing the impact and learning about the attackers to pre-
clude future attacks. Cybersecurity has begun to use deception (e.g.,
honey pots) as a central tactic to detect intruders and, more re-
cently, to learn more about the attackers’ preferences, capabilities,
and motives [25]. Much research in AI-based cyber defense has
adopted a game-theoretic perspective toward designating hosts as
honey pots [3, 11, 14, 23].

AI-based cyberdeception commonly ascribes rational behavior to
attackers. However, many cyberattacks are primarily orchestrated
by human actors. It is well-known that human decision-making
deviates from rational behavior due to the influence of cognitive
biases [16]. Hence, in this paper, we focus on the human elements
of the attacker’s decision-making process, which may lead to sub-
optimal behavior due to cognitive biases. Specifically, we model
the effects of fundamental attribution error (FAE) and confirma-
tion bias on the attacker’s beliefs. Previous work has shown that
these biases play a role in humans being deceived: recent work
on a game-theoretic integration of FAE studies the role it plays in
misattributing agent behavior due to lack of context awareness [9].
Similar efforts were recently made to understand the psychological
and cognitive impacts of cyber deception on human attackers [12].
We take a model-based approach and present a decision-theoretic
formulation of select cognitive biases such as the FAE and confir-
mation bias that abet human deception. We then use this model to
simulate cyber attack scenarios and study how the biases skew the
attacker’s beliefs. Importantly, we further show how this effect can
be exploited to enhance deception.

A recent multi-agent based approach to interactive cyber de-
ception applies the factored I-POMDP framework, labeled as I-
POMDPX , to model the interaction between an attacker and a
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defender [25]. The defender agent modeled as an I-POMDPX adap-
tively utilizes decoys and aims to deceive the attacker in order to
extend the interaction, which facilitates inferring the attacker’s
intent. I-POMDPX allows explicit modeling of the opponent and
enables recursive reasoning about the opponent’s actions. Hence,
we adopt this framework and extend it with cognitive models of
the opponent to study the effects of FAE and confirmation bias.
The I-POMDPX formulation gives us a subjective view of the in-
teraction and enables reasoning about the biased attacker’s beliefs.
Also, as I-POMDPX is scalable, the interaction is modeled at higher
strategic levels where the defender reasons about the attacker’s
FAE and strategically exploits it during the interaction to deceive
the attacker.

2 BACKGROUND
We consider a host-based perspective of the interaction between
the attacker and the defender. In this section, we briefly review
host-based cyber deception modeled using I-POMDPX .

2.1 I-POMDPX for Cyberdeception
Interactive POMDPs (I-POMDPs) are a generalization of POMDPs
to sequential decision-making in a multi-agent environment [6, 15].
I-POMDPX , introduced previously [25], is a factored variant of
the I-POMDP framework and utilizes algebraic decision diagrams
(ADDs) [2] to represent the factors for the agents’ transition, obser-
vation, and reward functions compactly. This representation allows
it to scale to problems with large state and observation spaces. For-
mally, an I-POMDPX for agent 𝑖 in an environment with one other
agent 𝑗 is defined as,

I-POMDPX = ⟨IS𝑖 , 𝐴,𝑇𝑖 ,Y𝑖 ,𝑂𝑖 ,R𝑖 ,𝑂𝐶𝑖 ⟩

where IS𝑖 is the factored interactive state space consisting of
physical state factors X and agent 𝑗 ’s models 𝑀𝑗 , which may be
intentional or subintentional [5]. In a finitely-nested I-POMDPX ,
the set𝑀𝑗 is bounded and constructed similarly to finitely-nested
I-POMDPs. The action set 𝐴 is the set of joint actions of both
agents. 𝑇𝑖 defines the transition function represented using ADDs
as 𝑃𝑎𝑖 (X′ |X, 𝐴 𝑗 ) for all 𝑎𝑖 ∈ 𝐴𝑖 . As a consequence of themodel non-
manipulability assumption in I-POMDPs, the transition function
is defined over the physical states and does not include the other
agent’s models. Set Y𝑖 contains the variables that constitute an ob-
servation. 𝑂𝑖 is the observation function represented using ADDs
as, 𝑃𝑎𝑖 (Y ′

𝑖
|X′, 𝐴 𝑗 ). As a consequence of themodel non-observability

assumption, the observation function directly informs only about
the physical state space. R𝑖 defines the reward function for agent 𝑖 ,
which is also represented as an ADD, R𝑎𝑖 (X, 𝐴 𝑗 ). The reward func-
tion in I-POMDPs assigns rewards to physical states and actions.
𝑂𝐶𝑖 is the agent’s optimality criterion, which may be a finite hori-
zon 𝐻 or a discounted infinite horizon where the discount factor
𝛾 ∈ (0, 1).

