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ABSTRACT
Online task scheduling serves an integral role for task-intensive

applications in cloud computing and crowdsourcing. Optimal sched-

uling can enhance system performance, typically measured by the

reward-to-cost ratio, under some task arrival distribution. On one

hand, both reward and cost are dependent on task context (e.g.,

evaluation metric) and remain black-box in practice. These render

reward and cost hard to model thus unknown before decision mak-

ing. On the other hand, task arrival behaviors remain sensitive to

factors like unpredictable system fluctuation whereby a prior esti-

mation or the conventional assumption of arrival distribution (e.g.,

Poisson) may fail. This implies another practical yet often neglected

challenge, i.e., uncertain task arrival distribution. Towards effective

scheduling under a stationary environment with various uncertain-

ties, we propose a double-optimistic learning based Robbins-Monro

(DOL-RM) algorithm. Specifically, DOL-RM integrates a learning

module that incorporates optimistic estimation for reward-to-cost

ratio and a decision module that utilizes the Robbins-Monro method

to implicitly learn task arrival distribution while making scheduling

decisions. Theoretically, DOL-RM achieves a sub-linear regret of

𝑂 (𝑇 3/4), which is the first result for online task scheduling under

uncertain task arrival distribution and unknown reward and cost.

Our numerical results in a synthetic experiment and a real-world

application demonstrate the effectiveness of DOL-RM in achiev-

ing the best cumulative reward-to-cost ratio compared with other

state-of-the-art baselines.
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Figure 1: Rewards and Costs for (𝑆, 𝑎) in a Toy System.

Table 1: Reward-to-Cost Ratio under Distribution {0.8, 0.2}.

Algorithm Policy Ratio

The greedy algorithm (𝑆𝐼 , 𝑎𝐼 ), (𝑆𝐼 𝐼 , 𝑎𝐼 𝐼 𝐼 ) 2.5

The reverse algorithm (𝑆𝐼 , 𝑎𝐼 ), (𝑆𝐼 𝐼 , 𝑎𝐼 𝐼 ) 2.6

1 INTRODUCTION
Online task scheduling refers to the process that schedules incom-

ing tasks to available resources in real-time. It plays a central role

in boosting operational efficiency for cloud computing [1, 3, 16],

crowdsourcing [2, 9, 22] and multiprocessing [11, 17, 21] systems,

etc. When a task is scheduled, it occupies resources for processing,

e.g., computing hardware or labor costs. Upon task completion,

we receive rewards, e.g., a high-accuracy machine learning model

or high-quality data. The typical goal of online task scheduling is

to optimize the reward-to-cost ratio, which represents the system

efficiency. For instance, a cloud computing platform bills users to

process their tasks using virtualized processing units, aiming to

maximize the average revenue-to-hardware cost ratio. A crowd-

sourcing platform compensates appropriate workers for processing

data labeling tasks, aiming to optimize the quality-to-cost ratio.

There exist two major challenges to establish an effective online

task scheduling policy. The first one is the black-box nature of

rewards and costs. Take the machine learning model training as an

example, rewards could refer to the model training accuracy, area

under the curve (AUC) and f1 score while the costs could refer to

the power consumption [20, 32]. The scheduler needs to choose
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an appropriate training time (decision) to maximize the accuracy

(reward) per power consumption (cost). However, the knowledge of

accuracy and power consumption w.r.t. training time is unknown

apriori and thus information is only revealed for the chosen decision

(i.e., bandit feedback) when the task is completed.

The second challenge is the uncertainty of task arrival, where

there exist multiple types of tasks in the system and the scheduler

has no prior information on their arrival distribution. One intuitive

approach to addressing this challenge is always choosing the greedy

decision with the maximal estimated ratio (suppose the knowledge

of rewards and costs is known), regardless of the task type. This

idea seems to work because the greedy decision for every incoming

tasks would maximize the average reward-to-cost across all tasks.

However, we show the greedy decision could be an arbitrarily sub-

optimal solution by slightly twisting the task arrival distribution.

Consider a toy task scheduling system with arriving tasks of two

types in Figure 1, denoted as task 𝑆𝐼 and 𝑆𝐼 𝐼 . For task 𝑆𝐼 , there is

only one available decision 𝑎𝐼 . For task 𝑆𝐼 𝐼 , two decisions exist,

i.e., the first decision 𝑎𝐼 𝐼 involves a low reward and a low cost,

while the second one 𝑎𝐼 𝐼 𝐼 is characterized by a higher reward and a

higher cost which has a higher reward-to-cost ratio than decision

𝑎𝐼 𝐼 . We consider two algorithms, i.e., the greedy (𝑎𝐼 for task 𝑆𝐼 and

𝑎𝐼 𝐼 𝐼 for task 𝑆𝐼 𝐼 ) and the reverse (𝑎𝐼 for task 𝑆𝐼 and 𝑎𝐼 𝐼 for task

𝑆𝐼 𝐼 ) algorithm. One may argue that the greedy algorithm is more

favorable since it achieves a higher ratio for task 𝑆𝐼 𝐼 . However, when

the task arrival distribution is {0.8, 0.2} in Table 1, this intuitive

algorithm achieves an expected ratio of (0.8 × 3 + 0.2 × 3)/(0.8 ×
1 + 0.2 × 2) = 2.5, which is worse than its reverse algorithm with

that of (0.8 × 3 + 0.2 × 1)/(0.8 × 1 + 0.2 × 1) = 2.6. One may then

suggest to adopt the reverse algorithm instead. However, we can

always construct another distribution (e.g., {0.2, 0.8}) to fail the

reverse algorithm such that it turns out to be worse. From this

example, we emphasize the critical role of task arrival distribution

in establishing effective online task scheduling algorithms.

To address the two challenges above, we propose a double-

optimistic learning approach to estimate the reward and cost with

bandit feedback. Intuitively, the learning approach establishes the

optimistic and pessimistic estimations for rewards and costs, re-

spectively, yielding an overall optimistic estimation for the reward-

to-cost ratio. This confirms the principle, the optimism in the face

of uncertainty, which is exemplified by the confidence bound based

algorithms [24]. Furthermore, instead of adopting naive estima-

tion for the task arrival distribution, we utilize the Robbins-Monro

method to implicitly learn the task arrival distribution while mak-

ing decisions. Intuitively, this method transforms the problem of

reward-to-cost ratio maximization into a fixed point problem, which

can be efficiently solved by carefully using stochastic samples and

yields a fast convergence.

