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ABSTRACT
It is vital to learn a generalizable policy in visual reinforcement

learning (RL). Many algorithms are proposed to handle this problem

while none of them theoretically show what affects the general-

ization gap and why their methods work. In this paper, we bridge

this issue by theoretically answering the key factors that contribute

to the generalization gap when the testing environment has dis-

tractors. Our theories indicate that minimizing the representation

distance between training and testing environments is the most crit-

ical. Our theoretical results are supported by the empirical evidence

in the DMControl Generalization Benchmark.
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1 INTRODUCTION
It is critical for visual RL algorithms to be able to generalize to

unseen scenarios. Unfortunately, it is challenging as the difference

between the (possibly) clean training environment and the unseen

environments is not predictable. Existing methods remedy suchmis-

match by leveraging data augmentation [6, 9, 10, 12, 16, 19, 20, 24],

domain randomization [2, 4, 21–23, 27, 34], self-supervision [1, 8,

10, 28, 30, 35], pre-trained image encoders [5, 33], normalization

[17], etc. Despite their success, none of them explain why their meth-
ods work in practice from a theoretical perspective. In this paper, we

aim at bridging this gap. We focus on the following generalization
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setting: the algorithm is trained in a clean environment with visual

input, while deployed in an unseen environment where the color

or the background of the agent changes. Since the policy keeps

evolving during training, we resort to reparameterization trick to

decouple the randomness in the environment from the policy, the

transition dynamics, and the initial state distribution. Under some

mild assumptions, we establish concrete theoretical bounds on the

generalization gap when deploying the policies in testing environ-

ments with distractors. Our results suggest that the most crucial

factor that influences the test performance is the representation

deviation before and after adding the distractor. We examine the

theoretical conclusions by conducting experiments of different al-

gorithms in DMControl Generalization Benchmark (DMC-GB) [10].

The empirical evidence is consistent with the theoretical insights.

2 REPARAMETERIZABLE VISUAL RL
We consider episodic MDPs with a finite horizon. Denote the tra-

jectory 𝜏 with length 𝑇 + 1 as 𝜏 = {𝑠0, 𝑠1, . . . , 𝑠𝑇 }. Denote the joint
distribution of the trajectories in an episode as D𝜋,𝑝,𝑝0 , which is

jointly determined by the transition probability 𝑝 , initial state dis-

tribution 𝑝0, and the learned policy 𝜋 . We assume 𝑝 and 𝑝0 are fixed

and the policy is deterministic. Then, D𝜋,𝑝,𝑝0 becomes D𝜋 . Our

goal ismax𝜋 ∈Π E𝜏∼D𝜋
[𝐽 (𝜏 ;𝜃 )] = E𝜏∼D𝜋

[∑𝑇
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝜋 (𝑠𝑡 ))]. We

define the generalization gap as: ∥E𝜏∼D′
�̂�
[𝐽 (𝜏)] − 1

𝑛

∑𝑛
𝑖=1 𝐽 (𝜏𝑖 )∥22,

where D ′
𝜋
is the state sequence distribution in the testing environ-

ment, 𝜋 = argmax𝜋 ∈Π,𝜏𝑖 ∈D𝜋

1

𝑛

∑𝑛
𝑖=1 𝐽 (𝜏𝑖 ), where 𝑛 is the number

of training episodes, and Π is the policy class. It is difficult to quan-

tify this gap since the underlying sample distribution in the training

environment D𝜋 changes as the policy evolves.

In visual RL, we denote the observation as 𝑠 and the encoder as

𝜙 (·). The reward gives 𝑟 (𝑠, 𝜋 (𝜙 (𝑠))) and the policy is 𝜋 (𝜙 (𝑠)) : Φ ↦→
A, where Φ is the representation space. During testing, we assume

there exists the distractor 𝑓 (·) that transforms the vanilla image 𝑠

into a new image.We name 𝑓 (·) as the transpose function, which can
take an arbitrary form.We assume that both the transition dynamics

and the state initialization process can be reparameterized, then by

using the reparameterization trick [3, 7, 11, 13–15, 18, 25, 26, 29, 31],

we can rewrite the objective function as follows:

E𝜏∼D𝜋
[𝐽 (𝜙 (𝜏))] = E𝜉∼𝑞 (𝜉) [𝐽 (𝜙 (𝜏 (𝜉 ;𝜋𝜃 )))] , (1)
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where 𝑞(𝜉) is the distribution of the random variable 𝜉 . This ob-

jective no longer depends on D𝜋 and 𝜋 . That is, we isolate the

randomness of the policy 𝜋 from the expected return. We denote

T (𝑠, 𝜋 (𝑠)) = 𝑝 (𝑠, 𝜋 (𝑠), 𝑠 ′) as the state transition probability, and

I : Ξ ↦→ S is the initialization function, where Ξ is the space of

the random variable 𝜉s. We present the pseudo code of reparame-

terizable visual RL in Algorithm 1, where we reparameterize the

transition dynamics of the system.