The I-POMDPX based agent 𝑖 recursively updates the beliefs of
agent 𝑗 . This recursive belief update is similar to that defined for
I-POMDPs but with ADDs compactly representing the factors. The
I-POMDPX belief update is computed as:

𝑏
𝑎𝑖 ,𝑜𝑖
𝑖
(X′, 𝑀′𝑗 ) =

∑︁
X,𝑀𝑗

𝑏𝑖 (X, 𝑀𝑗 ) × 𝑃𝑎𝑖 ,𝑜𝑖 (X′, 𝑀′𝑗 |X, 𝑀𝑗 ) (1)

where the ADD 𝑃𝑎𝑖 ,𝑜𝑖 (X′, 𝑀 ′
𝑗
|X, 𝑀𝑗 ) represents the transition

probabilities for all interactive state variables given action 𝑎𝑖 and
observation 𝑜𝑖 . The ADD is computed as:

𝑃𝑎𝑖 ,𝑜𝑖 (X′, 𝑀 ′𝑗 |X, 𝑀𝑗 ) =
∑︁

𝐴 𝑗 ,Y′𝑗
𝑃𝑎𝑖 ,𝑜𝑖 (Y ′𝑗 , 𝑀

′
𝑗 ,X
′, 𝐴 𝑗 |𝑀𝑗 ,X)

=
∑︁

𝐴 𝑗

𝑃 (𝐴 𝑗 |𝑀𝑗 ) 𝑃𝑎𝑖 (X′ |X, 𝐴 𝑗 ) ×
∑︁
Y′
𝑗

𝑃𝑎𝑖 (Y ′𝑖 |X
′, 𝐴 𝑗 )

×𝑃𝑎𝑖 (𝑀 ′𝑗 |𝑀𝑗 ,Y ′𝑗 ,X
′, 𝐴 𝑗 ) .

(2)

Here, the ADD 𝑃𝑎𝑖 (𝑀 ′
𝑗
|𝑀𝑗 ,Y ′𝑗 ,X

′, 𝐴 𝑗 ) represents the recursive
belief update transition 𝜏𝜃𝑡

𝑗
(𝑏 𝑗 , 𝑎 𝑗 , 𝑜 ′𝑗 , 𝑏

′
𝑗
) × 𝑂 𝑗 (𝑠, 𝑎𝑖 , 𝑎 𝑗 , 𝑜 ′𝑗 ) of the

original I-POMDP. ADD 𝑃 (𝐴 𝑗 |𝑀𝑗 ) is obtained by recursively solv-
ing the opponent’s I-POMDPX .

Recent work on I-POMDP solution techniques utilizes Monte
Carlo Tree Search for scalable approximate solutions [17, 24]. These
methods, while being scalable, enumerate states and do not operate
on factored representations that we utilize to model the domain.
Interactive point-based value iteration offers a scalable alternative
that utilizes a point-based approximation technique for solving
finitely-nested I-POMDPs [7]. The I-POMDPX leverages the com-
pact ADD representations for factors along with this scalable point-
based approximation to obtain the subject agent’s policy. Toward
this, the I-POMDPX utilizes a factored representation of 𝛼-vectors.
Subsequently, the backup equation is generalized using factored
representation and ADD operations as follows:

Γ𝑎𝑖 ,∗ ←− 𝛼𝑎𝑖 ,∗ (X, 𝑀𝑗 ) =
∑︁

𝐴 𝑗

𝑅𝑎𝑖 (X, 𝐴 𝑗 )𝑃 (𝐴 𝑗 |𝑀𝑗 )

Γ𝑎𝑖 ,𝑜𝑖
∪←− 𝛼𝑎𝑖 ,𝑜𝑖 (X, 𝑀𝑗 ) = 𝛾

∑︁
X′,𝑀′

𝑗

𝑃𝑎𝑖 ,𝑜𝑖 (X′, 𝑀 ′𝑗 |X, 𝑀𝑗 )

× 𝛼𝑡+1 (X′, 𝑀 ′𝑗 ),∀𝛼
𝑡+1 ∈ V𝑡+1

Γ𝑎𝑖 ←− Γ𝑎𝑖 ,∗ ⊕𝑜𝑖 argmaxΓ𝑎𝑖 ,𝑜𝑖 (𝛼𝑎𝑖 ,𝑜𝑖 · 𝑏𝑖 ),
V𝑡 ←− argmax𝛼𝑡 ∈⋃𝑎𝑖

Γ𝑎𝑖 (𝛼𝑡 · 𝑏𝑖 ), ∀𝑏𝑖 ∈ 𝐵𝑖 .

(3)

Here,V𝑡+1 is the set of 𝛼-vectors from the next time step and 𝑏𝑖 is
a belief point from the set of considered beliefs 𝐵𝑖 . A popular way
of building 𝐵𝑖 is to project an initial set of belief points forwards
for 𝐻 time steps using the belief update of Eq. 1.

2.2 FAE and Confirmation Bias
In cyber-attack scenarios, attackers spend significant time gather-
ing information about their target and making inferences based on
their observations. Hence, in this paper, we focus specifically on
select biases that affect the inference process of humans. Funda-
mental attribution error is known to affect the attribution process
in human reasoning. FAE is the tendency of an observer to over-
estimate interpersonal factors compared to environmental factors.
Studies show that humans underestimate the effects of the envi-
ronment and the situation while characterizing the behavior of
their peers [22]. Recent work on a game-theoretic formulation of
FAE illustrates the role it plays in negotiations, specifically, buyer-
seller interactions [9]. The formulation utilizes an agent’s coarse
knowledge of the state to simulate the skewed inference. While a
rational agent models the opponent’s behavior conditioned on the
state, an agent affected by FAE models the opponent’s behavior
independent of the state. Such coarse modeling produces a biased
reasoning process that may erroneously attribute observations to
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the opponent instead of the state. A rational agent can exploit this
biased inference caused by coarse reasoning to deceive the oppo-
nent about her type. Importantly, this game-theoretic formulation
shows that coarse thinking [20] can lead to FAE.

