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ABSTRACT
We examine the extent to which rescue strategies within a bank-
ing system can reduce systemic risk. We focus on donations from
solvent banks to banks in distress, which can in principle reduce
losses and prevent default cascades. We build an agent-based model
to simulate the ensuing strategic game on a randomly generated
financial network, where nodes represent banks and edges repre-
sent interbank liabilities. Each bank independently decides whether
to rescue (and whom) to maximise their payoffs. We analyse the
rescue strategies adopted by the banks at equilibrium, using em-
pirical game-theoretic analysis. Our results show that donations
can indeed reduce systemic risk when the equilibrium strategy pro-
file is adopted. Individual donations can benefit multiple banks in
the network. Our results also indicate that lower default costs and
small-variance liabilities tend to decrease the incentives to donate.
We furthermore examine the impact of the banks’ rationality on
the effects of rescue, finding that banks behaving rationally use
their funds for rescues more efficiently than banks that behave
irrationally.
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1 INTRODUCTION
Reducing systemic risk often requires saving a number of banks
in the banking network. As we witnessed throughout history, this
comes at huge expenses to the taxpayer or investors, with large
bailouts or shady acquisitions of the bank in distress. We wonder
whether the network can “self-heal” in an incentive-compatible way.
The idea we consider is the donation of funds from certain banks
to banks in distress to rescue them, reducing the losses of their
creditor banks. In a complex banking system, a creditor bank with
limited funds may have several insolvent debtors, and on the other
hand, an insolvent bank may have several potential rescuers, so the
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rescue strategy of a bank depends not only on its local information
but also on other banks’ strategies, thus defining a strategic game.

Our main contributions can be summarised as follows:
(1) an agent-based simulation framework supporting strategic

analysis of individual rescues in the banking system;
(2) empirical validation of the existence of equilibrium in the

donation game, and a series of sensitivity analyses based on
empirical parameters; and

(3) analysis of incentives and the impact of banks’ rationality
on their behaviour in the donation game.

Related Work. Eisenberg and Noe were the first to model banks
with balance sheets and define them on a network [2]. Rogers and
Veraart extended this model by adding default costs to the banking
network, in which insolvent banks can only recover a fraction
(rather than all) of their assets to transfer to their creditors [9].
Based on the Eisenberg-Noe model and its extensions, a series of
works on stress test methods has been conducted [1, 3]. However,
Upper claimed that traditional stress test methods only analyse
static balance sheets, leading to limited conclusions without agents’
strategic interactions [10]. Some recent studies have considered the
application of game-theoretic analysis to agents’ interactions in the
systemic risk scenario [4, 5, 7], but individual donations, which is
the focus of the present paper, has not been widely studied.

2 DONATION GAME
We work with a randomly generated banking network and choices
of external asset parameters 𝑒 ∈ {0.0, 0.2, · · · , 7.8, 8.0}. The dona-
tion game starts with a set of banks 𝑁 = {1, · · · , 10} and each bank
is given an external asset 𝑒𝑖 = 𝑒 , defining the external asset vector
𝒆. The notional of an interbank liability of bank 𝑖 to bank 𝑗 is the
absolute value of a random number following the standard normal
distribution, i.e., 𝑙𝑖 𝑗 = |𝑧 |, 𝑧 ∼ 𝑁 (0, 1),∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 , and we as-
sume 𝑙𝑖𝑖 = 0,∀𝑖 ∈ 𝑁 . As a result, we obtain the liabilities matrix 𝑳
comprising all the liability data in the generated banking network.
The relative liabilities matrix 𝚷 is defined by

𝜋𝑖 𝑗 =

{
𝑙𝑖 𝑗
𝐿𝑖

if 𝐿𝑖 > 0,
0 otherwise.

