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ABSTRACT
The auction of a single indivisible item is one of the most celebrated

problems in mechanism design with transfers. Despite its simplicity,

it provides arguably the cleanest and most insightful results in

the literature. When the information that the auction is running
is available to every participant, Myerson [19] provided a seminal

result to characterize the incentive-compatible auctions along with

revenue optimality. However, such a result does not hold in an

auction on a network, where the information of the auction is spread

via the agents, and they need incentives to forward the information.

In recent times, a few auctions (e.g., [12, 16]) were designed that

appropriately incentivized the intermediate nodes on the network to

promulgate the information to potentially more valuable bidders. In

this paper, we provide a Myerson-like characterization of incentive-
compatible auctions on a network and show that the currently known

auctions fall within this class of randomized auctions. We then

consider a special class called the referral auctions that are inspired
by the multi-level marketing mechanisms [1, 5, 6] and obtain the

structure of a revenue optimal referral auction for i.i.d. bidders.

KEYWORDS
Diffusion Auction; Optimal Revenue; Myerson Auction

ACM Reference Format:
Rangeet Bhattacharyya, Parvik Dave, Palash Dey, and Swaprava Nath. 2024.

Optimal Referral Auction Design. In Proc. of the 23rd International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2024), Auckland,
New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Single indivisible item auction is a special mechanism design setting

with monetary transfers where multiple bidders contest to collect

a single item. The true value of the item could be different for

different agents and it is their private information, i.e., not known
to the mechanism1

designer. Despite its simplicity, the single-item

auction provides remarkable insights into the questions: (a) what is

1
Since auctions are special cases of mechanisms, we will use these two terms inter-

changeably in this paper.
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the structure of the mechanisms that reveal the agents’ true private

information, and (b) how to design mechanisms that maximize the

expected revenue. In the world where the information that ‘an item

is being auctioned’ is available to every possible bidder interested

in this item, these two questions have been answered gracefully by

Myerson in his seminal paper [19].

However, in various recent contexts of auctions, the network of

connections plays an important role in the information flow over the

network. An agent diffuses the information into the network only

if they find it is beneficial to share. This setup is called network auc-
tions, where agents diffuse the information of the auction only if it

(strictly or weakly) improves their utilities. This problem has given

birth to the domain of diffusion auction design on networks and

has received significant attention in the recent times [8, 12, 14, 16].

Because the information about the auction does not automatically
reach every agent in this setup, the mechanism needs to incentivize

individuals to diffuse (or forward) the information. The Myerson

[19] characterization does not follow here, and a fresh investigation

is necessary to characterize the truthful and revenue maximizing
diffusion auctions.

1.1 Our contributions
The contributions of this paper are divided into two parts. In the

first part, we characterize the truthful network auction via cer-

tain constraints on allocation and payment. In the second part, we

consider a Bayesian setup and find the class of revenue-optimal

network auctions. More concretely:

(1) We provide a direct definition of truthfulness called diffusion
dominant strategy incentive compatibility (DDSIC, Definition 2)

and show that it is equivalent to the existing IC definition in

the literature on network auction [14, e.g.].

(2) We characterize DDSIC (and therefore, IC) mechanisms (Lem-

mas 1 to 3 and Theorem 1). Note that this result is of indepen-

dent interest irrespective of the revenue optimality question

addressed later in this paper (similar to [19]).

(3) Our characterization includes less-explored auctions, e.g., ran-

domized and DDSIC (Section 4.2).

(4) We find the revenue-optimal referral auction (which is a class

of auctions motivated by the multi-level marketing methods)

for i.i.d. bidders (Theorem 5) in Section 5.

In Section 6, we provide an example of a new mechanism called

LbLEV that is DDSIC and individually rational on a tree. The purpose
of introducing this mechanism is to show that when bidders are

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

198

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


non-i.i.d., the parameters of LbLEV can be tuned, based on the prior

information of the valuations and network structure, to yield a

better revenue than the currently known truthful diffusion auctions,

and we show this empirically. The complete details are in [3].

1.2 Related work
The area of diffusion mechanism design is relatively new, leading to

rather sparse literature. Guo and Hao [8] provides a comprehensive

survey of the domain. The first works on diffusion auction are due to

Li et al. [16] and Lee [11]. In particular, [16] proposed a new mech-

anism, called IDM, that mitigates this problem. In the following

years, a few more diffusion auctions were proposed: CSM [17] for

economic networks, MLDM for intermediary networks [13], TNM,

CDM, WDM for the unweighted and weighted networks [12, 15].

FDM [26] and NRM [27] considered the money-burning issue in

network auction and proposed schemes to redistribute the money

maintaining incentive compatibility. On the characterization results,

Li et al. [14] provide a characterization for deterministic diffusion

auctions and find optimal payments. Our approach considers a

broader approach to characterize all randomized diffusion auctions

and shows that in this larger class, better mechanisms for revenue

generation exist.

On the other hand, auctions are fairly well understood in the

setting without networks, both in theory [4, 19, 21] and in prac-

tice [10]. The primary focus of the paper is to extend the theory

to network auctions. We begin by understanding revenue optimal-

ity in a simpler class of mechanisms, namely the referral auctions,
which has a close similarity with a business method called multi-
level marketing (MLM) [22]. Direct sales firms often use this method

to encourage individual distributors to recruit new distributors. A

prominent example of an MLM scheme is the DARPA red balloon

challenge [20].
2
MLM mechanisms are also well investigated in

the mechanism design literature [1, 5, 6]. Hence, in this paper, we

consider a natural candidate class of referral auctions for revenue
optimality (§5.2).

2 BASIC PROBLEM SETUP
Consider a directed graph 𝐺 = (𝑁 ∪ {𝑠}, 𝐸), where 𝑁 = {1, . . . , 𝑛}
is the set of players involved in the auction of a single indivisible

item and 𝑠 is a distinguished node called the seller. The set 𝐸 is the

set of edges. Each edge (𝑖, 𝑗) denotes that node 𝑖 can share informa-

tion with node 𝑗 . Typical examples of such graphs are online social

networks where an individual can share information (selectively)

with a subset of her neighbors. The direction signifies that almost

all networks have asymmetric information flow (e.g., only followers

receive the information from the followee). In this network, node 𝑠

is a single seller that wants to sell the indivisible item. Every other

node 𝑖 ∈ 𝑁 is a potential buyer and the information about the auc-

tion flows only via the direction of an edge. The information cannot

reach a node unless there is a directed path from 𝑠 to that node

and each intermediate node decides to forward the information. An

intermediate node may decide not to forward the information if it

reduces its utility.
This setup naturally brings up an auction-like information-

sharing game among the players. Each player 𝑖 ∈ 𝑁 has a type

2
https://www.darpa.mil/about-us/timeline/network-challenge

𝜃𝑖 = (𝑣𝑖 , 𝑟𝑖 ), where 𝑣𝑖 is the valuation of agent 𝑖 for the item, and

𝑟𝑖 is the set of her directed neighbors. The sets of valuations and

neighbors of player 𝑖 areV𝑖 and R𝑖 respectively. The type set of 𝑖 ,

Θ𝑖 , is therefore, V𝑖 × R𝑖 . The information about the auction needs

to reach via directed edges to player 𝑖 for her to participate in the

auction. Therefore, the auction asks every agent to report their

valuation for the item and to forward the information to its directed

neighbors. This can be captured via their reported type
ˆ𝜃𝑖 = (𝑣𝑖 , 𝑟𝑖 )