In summary, we propose and analyze a novel optimization frame-

work for online task scheduling, where the objective is to optimize

the cumulative reward-to-cost ratio under a stationary environ-

ment with uncertain task arrival distribution. We integrate double-

optimistic learning and the Robbins-Monromethod for effective and

efficient online scheduling. Our main contributions are summarized

as follows:

•Model for Online Task Scheduling.We propose a general

framework for online task scheduling without any prior knowledge

of reward, cost and task arrival distribution. This framework en-

capsulates a variety of practical instances whose goal is to optimize

the reward-to-cost ratio, thereby striving to achieve high-return

and cost-effective outcomes in real-world scheduling systems.

•Algorithm Design.We propose a novel algorithm called DOL-

RM which incorporates double-optimistic learning for unknown

rewards and costs and a modified Robbins-Monro method to im-

plicitly learn the uncertain task arrival distribution. This integrated

design enables the balance between rewards and costs such that

the cumulative reward-to-cost ratio is maximized.

• Theoretical Analysis.We prove that DOL-RM achieves a sub-

linear regret at order𝑂 (𝑇 3/4) against the optimal scheduling policy

in hindsight (Theorem 4.1). To prove the main result, we decompose

the regret into two individual errors w.r.t. double-optimistic learn-

ing and Robbins-Monro method and then leverage the Lyapunov

drift technique and carefully control the cumulative errors over the

entire learning process.

• Applications. We test DOL-RM and compare it with state-of-

the-art baselines via both a synthetic simulation and a real-world

experiment of machine learning task scheduling. These results

demonstrate that DOL-RM can achieve the best cumulative reward-

to-cost ratio without any prior knowledge of reward, costs and task

arrival distribution.

1.1 Related Work
Online Task Scheduling.Online task scheduling has been studied

extensively in the literature. We focus on presenting the works most

related to ours. In [15], the authors utilize a UCB variant to address

the exploration-exploitation dilemma in online task scheduling,

however, the work does not take the cost into the consideration.

In [26], a Robbins-Monro based approach is proposed for task sched-

uling in edge computing. However, its primary goal is to preserve

data freshness, measured by Age of Information (AoI), differs from

our setting of maximizing a generic reward-to-cost ratio. In [5],

online bandit feedback is leveraged to schedule tasks in a renewal

system, which is distinct from ours because it allows the scheduler

to interrupt a task in service but the task in our model cannot be

stopped once being scheduled. The closely related work is [31],

which studies a similar setting with this paper except assuming the

decision set and the information of reward and cost are completely

known before decision making. In contrast, we focus on a more

practical scenario without assuming any knowledge of the rewards

and costs. Moreover, our algorithm and proof techniques are also

different with [31] as we need to handle the additional uncertainties

of the rewards and costs.

Cost-Aware Bandits:The key feature in our online task scheduling
problem is that costs are concomitant with rewards upon decision-

making. This feature is also captured in another decision-making

model, i.e., the cost-aware bandit model, where an agent incurs

a reward and a cost simultaneously by pulling an arm. The cost-

aware bandits can be specialized into two major models, including

budget-constrained bandits and the cost-aware cascading bandits.

The budget-constrained bandits have been widely explored in [6,

8, 10, 25, 40, 41, 43–45], where pulling an arm incurs an additional

cost and there exists a hard stopping point once the cumulative cost

exceeds a given budget. Our setting has two major differences with
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Figure 2: Online Task Scheduling inCloudComputing (above)
and Crowdsourcing (bottom).

the budget-constrained bandits. The first one is we do not have or

assume any explicit budget limit constraints; and the second one

is we consider a “continual” system, where it would not stop in

the middle until all tasks are completed. Therefore, the previous

algorithms and analysis in budget-constrained bandits cannot be

applied in this paper. Besides, cost-aware cascading bandits are also

related and have been studied in [7, 13, 14, 37, 42]. Its goal is to

maximize the reward-to-cost gap, however, such a maximal gap

does not necessarily yield the optimal ratio as in our paper because

we have multiple types of tasks in the system and need to take the

task arrival distribution into consideration.

Compared to the previous works, this paper takes a bold step and

investigates online task scheduling without any knowledge of re-

wards, costs, and task arrival distribution. Accordingly, we propose

DOL-RM, an effective algorithm for optimizing the reward-to-cost

ratio in online task scheduling. Furthermore, DOL-RM establishes

a near-optimal regret performance for this challenging setting and

has been validated to achieve the best empirical performance via a

synthetic simulation and a real-world experiment.

2 SYSTEM MODEL
We study a typical online task scheduling system where a central

controller processes an incoming sequence of heterogeneous tasks

in a back-to-back manner (i.e., the controller observes and processes

the next task immediately upon the completion of its current task).

We assume 𝑆 types of incoming tasks in the system, denoted by

the set S ≜ {1, 2, · · · , 𝑆} and every task is randomly drawn from

a stationary probability distribution P : S → R+. For the 𝑡th task,

the controller observes its type 𝑆𝑡 ∈ S and chooses a decision 𝑎𝑡 ∈
A(𝑆𝑡 ), where A(𝑆𝑡 ) is the corresponding available decision set of

task type 𝑆𝑡 . When the 𝑡 th task is completed, the controller observes

the feedback of reward 𝑅𝑆𝑡 ,𝑎𝑡 and cost 𝐶𝑆𝑡 ,𝑎𝑡 , which are randomly

generated from with the expected values 𝑟𝑆𝑡 ,𝑎𝑡 ≜ E[𝑅𝑆𝑡 ,𝑎𝑡 ] and
𝑐𝑆𝑡 ,𝑎𝑡 ≜ 𝐶𝑆𝑡 ,𝑎𝑡 . Note we only observe the feedback with respect to

the selected decision 𝑎𝑡 , thus coined as “bandit feedback”, a term

borrowed from bandit learning [24]. Then, the controller continues

to work on the next (𝑡 + 1)th task until 𝑇 tasks are completed. In

the paper, we assume the rewards {𝑅𝑆𝑡 ,𝑎𝑡 }𝑡 and costs {𝐶𝑆𝑡 ,𝑎𝑡 }𝑡 are
independent if (𝑆𝑡 , 𝑎𝑡 ) is the same.