Algorithm 1 Reparameterizable Visual RL

1: Sample 𝜉0, 𝜉1, . . . , 𝜉𝑇
2: Get 𝑠0 = I(𝜉0) and initialize 𝑅 = 0

3: Set encoder 𝜙 (·), policy 𝜋 (·)
4: for 𝑡 = 0 to 𝑇 do
5: 𝑅 = 𝑅 + 𝛾𝑡𝑟 (𝑠𝑡 , 𝜋 (𝜙 (𝑠𝑡 )))
6: 𝑠𝑡+1 = T (𝑠𝑡 , 𝜋 (𝜙 (𝑠𝑡 )), 𝜉𝑡 )
7: end for

Note that the random variables 𝜉0, 𝜉1, . . . , 𝜉𝑇 can be drawn from

some distributions before the episode starts, hence isolating the ran-

domness of the policy. The above formulation also applies when the

policy evolves during training, since the trajectory can be decided

deterministically by executing T (𝑠𝑡 , 𝜋 (𝜙 (𝑠𝑡 )), 𝜉𝑡 ) repeatedly.

3 THEORETICAL ANALYSIS ON THE
GENERALIZATION ERROR

Under Lipschitz assumptions on the transition dynamics, the pol-

icy, the encoder, and the reward function, and assume ∥𝜙 (𝑓 (𝑠)) −
𝜙 (𝑠)∥ ≤ 𝜚,∀ 𝑠 , the discrepancies of transition dynamics and the

initialization function between training and testing environments

gives at most 𝜁 and 𝜖 , we present the generalization gap bound

below (check the full version in Arxiv for details).

Theorem 1. Under some mild assumptions, we have with proba-
bility at least 1 − 𝛿 , the generalization error gives,E𝜉 [

𝐽
(
𝜙

(
𝑓

(
𝜏
(
𝜉 ;𝜋,T ′,I ′) ) ) ) ] − 1

𝑛

𝑛∑
𝑖=1

𝐽 (𝜙 (𝜏 (𝜉𝑖 ;𝜋,T ,I)))


≤ 𝜆𝜁

𝑇∑
𝑡=0

𝛾𝑡
𝜈𝑡 − 1

𝜈 − 1

+ 𝜆𝜖
𝑇∑
𝑡=0

𝛾𝑡𝜈𝑡 +
𝐿𝑟2𝐿𝜋1

𝜚

1 − 𝛾 (1 − 𝛾𝑇+1)

+ O
(
𝐿𝐽 𝐾

√
𝑚

𝑛

)
+ O

(
𝑟max

√
log(1/𝛿)

𝑛

)
,

where 𝜆, 𝜈, 𝐿𝑟2 , 𝐿𝜋1
, 𝐿𝐽 , 𝐾 are constants,𝑚 is the dimension of the

policy parameter, T ′,I ′
are the transition dynamics and initializa-

tion function in the testing environment.

Remark:We summarize a key insight based on the above bound,

the generalization gap can only be small if the representation distance
between the training and testing environments is small, since 𝜚 is the

only factor that one can control in the bound. This is somewhat

consistent with a human’s intuition: the representations before

and after involving distractors are similar and hence the policy can

retrieve good behaviors it learned in the training environment.

4 EXPERIMENTAL SUPPORT
We examine whether our theory applies to existing algorithms and

explains why they work in practice. We choose DrQ [32], SVEA

[9], and PIE-G [33]. PIE-G and SVEA exhibit better generaliza-

tion performance than DrQ [33]. We expect that the representa-

tion deviation ∥𝜙 (𝑓 (𝑠)) − 𝜙 (𝑠)∥ (as well as the policy deviation

∥𝜋 (𝜙 (𝑓 (𝑠))) − 𝜋 (𝜙 (𝑠))∥) of PIE-G and SVEA are smaller than DrQ.

We verify this by conducting experiments on two environments

from DMC-GB, walker-walk and finger-spin. We run these al-

gorithms under their default hyperparameters on the clean training

environment first and then replace the background with playing

videos (i.e., video-easy setting). Our experimental setting is, the tra-

jectory remains the same, and only backgrounds are changed. This

generally meets our formulation. We evaluate the representation

deviation using the learned encoder and the policy deviation with

the policy network of each algorithm on the clean training trajec-

tory and the testing trajectories with distractors for 100 episodes

and 5 different random seeds. We summarize the results in Figure

1, where the empirical results are unanimously in line with our

expectations. Hence, we believe our theory explains in part why

these algorithms work in practice.