for every agent 𝑖 ∈ 𝑁 . We assume that the seller 𝑠 is not a strate-

gic player in this auction, rather he wants to sell the object and

always forwards the information to its directed neighbors. The

vector of the reported types of all the agents except 𝑖 is denoted

by
ˆ𝜃−𝑖 = ( ˆ𝜃1, . . . , ˆ𝜃𝑖−1, ˆ𝜃𝑖+1, . . . , ˆ𝜃𝑛). We denote the set of all type

profiles by Θ :=
∏

𝑖∈𝑁 Θ𝑖 .

Depending on the reported types of the agents, particularly, the

reported 𝑟𝑖 ’s, the auction may reach only a subset of the agents

in 𝑁 . To denote the reported valuation and directed neighbors on

the subnetwork generated by ( ˆ𝜃𝑖 , ˆ𝜃−𝑖 ), we use a filter function 𝑓𝐺

for the graph 𝐺 , where 𝑓𝐺 ( ˆ𝜃𝑖 , ˆ𝜃−𝑖 ) denotes the reported valuation

and directed neighbor vector of the subgraph reachable from 𝑠

after the agents reported the type profile ( ˆ𝜃𝑖 , ˆ𝜃−𝑖 ). In this setup, the

mechanism design goal is to incentivize each node to truthfully

reveal its private valuation and forward the auction information

regardless of others’ actions. We consider auctions on this graph

with randomized allocations. Formally, we define a diffusion auction
as follows.

Definition 1 (Diffusion Auction). A diffusion auction (DA) is given
by the tuple (𝑔, 𝑝) where 𝑔 and 𝑝 are the allocation and payment
functions respectively. The allocation function 𝑔 : Θ → Δ𝑛 is such

that its 𝑖-th component 𝑔𝑖 (𝑓𝐺 (𝜃 )) denotes the probability of agent 𝑖
winning the object, where Δ𝑛 := {𝑥 ∈ R𝑛⩾0 :

∑𝑛
𝑖=1 𝑥𝑖 = 1}. Similarly,

the payment function 𝑝 = (𝑝𝑖 )𝑖∈𝑁 is such that its 𝑖-th component

𝑝𝑖 : Θ → R denotes the payment assigned to agent 𝑖 .

Note that 𝑔𝑖 should operate on the subnetwork that remains

connected to 𝑠 after the agents choose their actions ˆ𝜃 . Hence the

notation 𝑔𝑖 (𝑓𝐺 (·)) is used in the definition above. It is worth noting
that the notation generalizes the one used by Li et al. [16]. The

action chosen by player 𝑖 may change the actions available to the

other players and it is succinctly captured by the filter function

which also subsumes the definition in that paper. The utility of

agent 𝑖 under DA is given by the standard quasi-linear model [24]:

𝑢
(𝑔,𝑝 )
𝑖

(( ˆ𝜃𝑖 , ˆ𝜃−𝑖 );𝜃𝑖 ) = 𝑣𝑖𝑔𝑖 (𝑓𝐺 ( ˆ𝜃𝑖 , ˆ𝜃−𝑖 )) − 𝑝𝑖 (𝑓𝐺 ( ˆ𝜃𝑖 , ˆ𝜃−𝑖 )).

3 DESIGN DESIDERATA
The first desirable property of an auction is truthfulness. However,

in the context of auctions on the network, we need to ensure that the

mechanism also incentivizes the agents to forward the information

in addition to being truthful about their valuations. The following

definition captures both these aspects.

Definition 2 (Diffusion Dominant Strategy Incentive Compatibility).
A DA (𝑔, 𝑝) on a graph 𝐺 is diffusion dominant strategy incentive
compatible (DDSIC) if

(1) every agent’s utility is maximized by reporting her true val-

uation irrespective of the diffusing status of herself and the
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other agents, i.e., for every 𝑖 ∈ 𝑁 , ∀𝑟𝑖 , ˆ𝜃−𝑖 , the following holds,

∀𝑣𝑖 , 𝑣 ′𝑖 , ˆ𝜃−𝑖 , 𝑟
′
𝑖
⊆ 𝑟𝑖

𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), ˆ𝜃−𝑖 )) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), ˆ𝜃−𝑖 ))

⩾ 𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣 ′𝑖 , 𝑟
′
𝑖 ), ˆ𝜃−𝑖 )) − 𝑝𝑖 (𝑓𝐺 ((𝑣 ′𝑖 , 𝑟

′
𝑖 ), ˆ𝜃−𝑖 )), and,

(2) for every true valuation, every agent’s utility is maximized by

diffusing to all its neighbors irrespective of the diffusion status

of the other agents, i.e., for every 𝑖 ∈ 𝑁 , ∀𝑟𝑖 , ˆ𝜃−𝑖 , the following
holds, ∀𝑣𝑖 , ˆ𝜃−𝑖 , 𝑟 ′𝑖 ⊆ 𝑟𝑖

𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 ))

⩾ 𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), ˆ𝜃−𝑖 )) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), ˆ𝜃−𝑖 )) .
In the auction setupwithout a network, where each agent 𝑖’s type

is denoted only by 𝑣𝑖 (and not 𝑟𝑖 ), this definition of DDSIC reduces to
the standard definition of dominant strategy incentive compatibility
(DSIC) [25] given by condition (1) with 𝑟𝑖 and 𝑟

′
𝑖
omitted. We will

show in Theorem 1 that the above definition is equivalent to the

following definition of incentive compatibility (restated below with

the notation of this paper) given by Li et al. [14]. Hence, all the

prominent mechanisms presented so far in the literature (e.g., IDM,

TNM, etc.) follow this alternate definition as well.

Definition 3 (Incentive Compatibility [14]). A DA (𝑔, 𝑝) on

a graph 𝐺 is incentive-compatible (IC) if for every 𝑖 ∈
𝑁 , ∀𝑟𝑖 , ˆ𝜃−𝑖 , 𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )) ⩾

𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣 ′
𝑖
, 𝑟 ′
𝑖
), ˆ𝜃−𝑖 )) − 𝑝𝑖 (𝑓𝐺 ((𝑣 ′

𝑖
, 𝑟 ′
𝑖
), ˆ𝜃−𝑖 )),∀𝑣𝑖 , 𝑣 ′𝑖 ,∀𝑟

′
𝑖
⊆ 𝑟𝑖 ,∀𝑖 ∈

𝑁 .