Reward-to-Cost Ratio Maximization: The controller aims to

maximize the cumulative reward-to-cost ratio over a sequence of 𝑇
tasks as follows:

max

{𝑎𝑡 }𝑡

∑𝑇
𝑡=1
E[𝑅𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝐶𝑆𝑡 ,𝑎𝑡 ]

. (1)

Expectation in Problem (1) is taken over the randomness w.r.t. re-

ward, cost and task arrival distribution P(·). We emphasize that we

do not assume any prior knowledge on such distribution and instead

learn it implicitly in an online manner (please refer to Section 3).

When the task arrival distribution and the expected reward and

cost are known, we can compute the optimal policy by solving Prob-

lem (1) with offline optimization techniques [12]. However, such

knowledge is practically unavailable or infeasible to the controller

and we have to learn it by exploring the decision space in an online

manner. Moreover, as discussed in the introduction, the greedy

algorithm that simply maximizes 𝑅𝑆𝑡 ,𝑎𝑡 /𝐶𝑆𝑡 ,𝑎𝑡 for each individual

task can achieve arbitrary sub-optimal performance because it ig-

nores the task arrival distribution. Therefore, we propose an online

learning based algorithm to address challenges on the uncertainties

of rewards, costs and task arrivals.

Before presenting our algorithm, we emphasize that our mod-

eling is general to capture many real-world applications, which is

illustrated with two following examples as shown in Figure 2:

• Machine Learning (ML) model training on cloud servers: The

cloud platforms (e.g., AWS,Microsoft Azure or Google Cloud)

constantly process ML model training tasks submitted by

users. The types of ML training tasks are unknown apriori

and only revealed at the server when they are executed. For

each upcoming task, the platform decides a specific training

time from a range of options, which corresponds to the cost;

when the training process is finished, the test accuracy is re-

turned as the reward. However, the relationship of accuracy

v.s. training time is uncertain. The goal of the platform is to

schedule the training time for each individual task such that

the average accuracy per time unit (i.e., accuracy-to-time

ratio) is maximized.

• Tasks assignment in Crowdsourcing: The crowdsourcing

platforms (e.g., Amazon Turk or Task Rabbit) received a

sequence of data labeling tasks submitted by consumers. The

platform is unaware of the type of tasks until they arrive. For

each task, the platform assigns it to a suitable worker from a

set of candidates with various task proficiency and expertise.

The quality of the labeled data from workers is considered as

the reward, while his/her payment corresponds to the cost.

The goal of the platform is to assign the worker for each

individual task such that the average quality per dollar (i.e.,

quality-to-payment ratio) is maximized.

Next, we present our online learning and decision algorithm to

solve the reward-to-cost ratio maximization in Problem (1).

3 ALGORITHM DESIGN
In this section, we propose a double-optimistic learning based

Robbins-Monro (DOL-RM) algorithm to address the challenges

induced by unknown reward, cost and task arrival distributions.

Specifically, DOL-RM includes two algorithmic modules, i.e., the

learning module leverages double-optimistic learning for unknown
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rewards and costs, and the decision module utilizes the Robbins-
Monro method to make decisions via implicitly learning the task

arrival distribution. As shown in Figure 3, upon each task arrives,

the learning module first estimates the reward and cost via a double-

optimistic learning approach. Based on the estimation, the deci-

sion module makes a proper decision through the Robbins-Monro

method, which in turn provides an iteratively approaching estima-

tion for the reward-to-cost ratio even without explicitly learning

the task arrival distribution. Next, we introduce these two major

modules in detail and explain the intuition behind the algorithm.

The completed DOL-RM algorithm is depicted in Algorithm 1.

Double-Optimistic Learning: Recall that for the 𝑡 th task with

the type 𝑆𝑡 , the expected reward 𝑟𝑆𝑡 ,𝑎 and cost 𝑐𝑆𝑡 ,𝑎 for each decision

𝑎 ∈ A(𝑆𝑡 ) are unknown. We consider them as multi-armed bandit

problems, where each decision is regarded as an arm associatedwith

a pair of reward and cost. Accordingly, we leverage the canonical

algorithm design principle in bandit learning [24], optimism in the

face of uncertainty, to estimate the reward and cost as follows:

𝑟𝑆𝑡 ,𝑎 ≜ min

{
𝑟max, 𝑅𝑆𝑡 ,𝑎 +

√︄
log𝑇

𝑁𝑆𝑡 ,𝑎 (𝑡 − 1)

}
, (2)

𝑐𝑆𝑡 ,𝑎 ≜ max

{
𝑐min,𝐶𝑆𝑡 ,𝑎 −

√︄
log𝑇

𝑁𝑆𝑡 ,𝑎 (𝑡 − 1)

}
, (3)

where 𝑅𝑆𝑡 ,𝑎 and 𝐶𝑆𝑡 ,𝑎 denote the empirical means of reward and

cost; 𝑁𝑆𝑡 ,𝑎 (𝑡 − 1) denotes times the arm (decision) 𝑎 has been cho-

sen for task of type 𝑆𝑡 until round (𝑡 − 1); 𝑟max and 𝑐min are the

maximum reward and minimum cost, respectively. Note that 𝑟𝑆𝑡 ,𝑎
and 𝑐𝑆𝑡 ,𝑎 denote the truncated Upper Confidence Bound (UCB) and

Lower Confidence Bound (LCB) for reward and cost estimation,

respectively. Recall in Problem (1), 𝑟𝑆𝑡 ,𝑎 and 1/𝑐𝑆𝑡 ,𝑎 serve as the op-

timistic estimators for E[𝑅𝑆𝑡 ,𝑎] and 1/E[𝐶𝑆𝑡 ,𝑎], yielding the name

of “Double-Optimistic Learning”. Intuitively, this learning policy

encourages exploration among arms (decision space) to learn the

optimal reward-to-cost ratio effectively.