Another bias afflicting the acquisition of information in humans
is the confirmation bias. While confirmation bias manifests in hu-
man reasoning in many forms [21], we specifically focus on the
phenomenon of overweighting positive confirmatory evidence. This
effect leads to the agent overweighting observations that conform
to her predicted belief state. Further, the agent underweights ob-
servations that are contrary to her belief state. Recent work on
extended goal recognition shows that confirmation bias acts like
inertia – keeping the agent slightly biased towards the hypothesis
formed from the initial few observations [19].

We model and consider the effects of attacker FAE and confir-
mation bias in decision-theoretic settings. In the next section, we
define and explain our formulation of these biases using a simple
illustration.

3 COGNITIVE MODELING IN I-POMDPX
We model the cognitive biases introduced in Section 2.2 within
the I-POMDPX framework introduced in Section 2.1. We start by
introducing FAE from a decision-theoretic perspective. Analogously
to Ettinger and Jehiel [9], we demonstrate FAE as a consequence
of coarse thinking, although our modeling pertains to the state
and differs from theirs. We also introduce a model for weighting
observations in a manner consistent with confirmation bias.

Consider a simple cyber defense scenario posed as a two-agent
decision-making problem. The physical state consists of a host
system which can either be a critical system, HostType = c, or
a honeypot system, HostType = hp. Thus, HostType = {c, hp}
forms the physical state space. There are two adversarial agents
in the interaction: the attacker and the defender. Attacker agent 𝑎
at strategy level 𝑙 = 1 models a defender agent 𝑑 at strategy level
𝑙 = 0. For the sake of simplicity, we assume that both agents get
perfect observations about the state and the attacker gets perfect
observations about the defender’s actions. The defender agent may
either be passive with less capability, or active that can defend
against the attacker. The passive defender passively observes and
logs the attacker’s actions. On the contrary, the active defender is
capable of swift countermeasures to defend a critical system using
the Defend action.

Definition 1 (Level 0 defender agent). The level 1 attacker models
the level 0 defender as a factored POMDP agent, which is defined as
the tuple ⟨X, 𝐴,𝑇𝑑 ,Y𝑑 ,𝑂𝑑 ,R𝑑 ,𝑂𝐶𝑑 ⟩. Here, X is the set of physical
state variables. The other elements of the tuple are analogous to
those defined for the I-POMDPX in Section 2.1, but for a single
agent.

In this illustration, X = {HostType}. We assume that the physi-
cal state HostType does not change. Hence, 𝑇 is defined as 𝑃 (x′ |x,
𝑎𝑑 ) = 1 when x = x’ and 0 otherwise∀x ∈ X, x′ ∈ X, 𝑎𝑑 ∈ 𝐴𝑑 . The
defender’s set of actions is defined as 𝐴𝑑 = {Defend, No-Op}. Addi-
tionally, the attacker models the defender agent as having different
levels of capability through frames. The set of defender frames is
then defined as Θ̂𝑑 = {𝜃𝑎𝑐𝑡 , 𝜃𝑝𝑎𝑠𝑠 }. For the passive defender, 𝜃𝑝𝑎𝑠𝑠 ,
the optimal policy is to simply perform No-Op no matter the type

of the host. On the other hand, the active defender’s policy will be,

𝜋
𝜃𝑎𝑐𝑡
(HostType) =

{
Defend, HostType = c

No-Op, HostType = hp

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

c 0.25 0.25
hp 0.25 0.25

𝛽𝑎 (X, Θ̂𝑑 )
=

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

c 0.5 0.5
hp 0.5 0.5

𝛽𝑎 (Θ̂𝑑 |X)
×

c hp

0.5 0.5

𝛽𝑎 (X)

Figure 1: A rational attacker’s beliefs over the defender’s
models are conditioned on the host type due to her ability to
distinguish the host types. We also show the attacker’s belief
over the joint space obtained as 𝛽𝑎 (IS𝑎) = 𝛽𝑎 (X) × 𝛽𝑎 (Θ̂𝑑 |X).

Definition 2 (Level 1 attacker I-POMDPX ). The level 1 attacker
is an I-POMDPX agent defined as the tuple ⟨IS𝑎, 𝐴,𝑇 ,Y𝑎,𝑂𝑎,R𝑎,
𝑂𝐶𝑎⟩. IS𝑎 is the attacker’s interactive state space, X × Θ̂𝑑 . The
transition function 𝑃 (x′ |x, 𝑎𝑑 ) = 1 when x = x’ and 0 otherwise
∀x ∈ X, x′ ∈ X, 𝑎𝑎 ∈ 𝐴𝑎, 𝑎𝑑 ∈ 𝐴𝑑 . We assume the attacker gets
perfect observations about the defender’s action and the state, but
not of the defender’s frame which must be inferred.

The attacker’s set of actions is defined as 𝐴𝑎 = { Attack, No-Op}.
Here, Attack is an abstract action that yields some reward when
performed on a critical system. Also, attacking a system when a
defender defends it incurs some cost for the attacker. Thus, ideally,
the attacker aims to attack a critical system, HostType = c, with a
passive defender Θ̂𝑑 = 𝜃𝑝𝑎𝑠𝑠 . We assume perfect observability of
the state for the defender.

Example 1 (Rational attacker’s beliefs at timestep 𝑡 ). Consider
the attacker agent’s probability space ⟨IS𝑎, Σ𝑎, 𝛽𝑎⟩, where IS𝑎 =

X × Θ̂𝑑 , and Σ𝑎 is the sigma algebra of measurable subsets of IS𝑎 .
For finite sets X and Θ̂𝑑 , Σ𝑎 is generally the powerset of X × Θ̂𝑑 :
Σ𝑎 = 2IS𝑎 . 𝛽𝑎 is the attacker’s probability measure function which
assigns a belief to the elements in Σ𝑎 such that 𝛽𝑎 (IS𝑎) = 1. Fig. 1
shows a rational attacker’s beliefs over IS𝑎 .