Why DDSIC?. A natural question can arise: why do we intro-

duce a new definition of truthfulness when there is an existing one,

given that both are equivalent? This is because the new definition

provides a more direct and intuitive way to understand the truthful

reporting of valuation and diffusion. DDSIC does this by splitting

the IC condition into two sets of inequalities as given in Definition 2.

In our proofs, this definition makes the analysis of truthful mecha-

nisms simpler. We will show that IC and DDSIC are equivalent and

both are equivalent to the conditions stated in Definition 5, and

will subject all our further analyses only to DDSIC.
The other desirable property deals with the participation guar-

antee of the agents.

Definition 4 (Individual Rationality). A DA (𝑔, 𝑝) on a graph

𝐺 is individually rational (IR) if 𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )) −
𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )) ⩾ 0, ∀𝑣𝑖 , 𝑟𝑖 , ˆ𝜃−𝑖 ,∀𝑖 ∈ 𝑁 .

4 CHARACTERIZATION RESULTS
Our first result is to characterize the IC diffusion auctions and show

equivalence between IC and DDSIC. For a cleaner presentation, we
define the following class of auctions.

Definition 5 (Monotone and Forwarding-Friendliness (MFF)). For a

given network 𝐺 , a DA (𝑔, 𝑝) is monotone and forwarding-friendly
(MFF) if
(a) the functions 𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )) are monotone non-

decreasing in 𝑣𝑖 , for all 𝑟𝑖 , ˆ𝜃−𝑖 , and 𝑖 ∈ 𝑁 , and for the given

allocation function 𝑔, the payment 𝑝𝑖 for each player 𝑖 ∈ 𝑁 is

such that, for every 𝑣𝑖 , 𝑟𝑖 , and ˆ𝜃−𝑖 , the following two conditions
hold.

(b) For every 𝑟 ′
𝑖
⊆ 𝑟𝑖 , the following payment formula is satisfied.

𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), ˆ𝜃−𝑖 )) = 𝑝𝑖 (𝑓𝐺 ((0, 𝑟 ′𝑖 ), ˆ𝜃−𝑖 ))

+ 𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), ˆ𝜃−𝑖 )) −
∫ 𝑣𝑖

0

𝑔𝑖 (𝑓𝐺 ((𝑦, 𝑟 ′𝑖 ), ˆ𝜃−𝑖 )) d𝑦.

(c) For every 𝑟 ′
𝑖

⊆ 𝑟𝑖 , the values of 𝑝𝑖 (𝑓𝐺 ((0, 𝑟 ′
𝑖
), ˆ𝜃−𝑖 )) and

𝑝𝑖 (𝑓𝐺 ((0, 𝑟𝑖 ), ˆ𝜃−𝑖 )) satisfy the following inequality.

𝑝𝑖 (𝑓𝐺 ((0, 𝑟 ′𝑖 ), ˆ𝜃−𝑖 )) − 𝑝𝑖 (𝑓𝐺 ((0, 𝑟𝑖 ), ˆ𝜃−𝑖 ))

⩾

∫ 𝑣𝑖

0

(
𝑔𝑖 (𝑓𝐺 ((𝑦, 𝑟 ′𝑖 ), ˆ𝜃−𝑖 )) − 𝑔𝑖 (𝑓𝐺 ((𝑦, 𝑟𝑖 ), ˆ𝜃−𝑖 ))

)
d𝑦.

We will refer to 𝑝𝑖 (𝑓𝐺 ((0, 𝑟𝑖 ), ˆ𝜃−𝑖 )), the first term on the RHS of

condition (b), as the value independent payment component (VIPC)
in the rest of the paper since this component of player 𝑖 is not

dependent on the valuation of 𝑖 .

Lemma 1. If a DA (𝑔, 𝑝) is IC, then it is MFF.

Proof sketch: In order to prove the monotonicity of

𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )), we show that it is the sub-gradient of

the utility function, which can be shown to be convex. By

substituting 𝑟 ′
𝑖
= 𝑟𝑖 in Definition 3, we get:

𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 ) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )

⩾ 𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣 ′𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 ) − 𝑝𝑖 (𝑓𝐺 ((𝑣 ′𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 ) (1)

Adding and subtracting 𝑣 ′
𝑖
𝑔𝑖 (𝑓𝐺 ((𝑣 ′

𝑖
, 𝑟𝑖 ), ˆ𝜃−𝑖 ) on the RHS of Equa-

tion (1) yields

𝑢𝑖 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 ) ⩾ 𝑢𝑖 ((𝑣 ′𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 ) + (𝑣𝑖 − 𝑣 ′𝑖 )𝑔𝑖 (𝑓
𝐺 ((𝑣 ′𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 ))

The rest of the proof shows that the utility function is convex, then

cond. (a) of Definition 5 immediately follows.

From convex analysis [23], we know that for any convex function

ℎ having subgradient𝜙 , the following integral relation holds:ℎ(𝑦) =
ℎ(𝑧) +

∫ 𝑦

𝑧
𝜙 (𝑡)𝑑𝑡 for any 𝑦, 𝑧 in the domain of ℎ. Substituting ℎ as

𝑢𝑖 and 𝜙 as 𝑔𝑖 yields cond. b of Definition 5. To prove cond. c of

Definition 5, we first put 𝑣 ′
𝑖
= 𝑣𝑖 in the definition of IC to get point 2

of Definition 2 and we substitute the payment expressions derived

above. ■

Lemma 2. If a DA (𝑔, 𝑝) is MFF, then it is DDSIC.

Proof sketch: This proof is straightforward since the three con-

ditions of MFF yield conds. 1 and 2 of DDSIC via certain algebraic

manipulations. The details are in the supplementary material. ■

Lemma 3. If a DA (𝑔, 𝑝) is DDSIC, then it is IC.

Proof sketch: By exhaustively listing all possible cases of manipu-

lation under Definition 3, we can see that all the inequalities can be

derived from the inequalities implied by DDSIC (Definition 2). Due

to lack of space, we present just one case here: Consider (𝑣𝑖 , 𝑟𝑖 ) to
be the true valuation of the player and they misreport to (𝑣𝑖 , 𝑟 ′𝑖 ).
Substituting this in Definition 3, we get

𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 ) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )

⩾ 𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), ˆ𝜃−𝑖 ) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), ˆ𝜃−𝑖 ) (2)

which is implied by Item 2 of Definition 2 ■
The three lemmata lead to the following theorem.

Theorem 1. DDSIC ⇐⇒ IC ⇐⇒ MFF.
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4.1 Difference with Myerson [19] and other DAs
The characterization result is much in the spirit of the result of My-

erson [19]. However, we have the following important differences

on the setup, results, and the proof techniques.

1. The setup of DA is that of a multidimensional mechanism design

since the type of each player consists of two components (𝑣𝑖 , 𝑟𝑖 )
compared to Myerson’s single-dimensional (only 𝑣𝑖 ) setup. The

mechanism design question in this setup itself is harder [9, 18].