Suppose we make decision 𝑎𝑡 for the task 𝑆𝑡 and observe the

reward 𝑅𝑆𝑡 ,𝑎𝑡 and cost 𝐶𝑆𝑡 ,𝑎𝑡 feedback when the task is completed,

we conduct the following updates:

𝑁𝑆𝑡 ,𝑎𝑡 (𝑡) = 𝑁𝑆𝑡 ,𝑎𝑡 (𝑡 − 1) + 1, (4)

𝑅𝑆𝑡+1,𝑎𝑡 =
𝑅𝑆𝑡 ,𝑎𝑡𝑁𝑆𝑡 ,𝑎𝑡 (𝑡 − 1) + 𝑅𝑆𝑡 ,𝑎𝑡

𝑁𝑆𝑡 ,𝑎𝑡 (𝑡)
, (5)

𝐶𝑆𝑡+1,𝑎𝑡 =
𝐶𝑆𝑡 ,𝑎𝑡𝑁𝑆𝑡 ,𝑎𝑡 (𝑡 − 1) +𝐶𝑆𝑡 ,𝑎𝑡

𝑁𝑆𝑡 ,𝑎𝑡 (𝑡)
. (6)

Algorithm 1 DOL-RM

Input: Number of tasks 𝑇 , minimum cost 𝑐min, 𝜃max and 𝜃min.

Initialization: 𝜃1 ← 𝜃min, 𝜂 ← 1

𝑐min

√
𝑇
.

for 𝑡 = 1, 2, . . . ,𝑇 do
•Observation: Task type 𝑆𝑡 and available decision setA(𝑆𝑡 ).
•Double-Optimistic Learning: Calculate reward and cost

estimates 𝑟𝑆𝑡 ,𝑎 and 𝑐𝑆𝑡 ,𝑎,∀𝑎 ∈ A(𝑆𝑡 ) according to (2) and (3),

respectively.

•Robbins-Monro Based Decision: Choose the greedy deci-

sion for task scheduling:

𝑎𝑡 ← arg max

𝑎∈A(𝑆𝑡 )
𝑟𝑆𝑡 ,𝑎 − 𝜃𝑡 𝑐𝑆𝑡 ,𝑎 (7)

•Bandit Feedback: Obtain reward 𝑅𝑆𝑡 ,𝑎𝑡 and cost 𝐶𝑆𝑡 ,𝑎𝑡 .

•Reward-to-Cost Ratio Learning:

𝜃𝑡+1 ←
[
𝜃𝑡 + 𝜂 (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡 𝑐𝑆𝑡 ,𝑎𝑡 )

]𝜃max

𝜃min

. (8)

Update the empirical means of rewards and costs with (4)–(6).

end for

Robbins-Monro Based Decision: Let 𝜃∗ be the optimal objec-

tive (i.e., reward-to-cost ratio) in Problem (1). It is notable to observe

that Problem (1) is equivalent to finding an optimal sequence of

actions such that:

max

{𝑎𝑡 }𝑡
E

[
𝑇∑︁
𝑡=1

𝑅𝑆𝑡 ,𝑎𝑡 − 𝜃
∗
𝑇∑︁
𝑡=1

𝐶𝑆𝑡 ,𝑎𝑡

]
= 0, (9)

This is essentially a fixed point problem and can be solved using the

Robbins-Monro method with stochastic samples [30, 34]. Specifi-

cally, assuming the optimal ratio 𝜃∗ is known and using 𝑟𝑆𝑡 ,𝑎 and

𝑐𝑆𝑡 ,𝑎 as the proxy of 𝑅𝑆𝑡 ,𝑎𝑡 and 𝐶𝑆𝑡 ,𝑎𝑡 , we can follow a greedy deci-

sion for task 𝑆𝑡 ∈ S according to (9):

arg max

𝑎∈A(𝑆𝑡 )
𝑟𝑆𝑡 ,𝑎 − 𝜃

∗ 𝑐𝑆𝑡 ,𝑎

However, this decision is non-causal and infeasible due to the lack

of knowledge on the best ratio 𝜃∗. To learn 𝜃∗, we modify the

Robbins-Monro iteration method by plugging the 𝑟𝑆𝑡 ,𝑎 and 𝑐𝑆𝑡 ,𝑎 :

𝜃𝑡+1 =
[
𝜃𝑡 + 𝜂 (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 )

]𝜃max

𝜃min

where 𝜂 is the learning rate and [·]𝜃max

𝜃min

denotes the projection of

real number onto the interval [𝜃min, 𝜃max] with 𝜃min ≜ 𝑟min/𝑐max

and 𝜃max ≜ 𝑟max/𝑐min.

Note this is different with the classical RMmethod [31, 34] which

adopts the samples 𝑅𝑆𝑡 ,𝑎𝑡 and 𝐶𝑆𝑡 ,𝑎𝑡 for updating 𝜃𝑡 . Finally, our

Robbins-Monro based decision is defined as follows:

arg max

𝑎∈A(𝑆𝑡 )
𝑟𝑆𝑡 ,𝑎 − 𝜃𝑡 𝑐𝑆𝑡 ,𝑎 .

where 𝜃𝑡 is treated as an estimation of 𝜃∗.
This method circumvents the need to directly estimate the task

arrival distribution. Instead, it learns the optimal cumulative ratio

by iteratively adjusting 𝜃 with the term 𝜂 (𝑟𝑆𝑡 ,𝑎𝑡 −𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 ). When 𝜃

is excessively large, 𝜂 (𝑟𝑆𝑡 ,𝑎𝑡 −𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 ) tends to be negative, driving
a downward shift, whereas a small 𝜃 prompts its value to skew

positive, inducing an upward adjustment in itself. With a proper
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learning rate 𝜂, 𝜃 can steadily converge to the optimal balance ratio

as iterations increase (please refer to Section 4).

4 THEORETICAL RESULTS
To present our main results, we first introduce the common assump-

tions on rewards and costs.

Assumption 1. The reward 𝑅𝑆𝑡 ,𝑎 is a sub-Gaussian random vari-
able with mean 𝑟𝑆𝑡 ,𝑎 = E[𝑅𝑆𝑡 ,𝑎] ∈ [𝑟min, 𝑟max] for any 𝑆𝑡 ∈ S,
𝑎 ∈ A(𝑆𝑡 ) and 𝑡 ∈ [𝑇 ] .

Assumption 2. The cost 𝐶𝑆𝑡 ,𝑎 is a positive sub-Gaussian random
variable with mean 𝑐𝑆𝑡 ,𝑎 = E[𝐶𝑆𝑡 ,𝑎] ∈ [𝑐min, 𝑐max] for any 𝑆𝑡 ∈ S,
𝑎 ∈ A(𝑆𝑡 ) and 𝑡 ∈ [𝑇 ] .