We assume the attacker gathers information in the first step.
Consequently, the attacker’s observation function reveals the state
of the system, X = x’, and the defender’s action, 𝐴𝑑 = 𝑎𝑑 . Using
these observations, the attacker agent computes her posterior belief
distribution over IS𝑎 using the Bayes rule, 𝛽𝑎 (Θ̂′𝑑 ,X

′ |𝐴𝑑 = 𝑎𝑑 ) =
𝛼𝑃 (𝐴𝑑 = 𝑎𝑑 |X′, Θ̂′𝑑 )

∑
X,Θ̂𝑑

𝑃 (X′, Θ̂′
𝑑
|X, Θ̂𝑑 )𝛽𝑎 (X, Θ̂𝑑 ) where 𝛼 is

the normalizing constant and 𝑃 (𝐴𝑑 |X, Θ̂𝑑 ) is essentially given by
the defender’s optimal policy for each frame. Note that this update
is analogous to the I-POMDPX belief update described in Eq. 1 with
the assumption of perfect observability and no transitions.

Example 2 (Rational attacker’s beliefs at timestep 𝑡 + 1). Let Y ′
𝑖
=

{hp, No-Op} be the observed physical state and defender’s action,
respectively. The attacker’s posterior belief, 𝛽𝑎 (X′,Θ′𝑑 ) is shown
in Fig. 2.
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𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

0.5 0.5

𝑃 (Θ̂𝑑 )

=
∑︁
X

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

c 0.0 0.0
hp 0.5 0.5

𝛽𝑎 (X′, Θ̂′𝑑 )
= 𝛼

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

0.5 0.5

𝑃 (𝐴𝑑 = No-Op|X = hp, Θ̂′
𝑑
)

×

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

c 0.25 0.25
hp 0.25 0.25

𝑃 (X′, Θ̂′
𝑑
)

Figure 2: A rational attacker’s posterior belief over the interactive state space IS𝑎 is shown above as 𝛽𝑎 (X′, Θ̂′𝑑 ). 𝑃 (Θ̂𝑑 ) the
belief over the opponent’s frame and can be computed as

∑
X 𝛽𝑎 (X, Θ̂𝑑 )

We now illustrate how the attacker’s posterior belief changes
when she is unable to distinguish between the host system’s types,
HostType = c or HostType = hp, which prevents her from mod-
eling the relationship between the defender’s behavior and the
physical state.

3.1 Coarse Thinking and FAE
In our treatment of coarse thinking, we consider scenarios where an
agent cannot disambiguate between multiple states and aggregates
them into a single partition. Such partitioning is analogous to the
concept of information partitions first introduced by Halpern [10]
and Aumann [1] for representing knowledge and reasoning with it.
The partitioning of states has also been used before to define finite-
level type spaces in Bayesian Markov games [4]. Note that our state
partitioning, which is based on an agent’s lack of knowledge, is
fundamentally distinct from state-aliasing [27], which is an artifact
of learned representations.

Recall that rational agents have the ability to perfectly model
the physical state space because they can assign belief measures
to individual elements of IS. Now, consider a scenario in which
the attacker is unable to disambiguate between a critical system
HostType = c and a honeypot HostType = hp due to being unaware
of the existence of honeypots in the network. Such an attacker rea-
sons over a coarser state space using state partitions. We model
these state partitions by ensuring that the set of physical events
Σ𝑋 = 𝜎 ({c, hp}) instead of the previous Σ𝑋 = 2𝑋 ; 𝜎 (·) defines the
smallest sigma algebra1 containing the grouping {c, hp}. Conse-
quently, the belief function 𝛽 can no longer assign a probability
measure to individual states c and hp because they are not mea-
surable in the defined probability space. Instead, 𝛽 now assigns a
probability to the element {c, hp} of the partition.

In the following examples, we utilize such partitioning to model
an agent’s coarse thinking.

Example 3 (Biased attacker’s beliefs at time step 𝑡 ). A human
attacker, who is likely to exhibit common biases, may model the
defender’s behavior independently of the type of the system. We
simulate this by assigning an element of the partition HostType =
{c,hp} as the attacker’s only state. Consequently, the attacker can
no longer distinguish between individual states HostType = c and
HostType = hp. The resulting belief over a coarse IS𝑎 is shown
in Fig. 3.

1Σ ⊆ 𝑃 (𝑋 ) for a set𝑋 and its powerset𝑃 (𝑋 ) is a𝜎-algebra if the following conditions
are true; 𝑋 ∈ Σ, Σ is closed under complementation, and Σ is closed under countable
unions

Analogously to the rational attacker, we simulate the biased
attacker’s belief update on receiving the observation {hp, No-Op}.
The belief update gives us a posterior distribution over IS𝑎 with a
coarse representation ofX. Due to the partitioning of the state space,
the observation function that informs the attacker about HostType
is no longer valid because the attacker cannot assign probabilities
inside the partition.We simulate the belief update on the partitioned
state space to show that FAE results from the inference process on
a coarse representation of the state. The following example shows
the attacker’s posterior belief over the partitioned IS𝑎 .

Example 4 (Biased attacker’s beliefs at time step 𝑡 + 1). The biased
attacker’s posterior belief is obtained by simulating one step of the
I-POMDPX belief update mentioned in Eq. 1 with the prior belief as
given in Example 3. Fig. 3 shows the posterior belief after observing
that the defender agent performs action No-Op.