Our approach exploits the special structure of a single indivisible

item auction on a network, and somewhat surprisingly, reduces

it to a similar structure like Myerson (with the additional con-

dition (c) on the VIPC terms that are absent in Myerson). The

multi-dimensional setup changes the analysis at several places

of the proof (and is available in [3]). In particular, the entire flow

of the proof ‘IC⇒ MFF, MFF⇒ DDSIC, DDSIC⇒ IC’ differs from

that of Myerson.

2. Our result is unique since we provide a characterization of all

randomized single indivisible item diffusion auctions. The closest

characterization result to our knowledge applies to only deter-

ministic diffusion auctions [14]. In the following section, we

provide an example of a DDSIC auction that is not covered by the

characterization of [14] but is covered under the MFF conditions

(Theorem 1).

[3] provides a class of mechanisms that is different from the

currently known DDSIC mechanisms.

4.2 Example to illustrate the conditions of a
randomized DDSIC auction.

The distinguishing factor of the truthfulness guarantee given by

DDSIC is in the part where an agent may not diffuse the information

to its neighbors. In this example, we will focus only on that part and

illustrate the meaning of the conditions of MFF (Definition 5), that

is equivalent to DDSIC via Theorem 1. This example can be easily

extended to a full-fledged randomized DDSIC auction. However, that
needs the auction to be defined for every realized graph and for every
type profile ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 ), which will digress a reader from the main

intuition of MFF. Instead, we have explained how these conditions

are met when the agents report their (𝑣𝑖 , 𝑟𝑖 )s as shown in Figure 1.

S

A B C

D E

4 6 9

10 12

Figure 1: A randomized
DDSIC auction.

For simplicity of exposition, we

consider the auction where the

true underlying network and the

reported valuations are given by

Figure 1, and 𝑟𝑖 can take val-

ues only in {0, 1}, i.e., either for-
ward to all its neighbors or not

forwarding at all. We discuss

the satisfaction of the MFF condi-
tions and consider the variation

of 𝑣𝑖 and 𝑟𝑖 of each agent 𝑖 keep-

ing the
ˆ𝜃−𝑖 fixed at the values

given in this figure. In this example, agents𝐷 and 𝐸 get the informa-

tion of the auction only if𝐴 forwards it at the first level of the tree. A

DDSIC DA (𝑔, 𝑝) needs to decide the allocations 𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), ˆ𝜃−𝑖 )),
and the VIPC components 𝑝𝑖 (𝑓𝐺 ((0, 𝑟𝑖 ), ˆ𝜃−𝑖 )) for 𝑟𝑖 = 0, 1 and for

all 𝑖 ∈ 𝑁 . For all agents 𝑖 ≠ 𝐴, 𝑟𝑖 ’s do not matter since they do

not have any children in this tree. Therefore, 𝑔𝑖 ’s and VIPC𝑖 ’s of
agents 𝑖 ≠ 𝐴, remain unchanged in this example auction when they

set 𝑟𝑖 = 0 or 𝑟𝑖 = 1 given other agents’ reported types are fixed.

Hence, condition (c) of MFF is trivially satisfied for all agents except
𝐴. We discuss agent 𝐴’s satisfiability of condition (c) separately. In

a nutshell, this example mechanism adapts the residual claimant
(RC) mechanism by Green and Laffont [7] to this setting at the first

level of the tree. If agent 𝐴 forwards, then it divides 𝐴’s probability

of allocation with its children and adjusts the payments according

to Definition 5. If 𝐴 does not forward, then it is just RC at level 1.

Otherwise, the auction becomes a little nontrivial as follows.

Case 1: 𝑟𝐴 = 0: When agent 𝐴 does not forward the in-

formation, the auction stays limited to the agents 𝐴, 𝐵, and 𝐶 .

Let the auction give the object w.p. 2/3 to the highest bidder

and w.p. 1/3 to the second highest bidder. The payment of the

highest bidder is 1/3 × the second highest bid. This payment is

equally distributed among the non-winning agents, which, in

this case, is the third highest bidder. Hence, under this case,

the allocation probability of each agent is clearly monotone

non-decreasing since it increases from zero to 1/3 when it be-

comes the second highest bidder and from 1/3 to 2/3 when it be-

comes the highest bidder. The VIPC for each agent 𝑖 is given

by −1/3 × the second highest bid in the population except agent 𝑖 .

Therefore, VIPC𝐴 (𝑟𝐴 = 0) = −6/3 = −2, VIPC𝐵 (𝑟𝐴 = 0) =

−4/3, VIPC𝐶 (𝑟𝐴 = 0) = −4/3. The payments follow from condi-

tion (b): 𝑝𝐴 (𝑟𝐴 = 0) = −2 + 0 + 0, 𝑝𝐵 (𝑟𝐴 = 0) = −4/3 + 6 × 1/3 −
1/3(6−4) = 0, 𝑝𝐶 (𝑟𝐴 = 0) = −4/3+9× 2/3− 1/3(6−4) − 2/3(9−6) = 2.

The allocation probabilities are zero for every valuation of agents

𝐷 and 𝐸, and their VIPCs are zeros. Consequently, their payments

are also zero in this case.

1/3

2/3

gA

gB

gC

6 9 10 11 12

2/3

1/3

2/3

1/3

2/3

1/3

2/3

1/3

gD

gE

Figure 2: Allocation functions of the nodes in Figure 1.

Case 2: 𝑟𝐴 = 1: i.e.,𝐴 diffuses. MFF allows us to pick anymonotone

𝑔𝑖 ’s for all 𝑖 ∈ 𝑁 . Suppose, the𝑔𝑖 ’s be given by Figure 2, when agents

except 𝑖 report their valuations as shown in Figure 1. Clearly, these

are monotone non-decreasing. It is simpler to just consider the

allocations as given and calculate the VIPC and payments from it

satisfying MFF (condition (c) in particular). However, the way the
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given allocation was chosen was by considering the subtree of 𝐴

as a single agent which gets the item with the same probabilities

as the RC mechanism, and if it gets the item, it allocates to the

highest among its subtree. Now, to calculate VIPC𝐴 (𝑟𝐴 = 1) we
need to find a value of that satisfying VIPC𝐴 (𝑟𝐴 = 0) − VIPC𝐴 (𝑟𝐴 =

1) ⩾
∫ ∞
0

(𝑔𝐴 (𝑦, 𝑟𝐴 = 0) − 𝑔𝐴 (𝑦, 𝑟𝐴 = 1))𝑑𝑦. Putting the values of

𝑔𝐴 (𝑦, 𝑟𝐴 = 0) (from case 1) and 𝑔𝐴 (𝑦, 𝑟𝐴 = 1) (from Figure 2) and

setting the inequality as equality, we find a value of VIPC𝐴 (𝑟𝐴 =

1) = −2 − 1 − 2/3 = −11/3. Let the rest of the VIPC’s as follows:
VIPC𝐵 (𝑟𝐴 = 1) = −3, VIPC𝐶 (𝑟𝐴 = 1) = −2, VIPC𝐷 (𝑟𝐴 = 1) =