Regret & Convergence Gap: Let 𝜃∗ be the optimal reward-to-cost

ratio in Problem (1), we define 𝐺𝑎𝑝 (𝑇 ) to be the convergence gap:

𝐺𝑎𝑝 (𝑇 ) ≜
�����𝜃∗ − ∑𝑇

𝑡=1
E[𝑅𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝐶𝑆𝑡 ,𝑎𝑡 ]

����� , (10)

which measures the distance between the cumulative reward-to-

cost ratio returned by a policy and the optimal ratio. We define the

regret to be:

R(𝑇 ) ≜ 𝑇 ·𝐺𝑎𝑝 (𝑇 ).
Our goal is to show that DOL-RM achieves sub-linear regret 𝑜 (𝑇 ),
i.e., lim𝑇→∞

R(𝑇 )
𝑇

= lim𝑇→∞𝐺𝑎𝑝 (𝑇 ) = 0, which implies that DOL-

RM converges to the optimal policy and achieves the best reward-

to-cost ratio in the long-term. We state our main result for DOL-RM

in the following theorem.

Theorem 4.1. Suppose Assumption 1 and 2 hold, DOL-RM achieves
the following regret:

R(𝑇 ) = 𝑂 (𝑇
3

4 ).

Theorem 4.1 highlights DOL-RM’s favorable theoretical perfor-

mance in achieving no regret learningwith sub-linear regrets𝑂 (𝑇
3

4 ),
which implies the convergence gaps of 𝑂 (𝑇 −

1

4 ). To the best of our

knowledge, these are the first results for online task scheduling

problems without any prior information on rewards, costs and task

arrival distributions. These results also indicate that DOL-RM can

quickly identify an effective and efficient policy that converges to

the optimal ratio 𝜃∗ with the integral design of double-optimistic

learning and the Robbins-Monro method.

We want to further mention two related works cited as [39]

and [31]. [39] studied the reward-to-cost ratio in a Markov deci-

sion process (MDP). Though MDP includes bandit as a special case,

[39] only established an asymmetrical convergence. [31] assumed

perfect information on the rewards and costs and established im-

proved regrets of 𝑂 (
√
𝑇 ). With such perfect information, [31] only

needs to quantify the uncertainty of task arrival without any bias
1

from rewards and costs. This enables [31] to conduct an aggres-

sive learning scheme to control the bias only from the task arrival

such that it can provide an anytime gap performance and improved

performance. However, when the rewards and costs are unknown,

we must carefully balance all these uncertainties and control the

1
Rewards and costs are usually biased with noises, e.g., sub-Gaussian noise in our case,

while [31] assumes constant rewards and costs, thus no bias involved.

bias over the entire time horizon (Lemma 4.2 and 4.3), which re-

quires a conservative learning scheme and advanced Lyapunov drift

techniques to achieve sub-linear gap given coupled uncertainties.

Next, we present the detailed proof of Theorem 4.1 and focus

on the analysis of convergence gap 𝐺𝑎𝑝 (𝑇 ), where we first decom-

pose 𝐺𝑎𝑝 (𝑇 ) into the two items related to the double-optimistic

learning and Robbins-Monro iteration method, respectively, and

then established the items individually.

4.1 Proof of Theorem 4.1
Recall the definition of convergence gap in (10). We first decom-

pose the convergence gap using triangle inequality by involving∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

as follows

𝐺𝑎𝑝 (𝑇 ) ≤
�����∑𝑇

𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

−
∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

�����︸                                       ︷︷                                       ︸
Double-optimistic learning error

. (11)

+
�����𝜃∗ − ∑𝑇

𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� .︸                       ︷︷                       ︸
Robbins-Monro iteration convergence gap

(12)

For the first term (11), we establish the bound in Lemma 4.2, which

is related to the bias of optimistic learning on rewards and costs.

For the second term (12), we establish the bound in Lemma 4.3 by

quantifying the cumulative bias from the Robbins-Monro iteration.

Lemma 4.2. Suppose Assumption 1 and 2 hold, DOL-RM achieves�����∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

−
∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� = 𝑂 (𝑇 −
1

2 ).

Lemma 4.3. Suppose Assumption 1 and 2 hold, DOL-RM achieves�����𝜃∗ − ∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� = 𝑂 (𝑇 −
1

4 ).

Based on these two lemmas, we prove the convergence gap in

Theorem 4.1 as follows:

𝐺𝑎𝑝 (𝑇 ) ≤ 𝑂 (𝑇 −
1

2 ) +𝑂 (𝑇 −
1

4 ) = 𝑂 (𝑇 −
1

4 ).

Here we only offer order-wise results in𝑂 (·) for the sake of presen-
tation and the detailed expressions are delegated to the Appendix.

Next, we prove Lemma 4.2 and 4.3, respectively.

4.2 Double-Optimistic Learning Analysis
Lemma 4.2 represents the estimation error of the cumulative reward-

to-cost ratio. Due to the page limit, we illustrate the key steps in the

analysis of double-optimistic learning and the completed version

can be found in Appendix C.

Recall that to optimize the reward-to-cost ratio given unknown

reward and cost functions, we employ optimistic estimators for both

rewards and costs. This indicates that the following inequalities

hold with a high probability according to UCB/LCU learning [24]

0 ≤ 𝑟𝑆,𝑎 − 𝑟𝑆,𝑎 ≤ 0, 0 ≤ 1

𝑐𝑆,𝑎
− 1

𝑐𝑆,𝑎
≤ 0.
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These guarantee optimistic estimation for cumulative terms

∑𝑇
𝑡=1

𝑟𝑆𝑡 ,𝑎𝑡
and

1∑𝑇
𝑡=1

𝑐𝑆𝑡 ,𝑎𝑡
, resulting in an optimistic estimation for cumulative

reward-to-cost ratio

∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

.