A clearing vector 𝚲 representing actual payments of banks is a
vector such that 𝚲 = Φ(𝚲) where function Φ is given by

Φ(𝚲)𝑖 =
{

𝐿𝑖 if 𝑒𝑖 +
∑

𝑗∈𝑁 𝜋 𝑗𝑖Λ 𝑗 ≥ 𝐿𝑖 ,

𝑎𝑒𝑖 + 𝑏
∑

𝑗∈𝑁 𝜋 𝑗𝑖Λ 𝑗 otherwise.

where 𝑎, 𝑏 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} are two constants called recovery
parameters, controlling the fraction of the nominal value of assets
for liquidation. We use the Greatest Clearing Vector Algorithm (GA)
[9] to calculate the greatest clearing vector for a banking network.
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The value of a bank is defined as the difference between its actual
total assets and its total liabilities, that is 𝑣𝑖 = 𝑒𝑖 +

∑
𝑗∈𝑁 𝜋 𝑗𝑖Λ 𝑗 − 𝐿𝑖 .

A bank is considered insolvent if its value is negative, that is 𝑣𝑖 < 0.

2.1 Donations
A donation is viewed as an asset transfer from one bank to another.
We make several assumptions to simplify the model. Firstly, only
solvent banks can donate to insolvent banks. Secondly, the donation
amount is always set to the opposite number of the insolvent bank’s
value, that is 𝑑𝑖 𝑗 = −𝑣 𝑗 , 𝑣 𝑗 < 0. Thirdly, a donation is valid only if
the donor’s external asset can cover the donation amount. Finally,
we assume that each donor can select at most one recipient. These
assumptions keep our experiments computationally feasible.

The choice of insolvent bank is referred to as the strategy of the
donor. For example, strategy 𝑠𝑖 = 𝑗 implies the donation 𝑑𝑖 𝑗 = −𝑣 𝑗 .
Note that a solvent bank can also choose not to donate, which we
write as 𝑠𝑖 = ∅. A strategy profile 𝒔 = (𝑠1, · · · , 𝑠10) is a specification
of a strategy for each of the banks. Each strategy profile corresponds
to a unique donation matrix 𝑫 (𝒔), where the entry 𝑑𝑖 𝑗 is given by

𝑑𝑖 𝑗 =

{
−𝑣 𝑗 if 𝑠𝑖 = 𝑗,

0 otherwise.

With the donation matrix, the external asset vector is updated by

𝑒 (𝒔)′𝑖 =


𝑒𝑖 − 𝑑𝑖 𝑗 if 𝑠𝑖 = 𝑗 and 𝑒𝑖 ≥ 𝑑𝑖 𝑗 ,

𝑒𝑖 + 𝑑 𝑗𝑖 if 𝑠 𝑗 = 𝑖 and 𝑒 𝑗 ≥ 𝑑 𝑗𝑖 ,

𝑒𝑖 otherwise.

Again we use the GA algorithm to calculate the bank values after
donations, denoted by 𝑣 (𝒔)′

𝑖
. Then, the payoff of a bank is given by

𝑝 (𝒔)𝑖 =
{
𝑣 (𝒔)′

𝑖
− 𝑣𝑖 if 𝑠𝑖 = 𝑗 and 𝑒𝑖 ≥ 𝑑𝑖 𝑗 or 𝑠𝑖 = ∅,

−∞ if 𝑠𝑖 = 𝑗 and 𝑒𝑖 < 𝑑𝑖 𝑗 .

Once we obtain the payoffs of all banks in all strategy profiles,
we compute the equilibrium of the induced empirical game by
the 𝛼-Rank algorithm [8]. Since the equilibrium is in the form of
a probability distribution over strategy profiles, we calculate the
weighted average data with it, which indicates the expected banks’
behaviour. The experiments will be repeated 100 times to eliminate
the impact of the randomness of the generated banking networks.