0, VIPC𝐸 (𝑟𝐴 = 1) = 0, which could be any number. We pick these

numbers such that the sum of payments = 0. The payments are

given by condition (b) as follows: 𝑝𝐴 (𝑟𝐴 = 1) = −11/3+0+0, 𝑝𝐵 (𝑟𝐴 =

1) = −3 + 0 + 0, 𝑝𝐶 (𝑟𝐴 = 1) = −2 + 9 × 1/3 − 1/3(9 − 6) = 0, 𝑝𝐷 (𝑟𝐴 =

1) = 0 + 0 + 0, 𝑝𝐸 (𝑟𝐴 = 1) = 0 + 12 × 2/3 − 2/3(12 − 10) = 20/3.
The satisfiability of condition (c) for agent𝐴 warrants a separate

discussion since it is the only agent which has a different VIPC
when 𝑟𝐴 = 0 and 𝑟𝐴 = 1, keeping the other agents’ reported types

fixed. For all other agents, the satisfiability of condition (c) is trivial

since both sides of the inequality reduces to zero. However, we note

that the LHS of condition (c) for 𝐴 is VIPC𝐴 (𝑟𝐴 = 0) − VIPC𝐴 (𝑟𝐴 =

1) = −2 + 11/3 = 5/3 which is larger than the RHS for every value

of 𝑣𝐴 . In particular, when 𝑣𝐴 ⩾ 10, the RHS becomes 5/3 and stays

constant at that value for larger values of 𝑣𝐴 . Hence, condition (c)

is satisfied for agent 𝐴 too.

This is a randomized DA that satisfies the MFF conditions (Defini-

tion 5) for
ˆ𝜃−𝑖 given by Figure 1. For the 𝑟𝐴 = 1 case, we could have

chosen any monotone allocation rule for the agents and decided

the payments according to condition (b), and set arbitrary VIPC
terms for agents except 𝐴. But for 𝐴, we need to ensure that the

differences in the VIPCs between 𝑟𝐴 = 0 and 𝑟𝐴 = 1 satisfies con-

dition (c). This is the recipe for extending this example for every

ˆ𝜃−𝑖 .

5 BAYESIAN SETUP AND OPTIMAL AUCTION
The optimal auction is the one that maximizes the expected rev-

enue. This is done assuming that the prior of the valuations are

known to the auctioneer, which is a common assumption in clas-

sical auction literature [19, e.g.].
3
In this section, we consider the

revenue-optimal auction where the prior distribution over (𝑣𝑖 , 𝑣−𝑖 )
is given by 𝑃 and is a common knowledge. We define truthfulness

in the prior-based setup by extending DDSIC in a Bayesian setting.

Definition 6 (Diffusion Bayesian Incentive Compatibility). A DA
(𝑔, 𝑝) on a graph𝐺 is diffusion Bayesian incentive compatible (DBIC)
if

(1) every agent’s expected utility is maximized by reporting her

true valuation irrespective of the diffusing status of herself and

the other agents, i.e., for every 𝑖 ∈ 𝑁 , ∀𝑟𝑖 , 𝑟−𝑖 , the following
holds ∀𝑣𝑖 , 𝑣 ′𝑖 , 𝑟

′
𝑖
⊆ 𝑟𝑖

E[𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 ))) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 )))]

⩾ E[𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣 ′𝑖 , 𝑟
′
𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 ))) − 𝑝𝑖 (𝑓𝐺 ((𝑣 ′𝑖 , 𝑟

′
𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 )))],

3
This assumption is primarily due to two reasons: (a) for prior-free auctions, the worst-

case revenue can be arbitrarily bad, hence revenue maximization does not yield any

useful result, and (b) in practice, the prior on the users’ valuation can be estimated

from the historical data.

(2) for every true valuation, every agent’s expected utility is maxi-

mized by diffusing to all its neighbors irrespective of the diffu-

sion status of the other agents, i.e., for every 𝑖 ∈ 𝑁 , ∀𝑟𝑖 , 𝑟−𝑖 , the
following holds ∀𝑣𝑖 , 𝑟 ′𝑖 ⊆ 𝑟𝑖

E[𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 ))) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 )))]

⩾ E[𝑣𝑖𝑔𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 ))) − 𝑝𝑖 (𝑓𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 )))] .

The expectation in this definition and the rest of the paper is

defined as E𝑣−𝑖 |𝑣𝑖 . Clearly, DDSIC implies DBIC since DBIC requires

conditions 1 and 2 of Definition 2 to hold only in expectation.

5.1 Characterization of DBICMechanisms
Our first result is to characterize the DBIC auctions. For convenience,
we define the expected allocation and payments with the shorthand

notation as described below.

𝛼𝑖 ((𝑣𝑖 , 𝑟 ′𝑖 ), 𝑟−𝑖 )) = E[𝑔𝑖 (𝑓
𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 )))] (3)

pay𝑖 ((𝑣𝑖 , 𝑟 ′𝑖 ), 𝑟−𝑖 )) = E[𝑝𝑖 (𝑓
𝐺 ((𝑣𝑖 , 𝑟 ′𝑖 ), (𝑣−𝑖 , 𝑟−𝑖 )))] (4)

In the Bayesian setup, the notion of participation guarantee is

also weakened to interim individual rationality (IIR) [24] where the
expected utility of a player to join the mechanism is non-negative

after she learns her own type. Similar to DBIC, it is easy to see that

IR implies IIR since IIR requires the IR conditions to hold only in

expectation. We define the following structure of a DA to succinctly

characterize the DBIC auctions.

Definition 7 (MFFE). For a given network 𝐺 , a DA (𝑔, 𝑝) is monotone
and forwarding-friendly in expectation (MFFE) if
(a) for every 𝑖 ∈ 𝑁 and 𝑟𝑖 , 𝑟−𝑖 , the functions 𝛼𝑖 ((𝑣𝑖 , 𝑟 ′𝑖 ), 𝑟−𝑖 ) is non-

decreasing in 𝑣𝑖 , for every 𝑟
′
𝑖
⊆ 𝑟𝑖 , and for the given allocation

function 𝛼 , the payment pay𝑖 for each player 𝑖 ∈ 𝑁 is such that,

for every 𝑣𝑖 , 𝑟𝑖 , and 𝑟−𝑖 , the following two conditions hold.