To proceed, we define partial double-optimistic errors

𝜖 (𝑇 ) ≜
�����∑𝑇

𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

−
∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� ,
𝜅 (𝑇 ) ≜

�����∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

−
∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� .
Such errors directly form an upper bound of the double-optimistic

learning error in (11) via the triangle inequality:�����∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

−
∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� ≤ 𝜖 (𝑇 ) + 𝜅 (𝑇 ),

We then bound these partial double-optimistic errors as follows:

𝜖 (𝑇 ) + 𝜅 (𝑇 )

=
1∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� 𝑇∑︁
𝑡=1

E[𝑟𝑆𝑡 ,𝑎𝑡 ] −
𝑇∑︁
𝑡=1

E[𝑟𝑆𝑡 ,𝑎𝑡 ]
�����

+
∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

∑𝑇
𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� 𝑇∑︁
𝑡=1

E[𝑐𝑆𝑡 ,𝑎𝑡 ] −
𝑇∑︁
𝑡=1

E[𝑐𝑆𝑡 ,𝑎𝑡 ]
�����

≤ 1

𝑇𝑐min

����� 𝑇∑︁
𝑡=1

E[𝑟𝑆𝑡 ,𝑎𝑡 − 𝑟𝑆𝑡 ,𝑎𝑡 ]
����� + 𝑟max

𝑇𝑐2

min

����� 𝑇∑︁
𝑡=1

E[𝑐𝑆𝑡 ,𝑎𝑡 − 𝑐𝑆𝑡 ,𝑎𝑡 ]
����� ,

where the last inequality holds due to the boundedness of reward

and cost. As shown in the above inequality, we break down the esti-

mated error of cumulative ratio into the estimated errors of rewards

and costs. Consequently, we only need to bound the following terms����� 𝑇∑︁
𝑡=1

E[𝑟𝑆𝑡 ,𝑎𝑡 − 𝑟𝑆𝑡 ,𝑎𝑡 ]
����� ,

����� 𝑇∑︁
𝑡=1

E[𝑐𝑆𝑡 ,𝑎𝑡 − 𝑐𝑆𝑡 ,𝑎𝑡 ]
����� ,

which have been widely studied in UCB/LCB learning [24, 27, 28]

and both are in the order of 𝑂 (
√
𝑇 ). Eventually, we have

𝜖 (𝑇 ) + 𝜅 (𝑇 ) ≤ 𝑂 (𝑇 −
1

2 ),

which proves Lemma 4.2.

4.3 Robbins-Monro Iteration Analysis
Lemma 4.3 is the key to establishing the convergence gap and

regret for DOL-RM and is also the most challenging part. We first

establish its upper bound with the terms related to E[(𝜃𝑡 −𝜃∗)2] in
the following Lemma 4.4, we then carefully control the cumulative

errors in the Robbins-Monro iteration.

Lemma 4.4. Suppose Assumption 1 and 2 hold, under DOL-RM, we
bound the Robbins-Monro iteration convergence gap in (12) as follows:�����𝜃∗ − ∑𝑇

𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

�����
≤ max

{�����∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

−
∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� , (13)

√
2𝐶1

𝑇𝑐min

𝑇∑︁
𝑡=1

√︃
E
[
(𝜃𝑡 − 𝜃∗)2

]}
. (14)

We provide the proof sketch by considering two cases: 1) when

𝜃∗ ≤
∑𝑇

𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

, the term in (13) is upper bound of (12) according

to the definition of 𝜃∗. 2) when
∑𝑇

𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

≤ 𝜃∗, we have the

greedy decision in our algorithm such that

E[𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 |𝜃𝑡 ] ≥E[𝑅𝑆𝑡 ,𝑎∗ |𝜃𝑡 ] − 𝜃𝑡E[𝐶𝑆𝑡 ,𝑎∗ |𝜃𝑡 ]
≥𝑟∗ − 𝜃𝑡𝑐∗,

where 𝑎∗ is any decision withinA(𝑆𝑡 ), the first inequality holds due
to the greedy decision and 𝑟𝑆𝑡 ,𝑎𝑡 ≥ 𝑟𝑆𝑡 ,𝑎𝑡 , 𝑐𝑆𝑡 ,𝑎𝑡 ≤ 𝑐𝑆𝑡 ,𝑎𝑡 holds with

a high probability; the second inequality holds because (𝑟∗, 𝑐∗) lies
within the closure of available decision set. By adding (𝜃𝑡 −𝜃∗)𝑐𝑆𝑡 ,𝑎𝑡
on both sides of the above inequality, we further have

E[𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃
∗𝑐𝑆𝑡 ,𝑎𝑡 ] ≥ E

[
(𝜃𝑡 − 𝜃∗) (𝑐𝑆𝑡 ,𝑎𝑡 − 𝑐

∗)
]
.

Finally, one could use Cauchy-Schwarz inequality to establish (14)

in Lemma 4.4. More details can be found in the Appendix A.

Since we already have the 𝑂 (𝑇 −
1

2 ) bound of (13) in Section 4.2,

the key is to establish the cumulative error

𝑇∑︁
𝑡=1

√︁
E[(𝜃𝑡 − 𝜃∗)2] .

We leverage the Lyapunov drift analysis [29, 38] to study this key

term. Note that [31] also used this technique to study the cumulative

error term, where they assumed the perfect information of rewards

and costs such that it can establish anytime error ofE[(𝜃𝑡−𝜃∗)2] via
one-step Lyapunov drift. However, we do not assume any of such

knowledge and quantify the cumulative error term by aggregating

the bias over all tasks.

Define the Lyapunov function

𝑉𝑡 ≜
1

2

(𝜃𝑡 − 𝜃∗)2,

we analyze the corresponding Lyapunov drift

Δ(𝑡) ≜ 𝑉𝑡+1 −𝑉𝑡
and have the following lemma.

Lemma 4.5. Under DOL-RM, we have the expected Lyapunov drift
to be bounded as follows:

E[Δ(𝑡)] ≤ − 2𝑐min𝜂E[𝑉𝑡 ] + 𝜂2𝑏

+ 𝜃𝑔𝑎𝑝𝜂E
[
𝑟𝑆𝑡 ,𝑎𝑡 − 𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃

∗ (𝑐𝑆𝑡 ,𝑎𝑡 − 𝑐𝑆𝑡 ,𝑎𝑡 )
]
,

where 𝜃𝑔𝑎𝑝 ≜ (𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛) and 𝑏 ≥ 1

2
E
[
(𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 )2

]
,∀𝑡 .
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We in the following provide the proof sketch for this key lemma.

According to the reward-to-cost ratio learning in (8), we have

(𝜃𝑡+1 − 𝜃∗)2 =

( [
𝜃𝑡 + 𝜂 (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 )

]𝜃max

𝜃min

− 𝜃∗
)

2

=

[ (
𝜃𝑡 + 𝜂 (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 ) − 𝜃

∗)𝜃max

𝜃min

]
2

≤ (𝜃𝑡 + 𝜂 (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 ) − 𝜃
∗)2 .