The attacker agent, on observing that the defender performs
the No-Op action, updates her posterior distribution over the de-
fender’s models by weighting them according to their likelihood
of performing the No-Op action independently of HostType. Recall
that the active defender’s optimal policy, 𝜋

𝜃𝑎𝑐𝑡
, suggests action

Defend for HostType = c. Because of her coarse representation,
the attacker ignores this conditioning of 𝜋

𝜃𝑎𝑐𝑡
on HostType caus-

ing her to estimate 𝑃 (𝐴𝑑 = No-Op|𝜃𝑝𝑎𝑠𝑠 ) > 𝑃 (𝐴𝑑 = No-Op|𝜃𝑎𝑐𝑡 )
as 𝜃𝑎𝑐𝑡 performs Defend with non-zero probability while 𝜃𝑝𝑎𝑠𝑠
performs No-Op only. Such an (erroneous) update results in the
attacker believing that the defender is more likely to be passive (i.e.,
of the frame 𝜃𝑝𝑎𝑠𝑠 ). If instead, the attacker was rational and able to
model the dependence between the defender’s policy and HostType,
she would infer after observing HostType = hp that 𝑃 (𝐴𝑑 =

No-Op|HostType = hp, 𝜃𝑝𝑎𝑠𝑠 ) = 𝑃 (𝐴𝑑 = No-Op|HostType = hp,

𝜃𝑎𝑐𝑡 ) as shown in Fig. 2. A rational attacker then stays neutral in
her belief about whether the defender is active or not. The grouping
of the state space makes such conditioning impossible, inducing the
attacker to draw inferences about the defender types while being
ambiguous about the physical state.

This faulty inference is consistent with the phenomenon of
FAE. Thus, I-POMDPX can explicitly model FAE resulting from an
agent’s coarse thinking. This decision-theoretic formulation of FAE
is novel and enables its explicit modeling and manifestation.

3.2 Confirmation Bias
After establishing initial access, attackers are uninformed about
the system’s state. Hence, their initial observations dominate their
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Prior :
{c, hp}

1.0

𝛽𝑎 (X)

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

0.5 0.5

𝛽𝑎 (X, Θ̂𝑑 )

Posterior :

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

0.333 0.666

𝑃 (Θ̂𝑑 )

= 𝛼

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

0.5 1.0

𝑃 (𝐴𝑑 = No-Op|Θ̂𝑑 )

×
𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

0.5 0.5

𝛽𝑎 (X, Θ̂𝑑 )

Figure 3: Coarse state representation causes the attacker to model the defender’s behavior independently of the state. 𝛽𝑎 (X)
shows the attacker’s belief over the coarse state space. Due to the coarse representation, 𝛽𝑎 (X, 𝑀𝑑 ) becomes a uniformdistribution
indicating that the attacker believes all defender behaviors to be equally likely.

hypotheses about the environment. Confirmation bias plays a crit-
ical role in such situations. Specifically, once the attacker forms
a belief about the defender’s frame, subsequent observations that
contradict her belief are weighted less by the attacker.

Consider a subsequent interaction between the attacker and the
defender agents after the attacker has observed the defender’s initial
actions and formed a belief about her frame. In our illustration, we
assume that the active defender, 𝜃𝑎𝑐𝑡 , can now deploy decoy files
to deceive the attacker when HostType = hp. Thus, the optimal
policy for the active defender is,

𝜋
𝜃𝑎𝑐𝑡
(HostType) =

{
Defend, HostType = c

Deceive, HostType = hp

The optimal policy for the passive defender stays the same as pre-
viously defined.

Example 5 (Attacker’s prior belief during a subsequent interac-
tion). Assume a scenario with the attacker already biased in her
belief about the defender’s frame due to FAE. Left Fig. 4 shows the
attacker’s prior belief during the second interaction.

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

0.334 0.666

Prior

𝑃 (Θ̂𝑑 )

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

0.739 0.261
After norma-
tive update

𝑃 (Θ̂𝑑 )

𝜃𝑎𝑐𝑡 𝜃𝑝𝑎𝑠𝑠

0.603 0.397
Due to confir-
mation bias

𝑃 (Θ̂𝑑 )

Figure 4: Confirmation bias causes the attacker to under-
weight evidence that does not conform to the predicted belief.
The left figure shows the attacker’s prior belief. The middle
figure shows the rational updated belief. The right figure
shows the updated belief due to confirmation bias.

For the sake of illustration, let the attacker observe the defender
performing the Deceive action. Eqn. 1 computes the attacker’s
posterior belief over the defender’s frame.

Example 6 (Attacker’s posterior belief after a normative belief
update). On observing the Deceive action by the defender, the at-
tacker updates her belief over the defender’s frame. Fig 4 shows the
attacker’s posterior belief following the observation. The attacker
models the active defender’s ability to employ deception. Conse-
quently, after observing deception, the attacker correctly updates
her belief that the defender is active.