(b) ∀𝑟 ′
𝑖
⊆ 𝑟𝑖 , the following payment formula is satisfied.

pay𝑖 ((𝑣𝑖 , 𝑟 ′𝑖 ), 𝑟−𝑖 ) = pay𝑖 ((0, 𝑟 ′𝑖 ), 𝑟−𝑖 )+

𝑣𝑖𝛼𝑖 ((𝑣𝑖 , 𝑟 ′𝑖 ), 𝑟−𝑖 ) −
∫ 𝑣𝑖

0

𝛼𝑖 ((𝑦, 𝑟 ′𝑖 ), 𝑟−𝑖 ) d𝑦

(c) The values of pay𝑖 ((0, 𝑟 ′𝑖 ), 𝑟−𝑖 ) and pay𝑖 ((0, 𝑟𝑖 ), 𝑟−𝑖 ) are arbi-

trary real numbers that satisfies the following inequality for

every 𝑟 ′
𝑖
⊆ 𝑟𝑖 .

pay𝑖 ((0, 𝑟 ′𝑖 ), 𝑟−𝑖 ) − pay𝑖 ((0, 𝑟𝑖 ), 𝑟−𝑖 )

⩾

∫ 𝑣𝑖

0

(𝛼𝑖 ((𝑦, 𝑟 ′𝑖 ), 𝑟−𝑖 ) − 𝛼𝑖 ((𝑦, 𝑟𝑖 ), 𝑟−𝑖 )) d𝑦

Theorem 2. A DA (𝑔, 𝑝) is DBIC iff it is MFFE.

The proof follows similar steps as Lemmas 1 and 2. For the

forward implication, i.e., DBIC⇒ MFFE, note that the starting con-
ditions of IC in Lemma 1 are also the same as in DDSIC, hence the
expectation will also work in a very similar way. Full details are in

[3].

5.2 Referral auctions
Multi-level marketing (MLM) is a marketing approach that incen-

tivizes individuals who not only adopt a product but advertise it

also [1, 5, 6]. On a social network, it creates a viral effect where
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the information regarding a product reaches far beyond what tradi-

tional marketing can do. Due to its similarity with the objective of

diffusion auctions, i.e., to spread the information of the auction to

more individuals on a network, in this section, we consider a natu-

ral adaptation of MLM into auctions and call this class of auctions

as referral auctions (RA).
In a referral auction, the seller invites its immediate neighbors

in the network to report their valuations and invite all of their

neighbors. These agents are also suggested, in turn, to spread the

same message, i.e., to ask their neighbors to report their valua-

tions and forward the information to their neighbors. Each time

a node 𝑖 reports and forwards the information to its neighbors,

the information of (𝑣𝑖 , 𝑟𝑖 ) is recorded by the seller along with its

(system-generated) timestamp 𝜏𝑖 . Note that one can implement this

auction in various possible ways, e.g., via inviting each node to

register on the seller’s site and providing the information of their

neighbors. In all possible such cases, the seller can record the times-

tamp which cannot be manipulated by the agents. This information

will be used by the class of referral auctions.

In the class RA, all agents are sorted w.r.t. their timestamps and a

referral tree is formed via a first-invite-first-served policy (breaking

ties in a fixed order, e.g., w.r.t. their social IDs). This implies that the

unique parent of every node is determined by the earliest timestamp

of those inviting nodes. Note that, this is the principle of multi-

level marketing as well – only those individuals on a network are

considered for referral bonuses that invited a new customer first to
the seller’s system.

Once the referral tree is formed, the mechanism runs an auction

at every level of the tree through a general deterministic allocation
rule ℊ which is monotone non-decreasing and runs only on the

agents at a given level. Define the corresponding payment as

𝓅𝑖 (𝜌𝑖 , 𝜌−𝑖 ) = 𝜌𝑖ℊ𝑖 (𝜌𝑖 , 𝜌−𝑖 ) −
∫ 𝜌𝑖

0

ℊ𝑖 (𝑦, 𝜌−𝑖 ) d𝑦. (5)

We note that the payment formula in Equation (5) is the same as the

payment formula in the classical result of Myerson [19] with the

VIPC term being zero. Based on different choices of ℊ, we obtain

the class RA, described algorithmically in Algorithm 1. Given an

instance of the reported types and the execution of Algorithm 1,

we partition the agents into three exhaustive classes: (i) winner –
agent who gets the item (RA is deterministic, hence there will be

a deterministic winner), (ii) on-path non-winner – agents that lie

on the path from the seller to the winner, and (iii) not-on-path non-
winner – agents that are not on the winning path from the seller to

the winner.

We show that each member of RA also follows the desirable

properties as mentioned in Section 3. The proofs are in [3]. Note

that the mechanisms in RA generate a referral tree 𝑇 from an ar-

bitrary underlying network. Hence, to prove truthfulness of the

auctions in this class, we need to show that no agent can profit by

underreporting her set of true neighbors in the underlying graph.

Theorem 3. In each auction in RA, no agent 𝑖 ∈ 𝑁 gets a higher
utility by reporting 𝑟𝑖 ⊂ 𝑟𝑖 .

Proof sketch: Each auction in RA is designed in such a way that only
the on-path non-winner or the winner gets a non-negative utility.
Each not-on-path non-winner node gets a utility of zero. Also, note

Algorithm 1: Referral Auctions (RA)

Input: reported types
ˆ𝜃𝑖 = (𝑣𝑖 , 𝑟𝑖 ), 𝑟𝑖 ⊆ 𝑟𝑖 , and recorded

timestamps 𝜏𝑖 , for all 𝑖 ∈ 𝑁

Parameter :an arbitrary monotone non-decreasing

deterministic allocation ℊ

Output: winner of the auction (which can be ∅), payments

of each agent

1 Preprocessing: Create the referral tree 𝑇 rooted at 𝑠 such

that the neighbors of 𝑠 is children(𝑠), and
parent(𝑖) = argmin{𝜏𝑘 : 𝑖 ∈ 𝑟𝑘 }, for all
𝑖 ∈ 𝑁 \ children(𝑠). Ties are broken w.r.t. a fixed order

over the nodes.

2 if 𝑣𝑖 = 0,∀ 𝑖 ∈ 𝑁 then
3 Item is not sold and payment is set to zero for all agents,

STOP

4 Initialization: all agents are non-winners and their actual
payments are zeros, set offset = 0, level = 1, parent = 𝑠 ,

𝑣parent = 0

5 In this level of 𝑇 :

6 for each node 𝑖 ∈ children(parent) do
7 Set effective valuation

𝜌𝑖 := max{𝑣 𝑗 : 𝑗 ∈ 𝑇𝑖 } − offset

8 Remove the nodes that have 𝜌𝑖 < 0, denote the rest of

the agents with 𝑁remain

9 if |𝑁remain | ⩾ 2 then
10 Find 𝑖∗ where ℊ𝑖∗ (𝜌𝑖∗ , 𝜌𝑁remain\{𝑖∗ } ) = 1

11 Compute 𝑧 := 𝓅𝑖∗ (𝜌𝑖∗ , 𝜌𝑁remain\{𝑖∗ } ), given by

Equation (5)

12 else
13 Set 𝑧 = 0

14 if 𝑣parent ⩾ offset + 𝑧 then
15 STOP and go to Step 23

16 Set agent 𝑖∗ as the tentative winner and its

effective payment to be 𝑧

17 All nodes and their subtrees except 𝑖∗ are declared
non-winners

18 The actual payment of 𝑖∗ to parent = effective

payment + offset

19 parent = 𝑖∗, offset = actual payment of 𝑖∗

20 level = level + 1

21 Repeat Steps 5 to 20 with the updated parent and offset

for the new level

22 STOP when no agent 𝑖 has 𝜌𝑖 ⩾ 0 OR the leaf nodes are

reached

23 Set tentative winner as final winner; final payments

are the actual payments that are paid to the respective

parents of 𝑇

that the auctions in RA create the referral tree in a first-invite-first-

served manner. Since the agents cannot alter their timestamps,

if they under-report their neighbor set, they can potentially stop

becoming a on-path non-winner , which does not improve their
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utility. This observation is the key to this proof. We consider the

following cases for an agent 𝑖 .