By the definition of the Lyapunov drift Δ𝑡 , we have

E[Δ(𝑡)] =1

2

E[(𝜃𝑡+1 − 𝜃∗)2] −
1

2

E[(𝜃𝑡 − 𝜃∗)2]

≤𝜂2𝑏 + 𝜂E
[
(𝜃𝑡 − 𝜃∗) (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 )

]
.

Similar to the proof of Lemma 4.4, we bound the last term in the

above inequality under two cases:

1) For 𝜃∗ ≥ 𝜃𝑡 , we can directly get

E
[
(𝜃𝑡 − 𝜃∗) (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 )

]
≤ −2𝑐min𝜂E[𝑉𝑡 ],

since E[𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 |𝜃𝑡 ] ≥ 𝑟∗ − 𝜃𝑡𝑐∗ = 𝑐∗ (𝜃∗ − 𝜃𝑡 ). Then the

inequality in Lemma 4.5 holds by the fact E[𝑟𝑆𝑡 ,𝑎𝑡 − 𝑟𝑆𝑡 ,𝑎𝑡 ] ≥
0,E[𝑐𝑆𝑡 ,𝑎𝑡 − 𝑐𝑆𝑡 ,𝑎𝑡 ] ≥ 0 which is guaranteed by the property of

UCB/LCB.

2) For 𝜃∗ ≤ 𝜃𝑡 , given the boundedness of cost, we have

E
[
(𝜃𝑡 − 𝜃∗) (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃𝑡𝑐𝑆𝑡 ,𝑎𝑡 )

]
≤E

[
(𝜃𝑡 − 𝜃∗) (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃

∗𝑐𝑆𝑡 ,𝑎𝑡 )
]
− 𝑐𝑚𝑖𝑛E

[
(𝜃𝑡 − 𝜃∗)2

]
.

We then have the following bound by decomposing the first term

and incorporating the fact that 𝜃𝑡 − 𝜃∗ ≤ 𝜃𝑔𝑎𝑝 , i.e.,

E
[
(𝜃𝑡 − 𝜃∗) (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃

∗𝑐𝑆𝑡 ,𝑎𝑡 )
]

≤E
[
(𝜃𝑡 − 𝜃∗) (𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃

∗𝑐𝑆𝑡 ,𝑎𝑡 )
]

+ 𝜃𝑔𝑎𝑝E
[
(𝑟𝑆𝑡 ,𝑎𝑡 − 𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃

∗ (𝑐𝑆𝑡 ,𝑎𝑡 − 𝑐𝑆𝑡 ,𝑎𝑡 ))
]
.

Next, drawing upon the definition of the optimal ratio 𝜃∗, which
indicates that E

[
(𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃∗𝑐𝑆𝑡 ,𝑎𝑡 )

]
≤ 0, we complete the proof of

Lemma 4.5. More details are provided in Appendix B.

Proving Lemma 4.3:We rearrange the inequality in Lemma 4.5

and take summation from 1 to 𝑇 over it, yielding the following:

𝑇∑︁
𝑡=1

E[𝑉𝑡 ] ≤ −
𝑇∑︁
𝑡=1

E[Δ(𝑡)]
2𝑐min𝜂

+ 𝑇𝜂𝑏

2𝑐𝑚𝑖𝑛

+
𝜃𝑔𝑎𝑝

2𝑐𝑚𝑖𝑛

𝑇∑︁
𝑡=1

E
[
𝑟𝑆𝑡 ,𝑎𝑡 − 𝑟𝑆𝑡 ,𝑎𝑡 − 𝜃

∗ (𝑐𝑆𝑡 ,𝑎𝑡 − 𝑐𝑆𝑡 ,𝑎𝑡 )
]

≤ 𝑉1

2𝑐min𝜂
+ 𝑇𝜂𝑏

2𝑐𝑚𝑖𝑛
+𝑂 (
√
𝑇 ) = 𝑂 (

√
𝑇 ),

where the second inequality holds because of

∑𝑇
𝑡=1

Δ(𝑡) = 𝑉𝑇 −𝑉1

and the fact that the estimation errors are at the order of 𝑂 (
√
𝑇 )

according to UCB/LCB learning (similarly stated in Section 4.2); the

last equality holds by plugging the learning rate 𝜂 = 𝑂 (1/
√
𝑇 ).

According to the Cauchy-Schwarz inequality, we have,

𝑇∑︁
𝑡=1

√︁
E[𝑉𝑡 ] ≤

√√√
𝑇

𝑇∑︁
𝑡=1

E[𝑉𝑡 ],

which implies that the key cumulative error is at the order of𝑂 (𝑇
3

4 )
in the following lemma.

Lemma 4.6. Under DOL-RM, we have

𝑇∑︁
𝑡=1

√︃
E
[
(𝜃𝑡 − 𝜃∗)2

]
= 𝑂 (𝑇

3

4 ).

Finally, by combining Lemma 4.2 and 4.6 into Lemma 4.4, we

establish the Robbins-Monro iteration convergence gap as follows:�����𝜃∗ − ∑𝑇
𝑡=1
E[𝑟𝑆𝑡 ,𝑎𝑡 ]∑𝑇

𝑡=1
E[𝑐𝑆𝑡 ,𝑎𝑡 ]

����� ≤ max

{
𝑂 (𝑇 −1/2),𝑂 (𝑇 −1/4)

}
,

which proves Lemma 4.3.

5 NUMERICAL RESULTS
We evaluate DOL-RM via both synthetic simulation and real-world

experiment in terms of the cumulative reward-to-cost ratio

∑𝑡
1
𝑅𝑆𝑡 ,𝑎𝑡∑𝑡

1
𝐶𝑆𝑡 ,𝑎𝑡

.

For both cases, we let learning rate 𝜂𝑡 = 1/𝑐𝑚𝑖𝑛 (𝑡 + 1) in our DOL-

RM algorithm.

Baselines:We consider the following representative baselines to

justify DOL-RM’s performance:

• General Thompson Sampling (TS) [35].

• Classic Upper Confidence Bound (UCB) algorithm [24].

• 𝜔-UCB [19], a variance-aware cost-efficient algorithm.

• Oracle algorithm [31], which needs prior knowledge of re-

ward and cost and an optimal solution
2
.