We now show how confirmation bias causes the attacker to
discount the defender’s observed behavior. Let 𝑏 (X,Θ𝑑 ) be the
attacker’s prior belief, 𝐴𝑎 = 𝑎𝑎 be the attacker’s action, andY ′𝑎 = y
the observation at time step 𝑡 . The posterior belief 𝑏 (X′,Θ′

𝑑
) at

time step 𝑡 + 1 due to confirmation bias is given by,

𝑃 (X′,Θ′
𝑑
|𝑎𝑎, y) =

∑
𝐴 𝑗

(∏𝑛
𝑖=1 𝑃 (𝑌𝑖 = 𝑦𝑖 |X′, 𝐴𝑗)𝛾𝑖

)
𝛽pred∑

X′,𝐴𝑗

(∏𝑛
𝑖=1 𝑃 (𝑌𝑖 = 𝑦𝑖 |X′, 𝐴𝑗)𝛾𝑖

)
𝛽pred

(4)

where, 𝛽pred =
∑
Y′
𝑗
𝑃𝑎𝑖 (Y ′

𝑗
, 𝑀 ′

𝑗
,X′, 𝐴 𝑗 |𝑀𝑗 ,X).

The ADD 𝑃𝑎𝑖 (Y ′
𝑗
, 𝑀 ′

𝑗
,X′, 𝐴 𝑗 |𝑀𝑗 ,X) is exactly the same as the ADD

𝑃𝑎𝑖 ,𝑜𝑖 (Y ′
𝑗
, 𝑀 ′

𝑗
,X′, 𝐴 𝑗 |𝑀𝑗 ,X) defined in equation 2 without restric-

tion of Y𝑖 = 𝑜𝑖 . 𝛾𝑖 is the weighting factor for observation variable
𝑌𝑖 given by, 𝛾𝑖 = (1 + ||𝑃 (𝑌𝑖 = 𝑦𝑖 |X′, 𝐴𝑗) − 𝑃𝑎𝑎 | |11)

−1 .

Example 7 (Attacker’s posterior belief due to confirmation bias).
The weighting factor now influences the attacker’s belief update.
The defender’s observed action, Decieve, contradicts the attacker’s
prior belief that the defender is passive, yielding a small weighting
factor. Consequently, the attacker underweights this observation.
Fig. 4 shows the attacker’s posterior belief due to confirmation bias.

This scenario shows the inertial property of confirmation bias
which causes agents to underweight evidence that does not conform
to their beliefs.

4 EXPERIMENTS
In the previous section, we illustrated the effect of cognitive biases
on the attacker’s beliefs about the defender’s capabilities. We simu-
late interactions between our model of a biased human attacker and
an I-POMDPX-based defender agent. Below, we briefly summarize
the domain and discuss the results of our experiments. The code for
the I-POMDPX solver, the domain, and the supplementary material
are available at https://github.com/dityas/CaffeineBravery

4.1 The Active Cyberdefense Domain
Both agents reason over a common physical state space represent-
ing the host system and recursively model each other’s beliefs to
compute an optimal adversarial policy. Shinde and Doshi [25] re-
cently introduced the cyber deception domain enabling I-POMDPX-
based active defenders to recognize an attacker’s intent using de-
ception. We adopt this domain with a few modifications to the state
space. We include a detailed description of the domain with the
supplementary material.

In the cyber deception domain, a set of discrete random variables
describes the state of the host system on which the interaction oc-
curs. We add the HostType state variable to this domain, along with

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1722



its partitioning introduced previously in Section 3.1 to represent
the type of host system. The HostType does not change because
the interaction occurs on a honeypot. We include state variables
that model the presence of valuable data and privilege escalation
opportunities for the attacker– the HostHasData and EscAccounts
state variables. Other state variables that describe the attacker’s
progress– DataFound, AccFound, DataInjected, and AttActive,
are exactly as defined in the cyber deception domain. Due to the par-
tial observability of the host system, the attacker agent gets noisy
observations from her actions. We model the attacker’s noisy obser-
vations using an observation function that probabilistically maps
the state of the system to the attacker’s observations. Similarly, the
defender agent must rely on her log inference capabilities to infer
the attacker’s actions. We assign a noisy observation function to
the defender to model the ambiguity in realistic log inference sys-
tems. A detailed description of the state and observation variables
and action sets for both agents is included in the supplementary
material.

100 10

DataInjected

0

yes no

DataInjected

yes no

HostHasData

yes
no

HostType

critical

honeypot

AttActive
yes

-1

no

(a) The rational attacker’s reward
function is conditioned on the
HostType state.

100 10

DataInjected

0

yes no

DataInjected

yes no

HostHasData

yes
no

AttActive

yes

-1

no

(b) The biased attacker’s reward
function cannot be conditioned
on HostType state variable due to
her coarse representation.

Figure 5: The attacker’s reward function 𝑅EXIT (X) assigns a
high reward for successful data manipulation.

To achieve her goal, the attacker employs information-gathering
actions and impact-causing actions. Information-gathering actions
inform the attacker about the state of the host system. Impact-
causing actions enable the attacker to manipulate the state. We
include both types of actions in our domain. To ensure realistic
modeling of attacker actions, we utilize the MITRE ATT&CK ma-
trix [26] as a reference. The attacker’s reward function assigns a
high reward for the manipulation of valuable data when HostType
= critical. However, in the case of a biased attacker, the reward
is not conditioned on HostType due to her coarse representation of
this state variable. We show the ADD representation of the reward
function for both cases– a rational attacker, and a biased attacker
in Figure 5.

We model the active and passive defender agents analogously to
the ones defined in Section 3. The passive defender agent simulates
existing deception strategies that simply try to log attacker activity
on honeypots without actively engaging them. In contrast, the ac-
tive defender agent aims to evict an attacker present on a critical

host system and engage the attacker on a honeypot system. Con-
sequently, we condition the active defender’s reward function on
the HostType state variable. We include deceptive and preventive
capabilities in the active defender’s action set. The defender can
evict the attacker from a critical system. However, there is a high
cost associated with performing this action in the attacker’s ab-
sence because this would imply that a legitimate user was evicted.
Consequently, the defender agent has to utilize her log inference
capabilities to infer the attacker’s presence. On a honeypot system,
the defender can deploy data decoys to bait and engage the attacker.
We use the MITRE D3FEND matrix [18] as a reference to model
these actions and their effects on the state of the host system.