If 𝑖 is the winner or a not-on-path non-winner after reporting 𝑟𝑖 ,
her true neighbor set, then her forwarding information is irrelevant

to her utility. If 𝑖 is an on-path non-winner when it reports 𝑟𝑖 , and

continues to be a on-path non-winner when it reports 𝑟 ′
𝑖
⊂ 𝑟𝑖 , then

according to Algorithm 1, agent 𝑖 gets the same utility in both these

cases. Finally, if agent 𝑖 is an on-path non-winner when it reports 𝑟𝑖 ,

but a not-on-path non-winner when it reports 𝑟 ′
𝑖
⊂ 𝑟𝑖 . In this case,

the utility is zero when agent 𝑖 is a not-on-path non-winner , but her
utility is non-negative when she is an on-path non-winner . Hence,
agent 𝑖 cannot improve her utility in any of these cases. ■

Theorem 4. Each auction in RA is DDSIC and IR.

Proof sketch: Consider an arbitrary auction 𝑓 ∈ RA. We showed in

Theorem 3 that an agent cannot manipulate the referral tree to her

favor. Hence, we need to show that for the formed referral tree 𝑇 ,

𝑓 satisfies DDSIC and IR. We show this by proving that 𝑓 satisfies

each of the three conditions of MFF (Definition 5). ■
Since each 𝑓 ∈ RA is DDSIC and IR, they are DBIC and IIR. For

simplicity of terminology, we will call each member of the class RA
simply an RA (referral auction) henceforth.

We will now find an RA that maximizes the expected revenue

of the seller when the valuations of the buyers are i.i.d. Briefly,

we observe from Equation (5) that the revenue of the seller in any

auction in RA is the sum of the payments made by the buyers at the

first level, when their valuations are replaced with the maximum

valuation in their subtree. This allows us to “replace” each buyer at

the first level, with the buyer having a maximum valuation in its

subtree.

5.3 Optimal referral auction for i.i.d. valuations
In the objective of finding the revenue-optimal mechanism on a net-

work, we address the problem in steps. In this section, we consider

the mechanisms in the class RA, assuming that the priors on the

valuations are known to the designer and that all 𝑣𝑖 ’s are i.i.d. with

distribution 𝐹 that follows the monotone hazard rate (MHR) condi-

tion, i.e., 𝑓 (𝑥)/(1 − 𝐹 (𝑥)) is non-decreasing in 𝑥 .4 In this section,

we find the optimal mechanism for this setup. To do that, first, we

need to define a transformed auction (TA) of an RA as follows.

Definition 8 (Transformed Auction). A transformed auction (TA)
of an RA is the auction where each subtree 𝑇𝑖 , 𝑖 ∈ children(𝑠)
is replaced with a node with a valuation of max

𝑗∈𝑇𝑖 𝑣 𝑗 , and the

allocation and payments are given by (ℊ𝑖 ,𝓅𝑖 ), 𝑖 ∈ children(𝑠).
Note that a TA does not specify the allocations beyond the first

level of the tree. This is because, we will only be interested in

the revenue generated by a TA, and every TA, regardless of how it

allocates the object and extracts payments in the subsequent levels,

will earn the same revenue, as shown formally in the following

result.

Lemma 4. The revenue earned by an RA is identical to its TA.

Given the above lemma, we can, WLOG, look only at the TAs
for revenue maximization. In the TA of a given RA, the revenue

4
The intuitive meaning of this condition is that the distribution is not heavy-tailed.
Many distributions, e.g., uniform and exponential, follow the MHR condition [2].

maximization problem is restricted to the first level of the tree.

However, the nodes of this restricted tree are the transformed nodes
whose valuations are the maximum valuations of their respective

subtrees. For notational simplicity, we use a fresh index ℓ to denote

these transformed nodes at the first level, i.e., for children(𝑠). The
transformed valuation of ℓ is denoted by 𝑣ℓ := max

𝑗∈𝑇ℓ 𝑣 𝑗 . Again,
to reduce notational complexity, the set of the players in this TA is

represented by �̃� := children(𝑠). In the following, we state the

fact that the 𝑣ℓ ’s also follow the MHR property.

Fact 1. If the distribution of a finite number of i.i.d. random vari-

ables satisfiesMHR condition, then the distribution of themaximum

of those random variables also satisfies MHR condition.

We now focus on the revenue maximization problem. Note that,

ℊ and 𝓅 are particular choices of the allocations 𝑔 and 𝑝 respec-

tively. Therefore, the expected allocations and payments are given

by Equations (3) and (4) with 𝑔 and 𝑝 replaced withℊ and𝓅 respec-

tively. In particular, the VIPC term in Equation (4) is zero for the

nodes in the TA since the payment 𝓅 sets it to zero for the nodes in

the first level of the class RA.5 Also, in the TA, the offset is zero.

Therefore, 𝜌ℓ = 𝑣ℓ , ∀ℓ ∈ �̃� . The neighbor component of the types

𝑟ℓ are no longer relevant since the mechanism is restricted to the

first level in the TA. Hence, we can reduce the arguments of payℓ
and 𝛼ℓ to only 𝑣ℓ in Equations (3) and (4). Since, the only variable

parameter in the payment of the agents is the allocation function

ℊ, the optimization problem for revenue maximization in the RA
class is given by

max

∑︁
ℓ∈�̃�

∫ 𝑏ℓ

𝑣ℓ=0

payℓ (𝑣ℓ ) 𝑓ℓ (𝑣ℓ ) d𝑣ℓ

s.t. ℊ is monotone non-decreasing and deterministic

(6)

In the above equation, 𝑓ℓ is the density of 𝑣ℓ , which is assumed to

have a bounded support of [0, 𝑏ℓ ]. Wewill denote the corresponding

distribution with 𝐹ℓ . This optimization problem now reduces to

the classic single item auction setting of Myerson [19]. Following

that analysis, we find that the individual terms in the sum of the

objective function of Equation (6) can be written as follows∫ 𝑏ℓ

𝑣ℓ=0

payℓ (𝑣ℓ ) 𝑓ℓ (𝑣ℓ ) d𝑣ℓ =
∫ 𝑏ℓ

0

𝑤ℓ (𝑣ℓ )𝛼ℓ (𝑣ℓ ) 𝑓ℓ (𝑣ℓ ) d𝑣ℓ

=

∫ 𝑏ℓ

0

𝑤ℓ (𝑣ℓ )
(∫

𝑣−ℓ
ℊℓ (𝑣ℓ , 𝑣−ℓ ) 𝑓−ℓ (𝑣−ℓ ) d𝑣−ℓ

)
𝑓ℓ (𝑣ℓ ) d𝑣ℓ

=

∫
𝑣

𝑤ℓ (𝑣ℓ )ℊℓ (𝑣ℓ , 𝑣−ℓ ) 𝑓 (𝑣) d𝑣 .

