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ABSTRACT
This paper introduces a self-organizing decentralized controller em-
ploying an information diffusion mechanism to govern the behavior
of surface-based distributed manipulators. These systems utilize
independently controlled actuators arranged in a grid for precise
positioning and orientation of objects. The proposed approach is
demonstrated in a simulated virtual environment with a generic
distributed manipulator. The system’s self-organization capabilities
are evaluated through experiments involving objects of varying
sizes and shapes. The results show the robustness, fault tolerance,
and performance of the system. The approach’s high level of ab-
straction makes it versatile for different actuation principles and
sensing devices, focusing on the essential information and module
capabilities needed for the task. Code available at [5].
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1 INTRODUCTION
Distributed manipulation systems consist of a grid of similar or
identical independent actuators, combined with a control strat-
egy that coordinates their movements to induce motion on objects
resting on its surface (Fig. 1a). The purpose is to achieve precise po-
sitioning of planar objects. There are various forms of manipulation
surfaces, and their actuation mechanisms have been extensively
studied [3, 7, 12, 17, 18]. Controllers for these systems usually rely
on generating a static vector field [4, 10, 11, 18]. However, this
approach often requires restrictive assumptions concerning the
symmetries and shapes of the objects, even the most robust of these
control approaches fail to handle objects of specific shapes and
sizes [2, 12, 17]. Moreover, these systems commonly adopt central-
ized control architectures [18] which constrains the scalability, as a
single computer may struggle with numerous actuators [2] but also
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(a) Example of a wheel-based
distributed manipulator.

(b) Representation of the
environment.

Figure 1: Distributed manipulator and environment.

compromises the overall robustness due to dependency on a single
control unit. To address these limitations, this paper proposes infor-
mation diffusion as a decentralized control system for distributed
manipulation. Through local communication, neighboring actua-
tors coordinate their movements for precise positioning of planar
objects. By eliminating centralized control, the approach enhances
scalability and robustness.

The central idea is that individuals capture and spread relevant
environmental information, make decisions based on behavior rules,
and apply a local force on the object to be manipulated. Despite the
behavior rules simplicity, the interactions between the agents pro-
duce self-organization and enhance the system’s capabilities, result-
ing in coordinated movement of the object. The approach is inspired
by natural systems and draws on concepts from cellular automata,
reaction-diffusion, and amorphous computing, leveraging informa-
tion gradients in self-organizing systems [1, 6, 8, 9, 15, 16, 19].

2 METHOD
The methodology is evaluated within a two-dimensional simulated
model based on previously developedmodularmanipulators created
for experimental purposes [11, 13, 14] shown in Fig. 1b. This system
consists of a grid of square modules, referred to as tiles, able to
communicate with connected neighbors. An object, characterized
by its center and orientation (𝛼), is placed on top of the tiles. The
objective of the system is to move the object from an initial position
to a predetermined final position and orientation (𝛽) referred to as
the target.

All the tiles in the system are equally capable and governed
by the same logic. Each of them possesses a sensor that allows
it to detect the presence of an object above. A tile with its sensor
detecting an object is referred to as a contact tile and is represented
in Fig.1b with blue outlines. Tiles can induce a linear movement on
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Figure 2: Behavior rules of the tile.

the object if they are in contact with it, and can be designated as
target tiles if the object in its final desired position contains the
center of the tile within its boundaries. In this paper, we assume that
the tiles know their position and can infer the object’s geometric
center and orientation. Similarly, if a tile is set as a target, it can
identify the geometric center and orientation of the object at the
desired final position.

Each tile can communicate with its four adjacent tiles (up, down,
right, left) referred to as the neighborhood. The control loop of a
tile consists of updating its state through local communication with
its neighbors and local sensor information, the state of a tile contains
information about its position, sensor value, vector movements, and
the mentioned inferred properties of the object and target. Then the
tile will diffuse its vector translation ( ®𝑣𝑡 ), vector rotation ( ®𝑣𝑟 ), and
orientations, and use it to decide how to contribute to the vector
field following its behavior rules.

The mechanism of information diffusion in the system refers
to how the values in the state of the tiles are spread between the
individuals. The tile will contribute to the diffusion of information
by adopting the new information processed out of the states of its
neighborhood. The diffusion of information in a tile is given by
averaging the information values of its neighborhood. Behavior
rules refer to a logic path associated with a tile. These rules take
as input the available information stored in the tile and generate a
vector movement as output. The decision flow is shown in Fig. 2,
where the diffusion of the values is given by the described mecha-
nism, the vector translation points towards the average position of
the target tiles among its neighborhood, and the vector rotation is
computed to be perpendicular to the vector from the tile center to
the object center and proportional to the orientation error (𝛽 − 𝛼).

3 EXPERIMENTS
Two experiments were carried out to validate and study the poten-
tial and limitations of the proposed decentralized controller. The
first one consisted of running the simulator for different object
sizes, the performance of the controller is measured by the error
between the final position of the object and the target position,
with the positioning error calculated in relation to the length of the

(a) Influence of resolution on performance.

(b) Influence of faulty agents on performance.

Figure 3: Experiments results.

side of the tile. In this experiment, the term resolution refers to
the relation between the size of the tile and the object. The second
experiment measured the system’s robustness against faulty agents.
In each run, a certain amount of tiles were randomly chosen from
the system with a uniform distribution and set to be faulty. A faulty
tile does not contribute to the system’s dynamics, nor is it regis-
tered by its neighbor tiles, rendering it functionally equivalent to
an absent element within the system.

In Fig. 3a, the system demonstrated strong orientation capabil-
ities for resolutions exceeding three. However, a decline in per-
formance was observed for objects with resolutions below this
threshold, due to the risk of small objects not being detected by the
sensors. On the other hand, the decentralized controller demon-
strated effectiveness in translation for resolutions exceeding one.
Fig. 3b illustrates that the system’s orientation capabilities decline
gradually as the percentage of faulty tiles increases, while the posi-
tion error varies significantly after thirty percent.

4 CONCLUSIONS
This paper introduces a simple decentralized approach for control-
ling distributed manipulators which represents an alternative to
existing centralized architectures with non-interacting agents. This
approach has been demonstrated to exhibit self-organization and
adaptation capabilities for planar manipulation tasks involving ob-
jects of varying shapes and sizes. Furthermore, it has been shown
to be remarkably robust against failure.
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