We model the interaction between an active defender agent at
strategy level 𝑙 = 3 and an attacker agent at level 𝑙 = 2. In the
following section, we present and discuss the results of simulated
interactions between the two agents.

4.2 Simulated Interactions
Human attackers act and infer information differently from rational
agents. To investigate this departure from rationality, we compare
our model of a biased human attacker with a rational attacker.
The rational attacker agent has perfect state representation and a
normative belief update. We perform 100 simulations where each
simulation continues until the attacker exits with each attacker type
– a rational attacker, an attacker with FAE, and an attacker with
FAE and confirmation bias. We address these attackers as rational,
fae, and fae_cbias for the sake of this discussion.

2 4 6 8 10
time step

0.44
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0.50
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 d

iv
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Rational attacker
Attacker with FAE
Attacker with FAE and confirmation bias

Figure 6: JS divergence between the attackers’ beliefs and
the defender’s type indicates that a combination of FAE and
confirmation bias causes a significant error in attribution.

Initially, the simulated attackers are uninformed about the de-
fender’s frame, as indicated by their identical Jensen-Shannon (JS)
divergence values in the first time step in Figure 6. As the interac-
tion proceeds, around time step 3, both fae and fae_cbias predict
that an active defender will attempt to use defensive measures
to prevent their progress. However, the defender agent, knowing
that the HostType is a honeypot, instead deploys decoys to keep
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(a) The attacker’s beliefs shown in the right column devi-
ate from the true states shown on the left due to funda-
mental attribution error
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(b) A rational attacker can reason about the state because of her perfect state
representation. Consequently, the attacker avoids FAE by correctly conditioning
the defender’s behavior on the state

Figure 7: A comparison of beliefs between fae and rational shows rational’s ability to utilize context and remain neutral about
the defender.

the attacker engaged using the DataDecoys action. Both fae and
fae_cbias, having a coarse state representation update their belief
about the defender’s frame while being unaware of the HostType
state, causing them to attribute the lack of defensive actions entirely
to the defender’s ability. Figure 6 shows this attribution error. The
blue and red lines trace the JS divergence of these attackers. The
blue line denotes fae, and the red line denotes fae_cbias. At step 3,
both attackers have significantly higher JS divergence values than
rational. In contrast to this behavior, rational starts forming a belief
about the HostType state based on her observations while gather-
ing information using the FileRecon and EnumAccounts actions.
Consequently, in step 3, when rational does not observe a reaction
from the defender, she updates her belief about the defender’s frame
by conditioning it on the HostType state. Thus, rational avoids FAE
by being aware of the context in attributing observations.

Figure 7 highlights this difference by simulating both belief up-
dates on the same action-observation sequence as described pre-
viously. Both, fae and rational are initially uninformed about the
defender’s frame as shown in step 1. In Figure 7a, steps 3 and 4
show fae’s beliefs due to FAE. Figure 7b presents a comparative
rational belief update with minimal error in attribution. Rational’s
utilization of context to reason about her observations is evident
from her successively higher belief that HostType = honeypot,
and minimal error in attribution in steps 3 and 4.

Following the faulty inference due to FAE, the attacker continues
her attempts at locating and manipulating critical data. While both

fae and fae_cbias cannot differentiate between honeypots and criti-
cal systems, they do expect a defender, if present, to engage them.
Consequently, fae attributes her discovery of valuable data equally
to the HostHasData state, and the active defender’s attempt to keep
her engaged. However, for fae_cbias who also exhibits confirmation
bias, the attribution of data discovery to an active defender contra-
dicts her prior belief of the defender being passive. Consequently,
confirmation bias causes fae_cbias to underweight this contradict-
ing evidence and instead maintain her belief that the defender is
passive. Fig 6 captures this difference in inference due to confirma-
tion bias after step 4. Fae, using a normative belief update, shown in
blue, starts correcting her belief about the defender type indicative
from the steep drop in divergence. In contrast, fae_cbias, shown in
red, is slow to apply this correction. Such delayed correction of be-
liefs by ignoring contradicting evidence is behavior consistent with
confirmation bias. Figure 8 shows this delayed correction process
caused by confirmation bias by comparing it with a rational belief
update.

In our simulations, the rational attacker promptly exited the
system after recognizing HostType = honeypot in the early stages
of the interaction. Consequently, the defender agent, on also pre-
dicting a likely early exit, did not compute a policy to engage the
attacker. The rational attacker stayed in the host system for a mean
duration of 2.37 interaction steps. In contrast, the biased human
attackers were more persistent due to their unawareness of the
system being a honeypot and thinking that the defender was either