The expression 𝑤ℓ (𝑥) := 𝑥 − (1 − 𝐹ℓ (𝑥))/𝑓ℓ (𝑥) is defined as the

virtual valuation of agent ℓ and for completeness, the derivation

of the first equality is provided in [3]. The second equality holds

after expanding 𝛼ℓ (𝑣ℓ ) from Equation (3). The last equality holds

since the valuations are independent (but may not be identically

distributed as the number of nodes in the subtree of ℓ can be differ-

ent from that of ℓ′), and 𝑓 denotes the joint probability density of

(𝑣ℓ , 𝑣−ℓ ).

5
The VIPC term needs to be non-positive for the auction to be IIR, and since our

objective is to maximize revenue, it must be zero. This is ensured by 𝓅𝑖 .
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The objective function of Equation (6) can therefore be written∫
𝑣

©«
∑︁
ℓ∈�̃�

𝑤ℓ (𝑣ℓ )ℊℓ (𝑣ℓ , 𝑣−ℓ )
ª®¬ 𝑓 (𝑣) d𝑣 .

The solution to the unconstrained version of the optimization prob-

lem given by Equation (6) is rather simple.

if𝑤ℓ (𝑣ℓ ) < 0,∀ℓ ∈ �̃� , then ℊℓ (𝑣ℓ , 𝑣−ℓ ) = 0,∀ℓ ∈ �̃�

else ℊℓ (𝑣ℓ , 𝑣−ℓ ) =
{

1 if𝑤ℓ (𝑣ℓ ) ⩾ 𝑤𝑘 (𝑣𝑘 ),∀𝑘 ∈ �̃�

0 otherwise

(7)

The ties in𝑤ℓ (𝑣ℓ ) are broken arbitrarily. Since the distributions of

𝑣ℓ , ℓ ∈ �̃� satisfy MHR, the virtual valuations,𝑤ℓ , are monotone non-

decreasing. Also, since this mechanism breaks the tie arbitrarily

in favor of an agent, the allocation is also deterministic. Therefore,

the optimal solution of the unconstrained problem of Equation (6)

also happens to be the optimal solution of the constrained problem.

We find the payments of the winner from Equation (5) as follows.

define 𝜅∗ℓ (𝑣−ℓ ) = inf{𝑦 : ℊℓ (𝑦, 𝑣−ℓ ) = 1},
𝓅ℓ (𝑣ℓ , 𝑣−ℓ ) = 𝜅∗ℓ (𝑣−ℓ ) · ℊℓ (𝑣ℓ , 𝑣−ℓ ),

(8)

where 𝜅∗
ℓ
(𝑣−ℓ ) is the minimum valuation of agent ℓ to become the

winner. Formally, we define the auction as follows.

Definition 9 (Maximum Virtual Valuation Auction (maxViVa)). The

maximum virtual valuation auction is a subclass of RA, where the
TAs of that subclass follow the allocation and payments given by

Equations (7) and (8) respectively.

We consolidate the arguments above in the form of the following

theorem.

Theorem 5. For agents having i.i.d. MHR valuations, the revenue-
optimal RA is maxViVa.

Sincemultiple RAs can reduce to the same TA, the revenue optimal

RA is a class of auctions, all belonging to RA, that has the same TA
given by Definition 9. Note that neither IDM nor TNM (and other

mechanisms in the literature) is maxViVa because they do not use

any priors. Therefore, the revenue-maximizing auctions in this

setting are a new class of mechanisms that have not been explored

in the literature.

5.4 Extension to non-i.i.d. agents and general
graphs

When we migrate from i.i.d. valuations, it is not clear if the nodes

in the TA satisfy MHR or a relatively weaker condition of regularity
(which only requires the virtual valuations to be non-decreasing).

Hence, the revenue maximization problem becomes far more chal-

lenging. We provide an experimental study in the supplementary

material that shows that if the i.i.d. assumption does not hold, a

special auction from the LbLEV class can yield more revenue than

the currently known network auctions.

To generalize our results beyond RA for revenue maximization,

we need to consider the revenue maximization problem (Equa-

tion (6)) with the constraints of MFFE (Definition 7). This optimiza-

tion problem seems to have much less structure than that in RA.
Therefore, we need more structural results about the pay𝑖 terms so

that this optimization problem can be simplified. Also, we cannot
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Figure 3: Percentage increase in revenue for LbLEV over IDM
for different 𝜎 and optimal 𝑡 .

work with only TAs anymore since the revenue-optimal DA may

not be reducible to a TA (à la Lemma 4). These are interesting open

questions to address.

6 DESIGNING DA FOR IMPROVING REVENUE
Based on our characterization results, we constructed new DAs
that improve revenue over the currently known DAs. Due to space

constraints, we only mention the results in a nutshell (full details in

[3]). We introduce a class of DAs called Level-by-Level Exponential
Valuation (LbLEV) that is DDSIC and IR. As the name suggests, the

mechanism is run at every level of the referral tree 𝑇 rooted at

𝑠 . LbLEV is parametrized by a vector 𝑡 ∈ R𝑛
>0
, where 𝑡𝑖 denotes

the exponent of agent 𝑖 . Different choices of 𝑡 for the same input

instance create a class of mechanisms, and we call each of them

LbLEV.
We generate the trees randomly. The valuations are drawn inde-

pendently from N(𝜇, 𝜎2). We assume that there are three classes
of agents: high, medium, and low, having 𝜇 to be 100, 70, and 50 re-

spectively, and the same 𝜎 . For a “suitably” chosen exponent vector

𝑡 (picked when the distribution of the valuations are known, but

before both the actual valuations and the tree realizes), the expected

revenue of LbLEV performs significantly better than the currently

known IDM [16] which is the only comparison candidate when the

network is a referral tree (Figure 3).

7 SUMMARY AND PLANS OF EXTENSION
We provided a characterization of randomized truthful single in-

divisible item auctions on a network. Our results are the network

counterpart of Myerson’s result [19]. The question of finding the

revenue optimal mechanism for a general network is still open and

is an interesting future work.
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