2.2 Rationality
In the 𝛼-Rank algorithm, we replace the original definition of the
fixation probability of player 𝑖 from strategy 𝜎 to 𝜏 (see [8] for more
details) with the following definition from OpenSpiel [6]:

𝜌𝑖𝜎,𝜏 (𝒔−𝑖 ) =


𝜖 if 𝑓 (𝜏, 𝒔−𝑖 ) < 𝑓 (𝜎, 𝒔−𝑖 )
0.5 if 𝑓 (𝜏, 𝒔−𝑖 ) = 𝑓 (𝜎, 𝒔−𝑖 )
1 − 𝜖 if 𝑓 (𝜏, 𝒔−𝑖 ) > 𝑓 (𝜎, 𝒔−𝑖 )

where 𝒔−𝑖 denotes the strategies of other players, 𝑓 (𝜎, 𝒔−𝑖 ) and
𝑓 (𝜏, 𝒔−𝑖 ) capture 𝑖’s payoffs using strategy 𝜎 and 𝜏 respectively,
and 𝜖 ∈ (0, 0.5] denotes the minimal fixation probability. 𝜖 can be
considered a parameter to measure the agents’ rationality. Specifi-
cally, when 𝜖 = 0.5, a strategy switch occurs randomly, and when
𝜖 → 0, the agents will be very rational as a tiny difference in pay-
offs will lead to a strategy switch. Therefore, we can study how the
rationality of banks affects their rescue behaviour by using different
rationality parameters 𝜖 ∈ {0.001, 0.01, 0.1, 0.3, 0.5}.

3 RESULTS OVERVIEW
Effects of Rescue. Our experimental results prove that donations
can indeed reduce systemic risk. we also find that the reduction
in defaults can be larger than the number of donations, which
indicates that one donation can rescue more than one insolvent
bank in some cases. The reason is that the increase in the values of
the rescued banks can generate a positive externality, increase the
values of other banks, and save more insolvent banks in this way.

Impacts of Model Parameters on Rescue.We studied how themodel
parameters affect the effectiveness of rescue by experimenting with
different external asset parameters and recovery parameters. Our
results show that for a pair of fixed recovery parameters, the effects
of rescue can reach a peak when the external assets are at a moder-
ate level vis-à-vis the debt notionals. On the other hand, with the
increase in recovery parameters, the peak moves towards smaller
external assets as the match of assets and debts appears in advance.

Incentives of Rescue. The incentive of a donation can be viewed
as the sum of three terms: cost, direct return from the rescued bank
and indirect return from the positive externality of other banks.
Intuitively, big recovery parameters could increase the incentives
of rescue because of the lower cost and the higher indirect return.
However, our results reveal a counter-intuitive fact that big recovery
parameters may reduce the incentive due to the lower direct return.
In addition, we can also observe that the incentivemay also diminish
with the decrease in relative liabilities, so small-variance liabilities
are not conducive to individual rescues, which is the reason why
solvent banks may have insufficient motivation to rescue.

Imperfect Rationality.We also studied the impact of rationality
on banks’ behaviour by adjusting rationality parameters 𝜖 . Our
results show that the amount of donations increases significantly
with the increase in 𝜖 . However, more donations do not necessarily
mean higher rescue efficiency. To evaluate the effects of rescue at
different rationality levels, we calculate the rescue efficiency by

𝜂 (𝒔) = 𝑛𝑟 (𝒔)∑
𝑖∈𝑁

∑
𝑗∈𝑁 𝑑𝑖 𝑗

where 𝑛𝑟 (𝒔) denotes the reduction in defaults due to donations
in strategy profile 𝒔, and 𝑑𝑖 𝑗 refers to the corresponding donation
amount. We found that the rescue efficiency when 𝜖 is large is
always higher than that when 𝜖 is small.

4 CONCLUSION
Our research examined how donation as an individual rescue strat-
egy reduces systemic risk. Our results show that donations can
indeed reduce systemic risk when the equilibrium strategy profile
is adopted, proving that the banking network can “self-heal” in
an incentive-compatible way via donations. We also find that the
increase in values and clearing payments of the rescued banks can
generate a positive externality, making more than just the rescued
banks survive. In addition, more assets available upon default and
small-variance liabilities may lower the incentives of rescue, which
is the reason that solvent banks may have insufficient motivation
to rescue even though they have sufficient funds. Moreover, the
more irrational the banks are, the higher the volume of donations,
but the lower the rescue efficiency per dollar.
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