Figure 1: Comparison of representation deviation and pol-
icy deviation of SVEA, PIE-G, and DrQ on video-easy setting
of walker-walk and finger-spin tasks fromDMC-GB. The re-
sults are averaged over 5 varied random seeds.

5 CONCLUSIONS
Despite there are many practical algorithms for enhancing the gen-

eralization capability of visual RL policies, a clear and instructive

theoretical analysis on the generalization gap, and how to mini-

mize the generalization gap are absent. Our work aim to provide

a theoretical bound on the generalization gap in visual RL when

there exist distractors in the testing environment, and explain why

previous methods work. However, directly analyzing the generaliza-

tion gap is difficult since the policy keeps evolving. We isolate the

randomness from the policy by resorting to the reparameterization

trick. Our bound indicates that the key to reducing the generaliza-

tion gap is to minimize the representation deviation between the

training and testing environments. We further provide empirical

evidence, which we find is consistent with the theoretical results.

ACKNOWLEDGMENTS
This work was supported by the STI 2030-Major Projects under

Grant 2021ZD0201404.

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2370

https://arxiv.org/pdf/2402.02701


REFERENCES
[1] Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G Belle-

mare. 2021. Contrastive Behavioral Similarity Embeddings for Generalization in

Reinforcement Learning. In International Conference on Learning Representations.
https://openreview.net/forum?id=qda7-sVg84

[2] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac,

Nathan D. Ratliff, and Dieter Fox. 2018. Closing the Sim-to-Real Loop: Adapting

Simulation Randomization with Real World Experience. In 2019 International
Conference on Robotics and Automation (ICRA).

[3] Kamil Ciosek and Shimon Whiteson. 2020. Expected Policy Gradients for Rein-

forcement Learning. Journal of Machine Learning Research 21, 52 (2020), 1–51.

[4] Tianhong Dai, Kai Arulkumaran, Samyakh Tukra, Feryal M. P. Behbahani, and

Anil Anthony Bharath. 2019. Analysing Deep Reinforcement Learning Agents

Trained with Domain Randomisation. Neurocomputing 493 (2019), 143–165.

[5] Andrea Dittadi, Frederik Träuble, ManuelWüthrich, FelixWidmaier, Peter Gehler,

Ole Winther, Francesco Locatello, Olivier Bachem, Bernhard Schölkopf, and

Stefan Bauer. 2021. The Role of Pretrained Representations for the OOD Gen-

eralization of Reinforcement Learning Agents. arXiv preprint arXiv:2107.05686
(2021).

[6] Linxi (Jim) Fan, Guanzhi Wang, De-An Huang, Zhiding Yu, Li Fei-Fei, Yuke

Zhu, and Anima Anandkumar. 2021. SECANT: Self-Expert Cloning for Zero-

Shot Generalization of Visual Policies. In International Conference on Machine
Learning.

[7] Michael Figurnov, Shakir Mohamed, and Andriy Mnih. 2018. Implicit Reparame-

terization Gradients. In Neural Information Processing Systems.
[8] Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A

Efros, Lerrel Pinto, and Xiaolong Wang. 2021. Self-Supervised Policy Adaptation

during Deployment. In International Conference on Learning Representations.
https://openreview.net/forum?id=o_V-MjyyGV_

[9] Nicklas Hansen, Hao Su, and Xiaolong Wang. 2021. Stabilizing Deep Q-Learning

with ConvNets and Vision Transformers under Data Augmentation. In Neural
Information Processing Systems.

[10] Nicklas Hansen and Xiaolong Wang. 2020. Generalization in Reinforcement

Learning by Soft Data Augmentation. In 2021 IEEE International Conference on
Robotics and Automation (ICRA).

[11] Nicolas Manfred Otto Heess, GregWayne, David Silver, Timothy P. Lillicrap, Tom

Erez, and Yuval Tassa. 2015. Learning Continuous Control Policies by Stochastic

Value Gradients. In Neural Information Processing Systems.
[12] Yangru Huang, Peixi Peng, Yifan Zhao, Guangyao Chen, and Yonghong Tian. 2022.

Spectrum Random Masking for Generalization in Image-based Reinforcement

Learning. In Neural Information Processing Systems.
[13] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization

with Gumbel-Softmax. In International Conference on Learning Representations.
https://openreview.net/forum?id=rkE3y85ee

[14] Diederik P. Kingma, Tim Salimans, and Max Welling. 2015. Variational Dropout

and the Local Reparameterization Trick. InNeural Information Processing Systems.
[15] Diederik P Kingma and Max Welling. 2013. Auto-encoding Variational Bayes.

arXiv preprint arXiv:1312.6114 (2013).
[16] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. 2019. Network Random-

ization: A Simple Technique for Generalization in Deep Reinforcement Learning.