5.1 Synthetic Simulation
•Two-Task-Type We consider a synthetic setting similar to the

toy example presented in Figure 1. We consider two incoming typs

of tasks with arrival rates of {𝑝, 1 − 𝑝} and reward-cost vectors

of {[(3, 1)], [(3, 2), (1, 1)]}. The observations 𝑅𝑆,𝑎 and 𝐶𝑆,𝑎 are cor-

rupted with additive Gaussian noise sampled from N(0, 1).
We let 𝑝 and 1 − 𝑝 be the arrival probability of task 𝑆𝑥 and 𝑆𝑦 ,

respectively. To verify the robustness of DOL-RM against varied

task arrival distributions, we test it under two task arrival patterns,

quantified by 𝑝 = 0.8, and 𝑝 = 0.6 in Figure 4(a) and 4(b).

•Seven-Task-TypeWe consider a more complex task schedul-

ing problem with 7 types of incoming tasks with arrival rates of

{0.3, 0.1, 0.2, 0.1, 0.05, 0.1, 0.15} and reward-cost vectors of {[(3, 1)],
[(3, 2), (1, 1)], [(2, 1)], [(2.5, 1.5)], [(2, 1), (1, 1)], [(3, 2), (1.5, 1.5)],
[(2.5, 1)]}. The observations 𝑅𝑆,𝑎 and𝐶𝑆,𝑎 are corrupted with addi-

tive Gaussian noise sampled from N(0, 1).
Figure 4 demonstrates that DOL-RM outperforms the state-of-

the-art learning-based algorithms in terms of the cumulative reward-

to-cost ratio. DOL-RM’s superior performance is consistent across

two different cases, showcasing its high adaptability. Compared to

the oracle algorithm [31], which has full prior knowledge and the

optimal ratio in hindsight, DOL-RM exhibits a fast convergence

rate, indicating its efficiency in identifying the optimal policy under

certainty.

2
We adopt this algorithm as an ideal benchmark as it possesses full knowledge before

decision-making, allowing us to verify whether DOL-RM converges to the optimal

ratio. However, it cannot be applied in the real world due to the lack of prior knowledge.
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(a) Two-Task-Type 𝑝 = 0.8.
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(b) Two-Task-Type 𝑝 = 0.6.
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(c) Seven-Task-Type.

Figure 4: Synthetic Experiment: Performance Comparison in a Two-Task-Type Case and Seven-Task-Type Case.
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Figure 5: Real-World Experiment.

5.2 Real-World Experiment
We applyDOL-RM to schedulemachine learning (ML) training tasks

in a shared server. Specifically, we consider five types of ML classifi-

cation tasks in the system, where a satellite image classification task

𝑆𝑠 with four categories , a weather classification task 𝑆𝑤 and a rice

classification task 𝑆𝑟 with five categories , a natural scene classifica-

tion task 𝑆𝑛 with six categories and a cat & dog classification task 𝑆𝑐 .

Let S = {𝑆𝑠 , 𝑆𝑤 , 𝑆𝑟 , 𝑆𝑛, 𝑆𝑐 }. For each classification task, the server

decides a training epoch from a range of options. The available

options on epoch number are within A(𝑆𝑠 ) = A(𝑆𝑟 ) = A(𝑆𝑐 ) =
{1, 2, 3, 4, 5} and A(𝑆𝑤) = A(𝑆𝑛) = {1, 5, 10, 15, 20}3, respectively.
After training the model with an epoch number 𝑎𝑡 ∈ A(𝑆𝑡 ) for a
classification task 𝑆𝑡 ∈ S, we can obtain the AUC on the test set as

reward 𝑅𝑆𝑡 ,𝑎𝑡 and observe the training time as cost 𝐶𝑆𝑡 ,𝑎𝑡
4
.

The dataset of satellite image classification has more than 1000

pictures in each category of satellite remote-sensing images [33].

All the pictures are resized into 255 × 255 and 20% of them are sep-

arated as the test set. The dataset of weather classification contains

boasting over 300 pictures of weather images in each category [18].

All the pictures are resized into 150 × 150 and we construct the

3
For satellite image classification 𝑆𝑠 , each epoch contains 141 steps. For weather

classification 𝑆𝑤 , each epoch contains 38 steps. For rice classification 𝑆𝑟 , each epoch

contains 100 steps. For natural scene classification 𝑆𝑛 , each epoch contains 150 steps.

For cat & dog classification 𝑆𝑐 , each epoch has 30 steps.

4
We conduct min-max normalization on reward and cost to facilitate practical training.

test set with 20% of the pictures. We use the first 1000 pictures of

rice images in each class in [23]. The pictures are all resized into

224 × 224 and 20% of them are reserved as the test set. We take the

first 500 pictures in each category in the training set of [4] as train-

ing data and utilize the test set of [4] as test data. All the pictures

are resized into 150 × 150. The database of cat & dog classification

contains 11875 pictures for each class of cat or dog [36], where

the pictures are also scaled into size 150 × 150 and 10% of these

pictures are reserved as the test set. Our experiment was conducted

on an RTX 3080 Ti GPU, running a 64-bit Ubuntu 18.04 system. The

detailed structures and parameters of neural network models can

be found in Appendix E.

Let the arrival probability of {𝑆𝑠 , 𝑆𝑤 , 𝑆𝑟 , 𝑆𝑛, 𝑆𝑐 } be {0.1, 0.4, 0.2,
0.2, 0.1}. As 𝜔-UCB [19] and oracle algorithm [31] requires non-

casual information, which is infeasible in the experiment, we com-

pare DOL-RM only with the (classical) UCB and TS. Figure 5 plot

the cumulative reward-to-cost ratio for these algorithms where the

light-shaded areas indicate the corresponding standard deviation.

These results showDOL-RM outperforms the baselines significantly

and demonstrate that DOL-RM can converge to a better policy in

the real-world system even without any prior information.

6 CONCLUSION
In this paper, we initiated the study on a novel formulation of the

online task scheduling problem, where the task arrival distribution,

rewards, and costs are all unknown. Guided by double-optimistic

learning and Robbins-Monro method, we proposed an effective

and efficient algorithm DOL-RM which integrates optimistic es-

timations and stochastic approximation of balancing point. We

theoretically demonstrated its superior performance with a simul-

taneous achievement of sub-linear regret bound and fast learning.

Via justification in synthetic and real-world scenarios, we not only

showed the outperformance of DOL-RM over state-of-the-art base-

lines but also envisioned enormous potential applications of our

modeling and algorithm design.
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