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1724



Attacker's beliefs without
confirmation bias

Result: success

Result: success

active = 0.335
passive = 0.664

active = 0.511
passive = 0.488

Result: *
active = 0.557

passive = 0.442

Attacker's beliefs with
confirmation bias

Result: success

Result: success

active = 0.339
passive = 0.660

active = 0.366
passive = 0.633

Result: *
active = 0.446

passive = 0.553

File Recon

Manipulate
Data

Exit

File Recon

Manipulate
Data

Exit

Attacker's
actions

Attacker's
actions

Attacker's
observations

Attacker's
observations

Figure 8: Confirmation bias induces the attacker to under-
weight contradicting evidence and delays belief correction

absent or not active. Consequently, the defender agent utilized ef-
fective deception strategies to engage them on the honeypot. The
fae_cbias attacker continued the attack for a mean duration of 6.26
interaction steps. This difference in interaction durations was statis-
tically significant (𝑝 = 1.001 × 10−32, 𝑛1 = 𝑛2 = 100 for a Wilcoxon
rank-sum test). Engaging the attacker for a longer duration enabled
the defender to observe a wider range of attacker capabilities. In
our simulations, excluding the No-Op and Exit actions, the ratio-
nal attacker only performed FileRecon, an information-gathering
action, before recognizing HostType = honeypot and exiting the
system. The rational attacker performed an average of 1.19 unique
actions in every interaction. In contrast, the biased human attacker
(fae_cbias) performed a mean of 4 unique actions excluding No-Op
and Exit. The difference in the number of unique actions performed
by the rational attacker and the biased attacker was statistically
significant (𝑝 = 2.523 × 10−34, 𝑛1 = 𝑛2 = 100 for a Wilcoxon
rank-sum test). The biased attacker started the interaction with the
EnumAccounts action to discover escalation opportunities. The at-
tacker then escalated her privileges using the PrivEsc action. Subse-
quently, the attacker located valuable data using FileRecon. Finally,
the attacker performed the ManipulateData action to achieve her
objective and conclude the attack. The biased attacker’s behavior
spanned her entire action set. The defender agent was thus able to
deceive the attacker into behaving exactly as if she were attacking a
real system. Computing this optimal defender strategy took around
16 mins 20 secs on a quad-core Intel i3 with 16GB RAM for 3 levels
of nesting. As such, the factored representation of the framework
scales well along multiple dimensions.

Our simulations demonstrate that the cognitive modeling of
human attackers facilitates the development of viable deception
strategies to engage attackers on sandboxed systems.

5 RELATEDWORK
Recent work on AI-based techniques for cyberdefense include vari-
ous game-theoretic approaches tomodeling the interaction between

attackers and defenders [3, 11, 14, 23]. While these works are similar
to ours in their strategic use of honeypots, we model deception at
the deeper level of beliefs of the involved agents. Particularly inter-
esting is the work by Ettinger and Jehiel on modeling psychological
biases relevant to deception from a game-theoretic perspective [9].
They proposed a framework to model deception in equilibrium
strategies against players with coarse reasoning. In contrast, we
adopt a decision-theoretic approach for explicitly modeling the
agents instead of computing equilibrium policies. Additionally, we
use the concept of state partitions to represent context unawareness.
Our work shows that such representation plays a critical role in
modeling FAE. Masters et al. recently proposed a model of confir-
mation bias to deceive observers engaging in goal recognition [19].
They use proximity from optimal paths to compute a weighting
factor. In contrast, our work does not rely on path planning and
instead weights observations according to their proximity to the
predicted belief.

Doshi et al. [8] proposed the empirically informed I-POMDP
to model human behavioral data in general-sum and fixed-sum
games. They augmented the I-POMDP framework to model human
decision-making based on known cognitive literature. In contrast,
we focus on biases that play a significant role during cyberattacks.
Another study on decision-making in cyberattacks was the Tularosa
experiment [12] which recorded participants during a red-team ex-
ercise. Their studies showed that attackers exhibited biases such
as confirmation bias, sunk cost fallacy, ambiguity effect, and self-
serving bias [13]. Our work provides an analogous model-based
framework to study some of these biases from the subjective per-
spective of the participating agents.

6 CONCLUSION
The augmented I-POMDPX framework presents a decision-theoretic
formulation of coarse thinking, fundamental attribution error, and
confirmation bias, and how it may benefit cybersecurity. This ap-
proach of modeling cognitive biases and utilizing them to engage
attackers is a pioneering approach to cybersecurity. Conventional
cybersecurity has been an arms race with attackers and defenders
developing tools and techniques to overcome their opponent’s capa-
bilities. However, human behavior has been a common denominator
across most targeted cyberattacks. We leverage a cognitive model of
human decision-making to predict and manipulate attacker behav-
ior. Our work is a step toward leveraging such cognitive models of
human behavior to engage cyber attackers that have an asymmetric
advantage over defenders.

More broadly, our framework has applications in studying the
effects of fundamental attribution error and confirmation bias in
generic interactions. Our model-based approach has several poten-
tial applications in psychology, economics, and cognitive science.
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7 ETHICAL IMPLICATIONS
Our work follows a long history of research on modeling the effects
of cognitive biases on human decision-making and behavior. We
recognize that the broader use of these computational models may
raise potential ethical concerns and address these below.

Leveraging an attacker’s cognitive biases for deception is a purely
defensive capability as it enables the defender to engage with the
attacker on sandboxed systems. Also, our model of coarse think-
ing and FAE relies on the attacker’s lack of knowledge about the
state. Consequently, our framework may not be effectively misused
in an offensive capacity by the attacker because the defender has
complete knowledge about the state of the honeypot system. We
recognize that a malicious actor may benefit from utilizing our mod-
els to explore generic deception strategies. However, the strategic
depth of our framework will allow the identification, analysis, and
remediation of biased behavior in such scenarios, thereby negating
any unfair advantage to the malicious actor. On a broader scale, we
believe that the possibility for positive impact from our work far
outweighs any unexpected potential for its misuse.
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