In International Conference on Learning Representations.
[17] Lu Li, Jiafei Lyu, Guozheng Ma, Zilin Wang, Zhen Yang, Xiu Li, and Zhiheng Li.

2023. Normalization Enhances Generalization in Visual Reinforcement Learning.

ArXiv abs/2306.00656 (2023).

[18] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The Concrete

Distribution: A Continuous Relaxation of Discrete Random Variables. ArXiv
abs/1611.00712 (2016).

[19] Oleksandr Maksymets, Vincent Cartillier, Aaron Gokaslan, Erik Wijmans, Woj-

ciech Galuba, Stefan Lee, and Dhruv Batra. 2021. THDA: Treasure Hunt Data

Augmentation for Semantic Navigation. In 2021 IEEE/CVF International Conference
on Computer Vision (ICCV).

[20] P. Mitrano and Dmitry Berenson. 2022. Data Augmentation for Manipulation.

ArXiv abs/2205.02886 (2022).

[21] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and P. Abbeel. 2017.

Sim-to-Real Transfer of Robotic Control with Dynamics Randomization. In 2018
IEEE International Conference on Robotics and Automation (ICRA).

[22] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and P.

Abbeel. 2017. Asymmetric Actor Critic for Image-Based Robot Learning. ArXiv
abs/1710.06542 (2017).

[23] Riccardo Polvara, Massimiliano Patacchiola, Marc Hanheide, and Gerhard Neu-

mann. 2020. Sim-to-Real Quadrotor Landing via Sequential Deep Q-Networks

and Domain Randomization. Robotics 9 (2020), 8.
[24] Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob

Fergus. 2021. Automatic Data Augmentation for Generalization in Reinforcement

Learning. In Neural Information Processing Systems.
[25] Tim Salimans and Diederik P. Kingma. 2016. Weight Normalization: A Simple

Reparameterization to Accelerate Training of Deep Neural Networks. In Neural
Information Processing Systems.

[26] Frank Sehnke, Christian Osendorfer, Thomas Rückstiess, Alex Graves, Jan Pe-

ters, and Jürgen Schmidhuber. 2008. Policy Gradients with Parameter-Based

Exploration for Control. In International Conference on Artificial Neural Networks.
[27] Reda Bahi Slaoui, William R. Clements, Jakob N. Foerster, and S’ebastien Toth.

2019. Robust Domain Randomization for Reinforcement Learning. ArXiv
abs/1910.10537 (2019).

[28] Yu Sun, X.Wang, Zhuang Liu, JohnMiller, Alexei A. Efros, andMoritz Hardt. 2019.

Test-Time Training with Self-Supervision for Generalization under Distribution

Shifts. In International Conference on Machine Learning.
[29] Huan Wang, Stephan Zheng, Caiming Xiong, and Richard Socher. 2019. On the

Generalization Gap in Reparameterizable Reinforcement Learning. In Interna-
tional Conference on Machine Learning.

[30] Xudong Wang, Long Lian, and Stella X. Yu. 2021. Unsupervised Visual Attention

and Invariance for Reinforcement Learning. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[31] Ming Xu, Matias Quiroz, Robert Kohn, and Scott Anthony Sisson. 2018. Variance

Reduction Properties of the Reparameterization Trick. In International Conference
on Artificial Intelligence and Statistics.

[32] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. 2021. Reinforce-

ment Learning with Prototypical Representations. In International Conference on
Machine Learning.

[33] Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian Wang, Yi Wu, Yang Gao,

and Huazhe Xu. 2022. Pre-Trained Image Encoder for Generalizable Visual

Reinforcement Learning. In Neural Information Processing Systems.
[34] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto L. Sangiovanni-Vincentelli,

Kurt Keutzer, and Boqing Gong. 2019. Domain Randomization and Pyramid Con-

sistency: Simulation-to-Real Generalization Without Accessing Target Domain

Data. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV).
[35] Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey

Levine. 2021. Learning Invariant Representations for Reinforcement Learning

without Reconstruction. In International Conference on Learning Representations.
https://openreview.net/forum?id=-2FCwDKRREu

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2371

https://openreview.net/forum?id=qda7-sVg84
https://openreview.net/forum?id=o_V-MjyyGV_
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=-2FCwDKRREu

	Abstract
	1 Introduction
	2 Reparameterizable Visual RL
	3 Theoretical Analysis on the Generalization Error
	4 Experimental Support
	5 Conclusions
	Acknowledgments
	References



